Масса абрикосовского вихря

В.Д. Филь¹, Т.В. Игнатова¹, Д.В. Филь², Н.Г. Бурма¹, А.И. Петришин¹, Н.Ю. Шицевалова³

¹ Физико-технический институт низких температур им. Б.И. Веркина НАН Украины пр. Ленина, 47, г. Харьков, 61103, Украина E-mail: fil@ ilt. kharkov.ua

²Институт монокристаллов НАН Украины, пр. Ленина, 60, г. Харьков, 61001, Украина

³Институт проблем материаловедения им. И.М. Францевича НАН Украины ул. Кржижановского, 3, г. Киев, 03142, Украина

Статья поступила в редакцию 25 июля 2007 г., после переработки 18 сентября 2007 г.

При возбуждении вихревой решетки в смешанной фазе монокристаллов YB₆ упругой волной в динамическом отклике обнаружена отрицательная и квадратичная по частоте компонента, ассоциируемая нами с массой вихря. Величина эффекта находится в катастрофическом противоречии с существующими теоретическими оценками.

При збудженні вихорової гратки у змішаній фазі монокристалів YB₆ пружною хвилею у динамічному відгуку знайдено негативну та квадратичну по частоті компоненту, яка асоціюється нами з масою вихору. Величина ефекту знаходиться у катастрофічному протиріччі з існуючими теоретичними оцінками.

РАСS: 74.25.Qt Вихревые решетки, пиннинг вихрей, крип вихрей; 74.70.Ad Металлы, сплавы, бинарные соединения (включая A₁₅, MgB₂ и т.д.).

Ключевые слова: сверхпроводники II рода, вихревые решетки, масса вихря, гексаборид иттрия, акустоэлектрическая трансформация.

Проблема массы абрикосовского вихря в сверхпроводниках II рода имеет длительную историю, начинающуюся с теоретической работы [1] 1965 г. Самые оптимистические оценки, согласно [1], давали массу μ , не превышающую 10^{-20} г/см. Последующие исследования (см. [2,3] и подробнее ниже), наряду с уточнением выводов [1], предложили также ряд новых механизмов, не изменивших, однако, приведенной оценки для типичных сверхпроводящих материалов. Насколько авторам известно, каких-либо количественных измерений масштаба инерционных явлений в вихревых структурах проведено не было.

В настоящей работе приведены экспериментальные данные, свидетельствующие, по мнению авторов, о проявлении инерционного эффекта в динамическом отклике вихревой решетки при ее возбуждении полем упругой волны. Вытекающая из этих экспериментов масса вихря ($\mu \sim 10^{-17}$ г/см) находится в чудовищном противоречии с возможными оценками. В связи с этим авторы считают первостепенной задачей максимально четкое изложение экспериментальной процедуры, приведшей нас к таким выводам.

Проведено исследование динамики вихревой фазы в YB₆. Методика выращивания монокристаллов и значения ряда параметров, характеризующих данное соединение, приведены в [4]. Необходимые для акустических исследований плоскопараллельные образцы вырезали из монокристаллического слитка и механически притирали на тонком абразиве. Удаление вносимых при этом приповерхностных дефектов осуществлялось травлением в течение ~10 с в 40% растворе азотной кислоты, нагретой до 80–90 °С. Полная воспроизводимость результатов измерений в двух различных образцах (толщины 0,8 мм и 2 мм) свидетельствует о хорошей однородности исходного монокристалла.

Необходимые для дальнейшего обсуждения параметры изученных образцов, также определявшиеся в наших экспериментах, следующие: скорость C_{44} -моды — $s = (3,11\pm0,03)\cdot10^5$ см/с, время релаксации электронов $\tau \approx (5\pm2)\cdot10^{-14}$ с, электронная плотность $n \approx (1,25\pm0,25)\cdot10^{22}$ см⁻³, параметр $\omega_c \tau \le 2\cdot10^{-3}$ (ω_c — циклотронная частота), произведение $(q\lambda_L)^2 \le 5\cdot10^{-4}$ (λ_L — лондоновская глубина, q – волновое число).

Процедура измерения динамических параметров вихревых решеток достаточно подробно описана в предыдущих публикациях [5–7]. Кратко ее суть заключается в возбуждении колебаний вихревой решетки поперечной звуковой волной (C_{44} -мода), распространяющейся вдоль магнитного поля H, и исследовании амплитудно-фазовых характеристик электромагнитного излучения, сопровождающего этот процесс. Рабочие частоты — 50 и 100 МГц, акустическая мощность в импульсе ~ 10 Вт/см², что, с учетом двух- или трехкратного его ослабления при переходе из линии задержки в образец, соответствует амплитудам ионных смещений $u \sim 10^{-8}$ см. Каких-либо нелинейных эффектов в работе не обнаружено.

В случае гармонических колебаний (~ $\exp(i\omega t)$) уравнение для амплитуды смещения единицы объема вихревой решетки (с учетом возможной массы вихрей и в пренебрежении силой Магнуса) имеет вид (см., например, [5–8])

$$\frac{1}{c}[\mathbf{jB}] + i\omega\eta(\mathbf{u} - \mathbf{v}) + \alpha_L(\mathbf{u} - \mathbf{v}) - \omega^2 m_v(\mathbf{u} - \mathbf{v}) = 0.$$
(1)

Здесь $B \approx H$ — индукция в образце, **j** — ток, обтекающий вихрь, **v** — амплитуда смещения вихревой решетки, **q** — вязкость, α_L — параметр Лабуша, m_v — масса вихрей. Обращаем внимание, что перенормирующие друг друга пиннинг и инерционная сила входят в (1) с противоположными знаками. Вид вязкостной и инерционной составляющих силы зависит от того, с какой подсистемой взаимодействует вихревая решетка. Вполне возможно, что вместо **u** в них должна фигурировать амплитуда смещения конденсата **v**_s, не совпадающая, в принципе, с **u**. Анализ, однако, показывает, что возникающие вследствие этого поправки малы по параметру

$$p = \left(\frac{\omega_c}{\omega} \frac{q^2}{k_p^2}\right)^2 \le 10^{-4},$$

где $k_p^2 = (4\pi ne^2)/(mc^2)$, *m* — масса электрона. Примем для определенности **u**||**x**. В пренебрежении вкладом нормальных возбуждений и с учетом величин приведенных выше параметров решение (1) совместно с уравнениями Максвелла для нормированной на внешнее магнитное поле компоненты E_v дает:

$$\frac{cE_{y}}{i\omega u_{0}B} = \frac{k_{m}^{2}}{q^{2} + k_{m}^{2}} = X(B), \qquad (2)$$

где
$$k_m^2 = \frac{4\pi(i\omega\eta + \alpha_L - \omega^2 m_v)}{B^2}$$
.

В модели Бардина–Стефена [9] $\eta = (BH_{c2}\sigma_0)/c^2$ (σ_0 — статическая проводимость) и при $H \rightarrow H_{c2}$ (когда α_L и $m_v \rightarrow 0$) уравнение (2) переходит в стандартное уравнение для нормального металла с заменой k_m^2 на квадрат скинового волнового числа

$$k_n^2 = \frac{4\pi i \omega \sigma_0}{c^2}$$
 и $X(B)$ на $X_n = \frac{k_n^2}{q^2 + k_n^2}$

Одновременное измерение модуля и фазы комплексной величины X(B) позволяет легко восстановить реальную и мнимую составляющие $k_m^2 (k_m^2 / q^2 =$ = X/(1-X)), т.е. определить η и комбинацию α_{eff} = $= \alpha_L - \omega^2 m_v$. Проблемой является определение уровней отсчета амплитуды и фазы при относительных по существу измерениях. Ранее [5,6] при измерениях в сверхпроводниках со сравнительно большими значениями параметра Гинзбурга-Ландау к имелся достаточно широкий интервал полей вблизи H_{c1}, где изменение фазы насыщалось (Х ≈ 1), и этот уровень принимался за начало отсчета фазы. В УВ6 малая величина к (~3) и заметно меньшее значение параметра k_n^2 «прижимают» эту область к H_{c1} , не позволяя провести надежные измерения из-за малости В(Н) (рис. 1).

Использован следующий прием. Кроме компоненты E_y , поле излучения содержит и E_x компоненту. При

Рис. 1. Полевая зависимость фазы компоненты поля E_y при *T*, K: 1,7 (1), 4,2 (2), 6 (3). Сплошные линии — 54 МГц, кружки — 100 МГц. Вставка: типичный вид полевой зависимости амплитуды E_y , нормированной описанным в тексте способом (54 МГц, 1,7 К)

гарантированном отсутствии даже слабого замороженного магнитного поля (что существенно при использовании сверхпроводящего соленоида) компонента E_x связана, в основном, с полем Стюарта–Толмена. Ее амплитуда в нормальном состоянии (локальный предел) определяется выражением

$$\frac{E_x}{U_{ST}} = \frac{k_n^2(1-id)}{q^2 + k_n^2} = X_n(1-id), \qquad (3)$$

где $U_{ST} = (m_e / e) \omega^2 u_0$ — поле Стюарта-Толмена, а d — деформационная поправка [7,8]. В модели свободных электронов $d = \frac{1}{5} (v_F / s)^2 \omega \tau$ и даже в наших достаточно загрязненных образцах это дает $d \sim 0,2-0,3$. В сверхпроводнике деформационная поправка вымерзает, величина k_n^2 заменяется на λ_L^{-2} и $E_x \to U_{ST}$. Поэтому измеряемую фазу E_x в сверхпроводящем состоянии в нулевом магнитном поле можно принять за начало отсчета фазы, а амплитуду сигнала нормировать на амплитуду E_x при этих же условиях. При повышении температуры ввиду малости λ_L величина E_x в T_{c} меняется практически скачком (рис. 2). При d = 0изменения амплитуды и фазы поля E_x связаны жестким соотношением $|E_{xs} / E_{xn}| = \sqrt{1 + \text{tg }^2 \Psi_n}$, где Ψ_n фаза в нормальном состоянии, отсчитанная от выбранного уровня. Деформационная поправка приводит к уменьшению Ψ_n . В наших экспериментах приведенное соотношение выполнялось с точностью в несколько градусов, что указывает на меньший, по сравнению с оценкой, вклад деформационного взаимодействия. Более того, в нашем конкретном случае

Рис. 2. Температурная зависимость амплитуды и фазы стюарт-толменовской компоненты поля E_x . Частота 54 МГц, сплошная линия — амплитуда, пунктир — фаза.

эти отклонения вообще никакой роли не играют, поскольку деформационный вклад в амплитуду E_x даже для d = 0,3 пренебрежимо мал. Поэтому за фазу X_n мы можем принять значение $\Psi_n^0 = \operatorname{arctg} \sqrt{(E_{xs} / E_{xn})^2 - 1}$, а за ее модуль — $|X_n| = (1 + \operatorname{tg} {}^2 \Psi_n^0)^{-0.5} = E_{xn} / E_{xs}$.

Измерения E_x использованы также как тест качества излучающей поверхности. Во всех измерениях величина $|E_{xn}/E_{xs}|$ всегда оставалась постоянной с точностью не хуже 1–2%. В то же время значение Ψ_n иногда оказывалось заметно больше расчетного, превышая даже 90°. Это свидетельствовало о значительной неоднородности приповерхностного слоя [5]. Дальнейшие измерения в таком случае отменялись и проводилась дополнительная обработка излучающей поверхности.

При выбранных описанным выше способом уровнях отсчета для модуля и фазы величины Х, мы столкнулись с удивительным результатом. При каноническом поведении мнимой компоненты k_m^2 (т.е. вязкости), реальная компонента имела отрицательный знак с амплитудой, заметно превышающей возможные ошибки измерений. Для проверки предположения о проявлении в данном случае инерции вихрей измерительная частота была увеличена в два раза. Эти измерения были проведены на другой установке, использующей вместо сверхпроводящего соленоида электромагнит с возможностью полной компенсации остаточного поля. Отметим, однако, что более низкая эффективность пьезопреобразователей не позволила провести надежные измерения эволюции поля Стюарта-Толмена при сверхпроводящем переходе, и в качестве уровней отсчета в этом случае использовали пересчитанные на новую частоту результаты низкочастотных измерений. Результат оказался следующим: мнимая компонента k_m^2 изменилась в полном соответствии с ожидаемой частотной зависимостью вязкостного вклада (причем абсолютная величина η находилась в хорошем согласии с формулой Бардина-Стефена), а масштаб изменений реальной компоненты, нормированной на квадрат частоты, от последней практически не зависел. Это означает, что основной вклад в α_{eff} дает квадратичная по частоте и имеющая отрицательный знак составляющая, которую естественно отождествить с инерционной компонентой. На рис. 3 приведены основные результаты наших измерений, представляющие объемную плотность динамических параметров вихревой решетки. Для перехода к «индивидуальным» характеристикам их следует поделить на число вихрей на единицу площади (*B*/Ф₀ ~ $\sim 10^{10}$ см⁻², Φ_0 — квант потока). Таким образом, масса вихря, следующая из наших экспериментов, $\mu \sim$ $\sim 10^{-17}$ г/см при полной массе электронов в коре $\mu_{e,core} \sim 10^{-16}$ г/см. «Усы» на рис. 3 характеризуют

Рис. 3. Полевые зависимости объемной плотности динамических параметров вихревой решетки (сплошная линия — измерения на частоте 54 МГц, кружки — 100 МГц). η (T = 1,7 K) (a); α_{eff} при T, K: 1,7 (I), 4,2 (2), 6 (3). Результат для 6 К приведен с 10-кратным увеличением (δ).

масштаб систематических отклонений при изменении уровня отсчета фазы (учитывающем возможную ошибку в определении Ψ_n^0) на ±1°. Их величина меняется пропорционально измеряемому параметру. Кроме того, результаты для 100 МГц из-за упоминавшейся меньшей величины сигнала ниже 1 кЭ могут содержать небольшую систематическую ошибку, связанную с влиянием относительно большого зондирующего импульса. Об уровне «шумов» можно судить по несглаженным зависимостям для 50 МГц.

Ниже приведены «привязанные» к исследованному соединению оценки µ для теоретически известных механизмов формирования вихревой массы.

1. Масса кора [1]. Ее происхождение обусловлено сопровождающим движение вихря изменением амплитуды параметра порядка.

$$\mu_{\rm core} = \frac{3}{8\pi} \frac{\Phi_0}{v_F^2} \frac{H_{c1}}{\ln \kappa} \approx 3.10^{-22} \, \text{г/cm}$$

2. Электромагнитная масса [1], определяемая инерцией генерируемого вихрем электромагнитного поля.

$$\mu_{\rm em} = \frac{\Phi_0}{16\pi c^2} H_{c2} \approx 10^{-26} \, \text{г/cm}.$$

3. Масса, связанная с деформацией решетки в зоне кора. Разность удельных объемов сверхпроводящей и нормальной фаз $V_s - V_n$ приводит к модуляции электронной плотности. Возникающий вследствие этого вклад в массу [10] $\mu_{defl} \approx \pi \rho \xi^2 \gamma^2$ (ξ — длина когерентности, ρ — плотность, $\gamma = 1 - V_n/V_s$). В YB₆ значение $\gamma \sim 10^{-7}$ [4], что соответствует $\mu_{defl} \sim 10^{-24}$ г/см. Кроме того, в зоне кора решетка испытывает торсионную деформацию, приводящую к вкладу в массу $\mu_{def2} \approx \beta^2 \mu_{core}$ [11] (параметр β примерно равен отношению продольной скорости звука к поперечной).

4. Динамическая масса (масса Копнина по терминологии [12]) [2]. В сверхчистом пределе ($\omega_0 \tau > 1$, $\omega_0 \sim \omega_c$ — расстояние между электронными уровнями в коре) нормальная компонента «вморожена» в кор и движется вместе с ним. В этом случае $\mu_{din} \approx \mu_{e,core}$. В противоположном пределе $\mu_{din} \sim \mu_{e,core} (\omega_c \tau)^2$, что в нашем случае дает $\mu_{din} \sim 10^{-21}$ г/см.

5. Присоединенная масса (backflow mass) [3,12]. Природа этого вклада чисто гидродинамическая. Наличие лобового сопротивления у любого тела, движущегося в жидкой (газообразной) среде приводит к увлечению частиц среды и появлению противотока. В случае непроницаемого для частиц среды цилиндра увеличение его массы µ_{bf} (присоединенная масса) совпадает с массой жидкости, заполняющей объем движущегося тела. Для частично «проницаемого» тела лобовое сопротивление и, следовательно, µ_{bf} уменьшаются. При распространении поперечного звука в однородном проводнике электронный ток практически совпадает с ионным, поэтому, на первый взгляд, представляется, что для электронной «жидкости» кор близок к полностью «проницаемому» объекту и µbf должна быть мала. Однако, возможно, в коре, размер которого сравним с длиной свободного пробега, механизм токовой компенсации более сложен и частично обеспечивается увлечением нормальной компоненты.

Таким образом, интерпретация результатов наших измерений как проявления инерционных свойств вихрей приводит к катастрофическому отличию наблюдаемой массы вихря от существующих теоретических оценок. Поэтому в заключение уместно изложить некоторые соображения о возможностях независимой проверки выводов настоящей работы.

1. Насколько уникален YB₆? В работе [6] уже фиксировались отрицательные значения реальной части k_m^2 в иттриевом борокарбиде, легированном 0,1% Тb в области магнитных полей ~ 0,5H_{c2}. Однако, по сравнению с YB₆ в борокарбиде на порядок больше H_{c2} и, соответственно, вязкость. Регистрируемое отрицательное значение реальной части k_m^2 находилось на уровне возможных ошибок, и сам эффект был сочтен за артефакт. Если же «поверить» этим измерениям, то из них и данных, полученных в настоящей работе, можно заключить, что зависимость массы вихря от H_{c2} , по крайней мере, слабее линейной. Поэтому для регистрации массы вихрей предпочтительнее использовать материалы с низкими значениями H_{c2} (но в то же время с достаточно большим значением к) и, естественно, с предельно малым пиннингом.

2. Методика измерений. В более традиционном для изучения динамики вихревой материи импедансном методе, как и в нашем случае, пиннинг и инерционное слагаемое входят в соответствующие уравнения с противоположными знаками. Поэтому, в отличие от работы[13], в которой динамика вихревой фазы изучалась достаточно трудоемкими измерениями частотного профиля потерь, желательно раздельное измерение реальной и мнимой компонент поверхностного сопротивления. Даже в весьма благоприятном, как представляется, случае YB₆ для обнаружения инерционного вклада методом [13] основные измерения должны быть проведены в гигагерцевом диапазоне.

Автору благодарят В.А. Шкловского за полезное обсуждение результатов работы. Работа выполнена при частичной поддержке Фонда фундаментальных исследований Украины (грант Ф16/004).

- 1. H. Suhl, Phys. Rev. Lett. 14, 226 (1965).
- 2. N.B. Kopnin, Rep. Prog. Phys. 65, 1633 (2002).
- E.B. Sonin, V.B. Geshkenbein, A. van Otterlo, and G. Blatter, *Phys. Rev.* B57, 575 (1998).

- 4. R. Lortz, Y. Wang, U. Tutsch, S. Abe, C. Meingast, P. Popovich, W. Knafo, N. Shitsevalova, Yu.B. Paderno, and A. Junod, *Phys. Rev.* B73, 024512 (2006).
- V.D. Fil, D.V. Fil, Yu.A. Avramenko, A.L. Gaiduk, and W.L. Johnson, *Phys. Rev.* B71, 092504 (2005).
- А.Н. Жолобенко, Г.П. Микитик, В.Д. Филь, Д.В. Филь, J.D. Kim, E.M. Choi, and S.I. Lee, *Fiz. Nizk. Temp.* **31**, 1375 (2005).
- V.D. Fil, D.V. Fil, A.N. Zholobenko, N.G. Burma, Yu.A. Avramenko, J.D. Kim, S.M. Choi, and S.I. Lee, *Europhys. Lett.* 76, 484 (2006).
- 8. В.Д. Филь, *ФНТ* **27**, 1347 (2001).
- 9. J. Bardeen and M.J. Stephen, Phys. Rev. A140, 1197 (1965).
- 10. M.W. Coffey, J. low Temp. Phys. 96, 81 (1994).
- E.M. Chudnovsky and A.B. Kuklov, *Phys. Rev. Lett.* 91, 067004 (2003)
- 12. G.E. Volovik, Письма в ЖЭТФ 67, 502 (1998)
- J.I. Gittleman and B. Rosenblum, *Phys. Rev. Lett.* 16, 734 (1966).

The Abrikosov vortex mass

V.D. Fil, T.V. Ignatova, D.V. Fil, N.G. Burma, O.I. Petrishin, and N.Yu. Shitsevalova

Under the excitation of the vortex lattice in the mixed state of single crystals YB_6 , produced by an elastic wave in the dynamic response it was found out negative and square-law on frequency of a component which could be associated with the vortex mass. The value of effect is in the catastrophic contradiction with existing theoretical estimations.

- PACS: 74.25.Qt Vortex lattices, flux pinning, flux creep;
 74.70.Ad Metals; alloys and binary compounds (including A₁₅, MgB₂, etc.).
- Keywords: type II superconductors, vortex lattices, vortex mass, yttrium hexaboride, acoustoelectric transformation.