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Last years several experiments were performed, which studied the Bose-Einstein condensation of

quasi-particles, in particular, magnons in magnetically ordered systems. Recently the Bose-Einstein con-

densation of magnons was observed at room temperatures in a ferromagnetic film. The theory of the conden-

sation (re-distribution) of magnons under the conditions of pumping, which explains many features of that

experiment, is presented. The use of the term «Bose-Einstein condensation of magnons» is discussed.

PACS: 03.75.Nt Other Bose-Einstein condensation phenomena;
75.45.+j Macroscopic quantum phenomena in magnetic systems;
76.50.+g Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance.
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The interest to the Bose-Einstein condensation (BEC)

of bosonic particles and quasi-particles has been consider-

ably increased during last years. That quantum mechanical

phenomenon from the pure theoretical problem became

one of the most attractive things in the modern physics,

mostly due to recent experiments on dilute ultra-cold gases

of atoms [1–3]. The theory of that phenomenon (BEC) for

particles is well understood by now. On the other hand, the

phenomenon of BEC for quasi-particles causes many dis-

cussions, and very different opinions were expressed about

its nature. Among others, the BEC of magnons (magnetic

quasi-particles, quanta of low-energy excitations of mag-

netic systems) has attracted much attention of physicists

during last years [4–8]. For example, in the recent letter

Demokritov et al. [9] reported the observation of BEC of

magnons at room temperatures. In this study the theory,

which theoretically explains many features of the experi-

ment [9] is presented.

The observation of BEC of magnons under the condi-

tions of the so-called parametric pumping of magnons in

thin films of the yttrium-iron-garnet (YIG) was reported

in [9]. Actually, the authors have studied experimentally

how the spectral density of magnons �( )E , defined as

�( )E � D E n E( ) ( ) (where D E( ) is the density of states of

magnons, and n E( ) is the statistical distribution function

of magnons, E is the energy of magnons), is affected by

the pumping by means of the external magnetic rf field.

For that purpose they used the Brillouin light scattering

(BLS) spectroscopy. Under the conditions of the experi-

ment [9] YIG can be considered as a ferromagnet (as

usual for such kind of experiments, where only the lowest

branch of magnetic excitations of YIG was studied). For

ferromagnets it is commonly accepted that at low temper-

atures (and/or at their low densities) magnons satisfy the

Bose-Einstein statistics, and, hence, n E( ) is the Bose-Ein-

stein distribution function. In the experiment [9] the au-

thors considered the dependence of n, D, and � on the fre-

quency � rather than on the energy E (using the basic

quantum mechanical connection between the energy and

the frequency E h� �, where h � 2�� is the Planck’s con-

stant).

The parametric pumping is usually performed in the

parallel geometry, for which the polarization of the rf

field is collinear to the direction of the time-independent

magnetic field H. The Hamiltonian, which describes a

ferromagnet, can be written as � � �� �0 1( )t , where

�0 � � � � � �� � � � �
n r

n n r z n
z

n r
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n
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[ ( )]S S

� �g H SB n
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It is supposed that the external magnetic field is directed

along the z-axis. In this expression S n
x y z, , are operators of
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projections of the spin S in the nth site of the crystal, g is

the g-factor, 	 B is the Bohr’s magneton, J 
 0 is the isotro-

pic ferromagnetic coupling, J z and B are the coupling con-

stants of the spin Hamiltonian of the system, related to

magnetically anisotropic interactions. J z denotes the mag-

netic anisotropy of the crystal, parallel to the external mag-

netic field, and B denotes the magnetic anisotropy, per-

pendicular to the direction of the field. In the standard

approach B is determined, e.g., by the orthorhombic mag-

netic anisotropy, and/or by the magnetic dipole-dipole in-

teractions. The latter also gives a contribution to the term

J z (J z can be caused by the uniaxial magnetic anisotropy,

too) [11]. Usually, in standard magnets, including YIG,

one has the condition B J g H Jz B�� , ,	 . In the cubic crys-

tal of YIG, the main contribution to J z and B comes, prob-

ably, from the magnetic dipole-dipole coupling. The sums

are performed over all sites, and r � 0 1 2, , , ...determines ra-

dii of spin-spin interactions. For example, for possible (in

principle) terms, describing a single-ion magnetic aniso-

tropy, one has to put r � 0. Obviously, the magnetically iso-

tropic spin-spin interaction J does not change the direc-

tions of spins of the ferromagnet in the equilibrium.

However, the isotropic spin-spin ferromagnetic coupling is

responsible for the fact, that all spins of the ferromagnet

are parallel to each other in the ground state. For the de-

scription of the low-temperature thermodynamic charac-

teristics of the ferromagnet the spin-wave approximation is

often used [11]. In that approximation one replaces opera-

tors of quantum spins by classical vectors, and looks for a

steady-state (equilibrium) configuration of those vectors.

That steady state is associated with the ground state of the

original quantum spin system. Then small (inhomoge-

neous) deviations of classical vectors from that steady-

state configuration are called spin waves, or, in the quan-

tized form, magnons [11]. The Hamiltonian Eq. (1) in that

approximation can be written as

�0 0� � �E E nk

k

k� , (2)

where E0 is determined by the energy of the lowest energy

equilibrium configuration, Ek (E Ek k� � for the consid-

ered case) and �nk are the energy and the operator of the

number of magnons with quasi-momenta k. Ek depends on

J , J z , B, and H in the standard way [11]. For the consid-

ered ferromagnet the minimal energy of magnons is deter-

mined by the value of the spin gap, which does not depend

on the isotropic ferromagnetic interaction J . When calcu-

lating thermodynamic characteristics of a ferromagnet it is

often useful to replace the summation over quasi-momenta

by the integration over energies �  �k V D E dE0 ( ) ,

where D E( ) is the density of states of magnons, and V0 is

the phase volume. That is why, for example, the low-tem-

perature energy of the ferromagnet in that approximation

is equal to

E E V En E D E dE E V E EdElt � � � �� �0 0 0 0( ) ( ) ( ) ,� (3)

where n E( ) is the Bose-Einstein distribution function. To

remind, in this work, following the letter [9], we use

E h� �, i.e. the integration over energies E are replaced by

integration over frequencies �. It is important to point out

that because of the spin gap, the integration over � (or

over E) is, in fact, performed over the interval � �� m (as

well as � �� max), where h m� is determined by the spin

gap of Ek ( ( ) ( )E h fmk k� �� 2 in our model, where

lim ( ) )k k �0 0f , and �max is related to the maximal en-

ergy of magnons. This property follows from the density

of states of magnons of the considered ferromagnet D( )� .

The term of the Hamiltonian, describing the effect of the

external rf magnetic field, is given by the expression

�1 0 2( ) cos ( )t g h t SB p n
z

n

� � �	 �� . (4)

Here h0 and � p are the magnitude and the frequency of

the rf magnetic field, respectively. In this geometry in the

magnon approximation, the resonance takes place if the

frequency of the rf magnetic field is equal to the energy of

two magnons with opposite directions of quasi-momenta

o f ma g n o n s , Ek a n d E�k , i . e . a t h E Ep� � � �k k

( � �2 2E hk � in the considered case).

Several features of the behavior of the BLS spectral

density of magnons were observed in the experiment [9].

Namely, when the power P of the rf pumping field was

weak enough, the observed BLS spectral function was fit-

ted with the help of the same density of states of magnons

and the same Bose-Einstein distribution function of

magnons, which were observed in YIG without pumping.

The intensities of the observed BLS spectra of magnons

(related to the spectral density of magnons) increased

when the power of the rf magnetic field became larger.

The intensity of the BLS spectra increased also with the

time of the action of pumping, until saturation at approxi-

mately 400 500� ns. Before saturation the BLS spectra

were also possible to fit with the help of the above men-

tioned procedure. However, in the saturation regime, it

was already impossible to fit the spectra with the help of

the standard Bose-Einstein distribution function. Demo-

kritov et al. pointed out that to reach the agreement with

the experiment it was necessary to add (by hand, without

derivation) to the distribution function of magnons n( )� a

singularity peak � �� � �( )m , where �m was the frequency

of the maximum of the intensity in the observed BLS

spectra of magnons (which corresponds to the minimal

energy of magnons Ek ). To explain the appearance of the

singularity peak the authors of Ref. [9] supposed that in

the steady-state regime, for t 
 �400 500 ns, BEC of mag-

nons took place (at room temperature, at which the exper-
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iment was performed). They concluded that the re-distri-

bution of magnons under pumping was related to BEC.

Here we propose the theory, which explains many fea-

tures of the experiment of Demokritov et al. For that pur-

pose we use the approach of the paper [10]. It was shown in

[10] that under the condition of the parametric pumping of

magnons in a ferromagnet the steady-state configuration of

spins (or classical vectors, see above) in the effective Hamil-

tonian, which determines the time evolution of the system un-

der parametric pumping, is changed in resonance. It is very

similar to the procedure, outlined above for the description of

low-temperature thermodynamic characteristics of a ferro-

magnet, but with the application to the effective Hamiltonian,

which describes the low-energy dynamics of the spin system

under pumping. In this work we generalize the approach of

[10]. It is easy to show that out of resonance each spin (or a

classical vector) of that effective Hamiltonian at equilibrium

has the projection to the axis, parallel to the direction of the

external magnetic field S Sz
0 � (other projections are equal to

S x
0 � S / S S

y z
0

2
0

21 2� �( ) ( ) ). On the other hand, in reso-

nance the configuration at equilibrium of spins (vectors) in

the effective Hamiltonian is such that the z-projection of the

effective spin (classical vector) becomes equal to

S
g H h

B g h /h J

z B p

B p z
0

0

2

4
�

�

�

	 �

	 �( ( ) )
, (5)

where the small parameter g h /hB p	 �0 1�� was used. One

can see that at resonance (when the frequency of the rf field

is close to the value � �p E /� k �), the effective position of

equilibrium of spins can be changed dramatically.

All characteristics of any quantum system in mixed

states depend on the density matrix �d . The time evolu-

tion of the latter can be determined by the solution of the

Liouville-like equation [10]

i
t

id
d d� �

�

�
�

�
�

�

�
� � � �

�
� � � �[ , ] ( )� 0 . (6)

Here [., .] denotes the commutator, � is the relaxation

constant (the relaxation is introduced in the simplest

form), and �0 is the density matrix in the equilibrium. It is

worthwhile to suppose, following the paper [10], that the

density matrix in equilibrium is determined by the Hamil-

tonian of the system without pumping � �0 0 0� �( )h ,

�0
0

0

�
�

�

exp ( )

(exp ( ))

�

�

/k T

/k T

B

BTr
, (7)

where k B is the Boltzmann’s constant, and T is the tempera-

ture. Such an assumption is justified, because usually the

magnitude of the pumping field h0 is much smaller than the

value of the stationary field H. At low temperatures we can

replace �0 in Eq. (7) by the approximate Hamiltonian of the

free gas of magnons �0 � E0 �� k k kE n� , see the discus-

sion above. On the other hand, the dynamics of the spin

system under pumping is determined by the effective Hamil-

tonian, mentioned above. We look for the solution of Eq. (6)

using the standard set of unitary transformations [10], and

the resonance approximation.

The solution of the Liouville-like equation manifests

two different regimes, cf. [10]. In the first (dynamical) re-

gime, at t �� �� 1, all characteristics of the system oscillate

with two frequencies: the frequency of the pumping field

� p , and the small frequency of Rabi-like oscillations,

which value is determined in resonance by the magnitude

of the rf field h0. On the other hand, in the second

(steady-state) regime, at t 

 �� 1, only oscillations with

� p survive. We are interested in the contributions to the

spectral density of magnons, which are proportional to

sin ( )2�� p t , because the main contribution to the density

comes from the term

�

�
�

�
�

�

�
� � � ���1

02 2
t

g h t Sp B p

n

n
z�� 	 ��sin ( ) , (8)

where the line denotes the time averaging

f t A f t dt
A

A

( ) lim ( )�
�

� �1

0

, (9)

and brackets denote the thermal averaging. Following the

approach of the paper [10] and using the small parameter

g h /hB p	 �0 1�� , we find in the steady-state regime, at

t 

 �� 1, that the (small) addition to the spectral function of

magnons �� �( ), caused by the pumping, is proportional to

�� � � �
	

� 	

�

� �
( ) ( ) ( )

( )

( )
�

�
D n

g h

h

BS

g H

B

p

x

B
0

0 0
2

2 2

2 �

�

, (10)

where

� 	 �
	

�
2

0
2 0

0

2

2 2 2� � � �
�

�

�
�

�

�

�
�[ ( )] ,g H J S Z h /

g h

h
BSB z

z
p

B

p

x

(11)

Z is the coordination number, and n0( )� is the Bose-Ein-

stein distribution function of magnons without pumping,

which is determined by the Hamiltonian �0 in the spin-

wave approximation. The resonance in the parallel geom-

etry of pumping takes place at � �p � 2 . To show that, we

can write down the Hamiltonian of the system in the

quasi-classical (magnon) approximation:

� �  � ��E E n0 k

k

k�

� � ���g h BS

E
t b bB

x

p

	
��0 0 2

k
k k

k

cos ( ) ( ) ...
† †

H.c. (12)
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Here  E0 does not depend on operators, b
k
†

are the creation

operators of magnons with the quasi-momenta k

( � )n b bk k
†

k� , and H.c. denote, as usually, Hermitian con-

jugated terms. From this formula one immediately sees

that the resonance terms, i.e. those, which give the non-

zero contribution to the linear in g h /EB	 0 k response of

the spin system to the rf field, are those, for which Ek �
� h /p� 2, or h h /p� �� 2. That procedure for resonance

terms is similar to the procedure for the obtaining the so-

lution of Eq. (6). First, using the unitary transformation

U i
g h

h
t SB

p
p n

z

n

1
0 2�

�

�

�
�

�

�

�
��exp sin ( )

	

�
�� , (13)

the time dependence is transferred to the non-diagonal

terms of the Hamiltonian �. Then, we used the small pa-

rameter g h /hB p	 �0 , and the resonance approximation.

The latter means that we drop all the terms in the obtained

effective Hamiltonian, which determines the spin dynam-

ics, except of those, which give a nonzero contribution in

the linear in g h /hB p	 �0 response of the system. Other

terms, which depend on g hB	 0 (the resonance ones) are

taken into account exactly. Then, the explicit dependence

on time is removed from the effective Hamiltonian, using

the unitary transformation

U i Sp n
z

n

2 � �exp ( )�� . (14)

In the obtained Hamiltonian, which determines the spin

dynamics of the system, we use the quasi-classical ap-

proximation, taking into account the shift of the steady-

state configuration of spins in resonance. And, finally, we

use the unitary transformation

U i /t3 � �exp (
~

)� , (15)

where
~
� is the obtained effective Hamiltonian, which de-

termines the spin dynamics. The time dependence for

�d t( ) is obtained by using the consecutive combination of

the above described procedures. The average value of the

operator �n is obtained after averaging it with �d t T( , ), and

the temperature dependence in this approach is determined

by Eq. (7). Out of resonance, where � �! p /2, the addition

to the spectral function, caused by the pumping, is approxi-

mately zero. In resonance, one may substitute � �p /2 � in

the first term of Eq. (11), see above. Namely that substitu-

tion (justified at resonance) produces the re-distribution of

the spectral density of magnons in Eq. (10). This is why,

the addition �� �( ) in the steady-state regime in resonance is

approximately proportional to � � �( )� m (notice that for

our system in the used approximation one has h m� �
� g HB	 � �2 0J S Z O Bz

z ( )). Here we used the formula

lim [( ) ] ( )� � �� � � � � �0
2 2/ x x . Hence, the pumping cau-

ses the coherent condensation of magnons to the state with

the minimal energy h m� . One can see that even if the

half-frequency of the pumping field � p /2 is larger than

�m, but it is in resonance with some of higher-energy

magnons (i.e. 2 2� � �m p� � max), our theory predicts the

re-distribution of the magnon spectral density to the one

with the peak � �� � �( )m near the minimal energy of

magnons. That re-distribution means, that when the photon

of the pumping field is in resonance with spins of the sys-

tem, those spins dynamically change their effective equi-

librium configuration in such a way, that some part of small

deviations of that dynamical equilibrium (magnons) be-

comes re-distributed at the lowest edge of the magnon

spectrum. The physical reason for the re-distribution to the

minimal energy of magnons is due to the fact that in our ap-

proximation (B g H J JB z�� 	 , , ) the k-dependent disper-

sion of the energy of magnons is related to the isotropic

ferromagnetic interaction, which operator commutes with

the z-projection of the total spin of the system (to which the

rf pumping field is connected). It also turns out, that the ad-

dition �� �( ) is increased with the growth of the pumping

power P (because P is proportional to h0
2).

On the other hand, we calculated that for t �� �� 1, in

the dynamical regime, the small contribution to the spec-

tral density of magnons, caused by the pumping, is pro-

portional (at small t, at which one can use the approxima-

tion sin ( )� �t/ t/� �� ) to

�� � � �
	

� 	
( ) ( ) ( )

( )
� D n

g h

h

BS

g H

tB

p

x

B
0

0 0
22

�
. (16)

Obviously, in that regime the spectral function of mag-

nons is increased with time (as well as with the power of

the pumping field P). However, in this regime there is no

�-function contribution to the spectral function, and the

latter (even in resonance) is determined by the distribu-

tion function of magnons without pumping. Such a be-

havior is also similar to what was observed in [9].

One can see that the present theory describes many

features of the experiment of Demokritov et al. [9]. First,

in the dynamical regime, the spectral function of magnons

is increased with time, reaching the steady-state regime.

There the pumping renormalizes the distribution of

magnons in such a way, that in resonance some part of

magnons is in the coherent state with the lowest possible

energy (approximately with the energy of the spin gap).

Demokritov et al. called such a process BEC of magnons.

However, one can express doubts about the correctness of

the use of such a term for magnons. It is important to point

out that BEC determines the ground state of bosonic parti-

cles. The situation is drastically different for magnons. It

is well known that for many magnetically ordered sys-

tems (and, moreover, for magnetic systems with the spin

frustration) in most of cases the ground state cannot be

found theoretically exactly [11]. Usually (see above) the

quasi-classical approximation is used, when one replaces

the operators of quantum spins by their classical counter-
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parts (vectors), then the steady-state configuration of

those classical vectors is associated with the ground state

of quantum spins. Small deviations from that steady-state

configuration are called spin waves (or, in the quantized

form, magnons). However, BEC for magnons implies the

renormalization of the ground state: All magnons at

T TBEC� (and, thus, at T � 0 also) are re-distributed to

the BEC state. Then, one faces with the paradoxical situa-

tion: The ground state of the spin system was not deter-

mined exactly, but the use of such a term, BEC of mag-

nons, implies the renormalization of the (unknown!)

ground state of the spin system. Hence, such a use is un-

der question. One can also put similar questions to the dis-

cussion of the results [4–7]. These our doubts correlate

with the recent opinion of Snoke [8]. Notice, however,

that, on the other hand, according to the present theory, it

seems to be clear that magnons in the experiment of

Demokritov et al. were re-distributed by the parametric

pumping to the dynamically induced coherent quantum

state, cf. [8]. Despite the question, whether the Bose-Ein-

stein condensation is the right term to call the observed

phenomena, coherent quantum states of magnons, either

near phase transitions [4–7], or induced by the parametric

pumping [9], are among the most interesting phenomena

of the modern condensed matter physics.

The author dedicates this paper to the memory of his

father, Anatolii Illarionovich Zvyagin.
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