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We consider recent results on the use of the single-site entanglement measure for identifying and charac-

terizing a quantum phase transition in systems of interacting fermions. We discuss the extension of these re-

sults to fermionic models where the single-site entanglement may fail to signal a quantum phase transition,

with particular attention given to the one-dimensional extended UV Hubbard model.
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Introduction

In the last few years there has been a growing interest

in quantum many-particle systems from the point of view

of quantum information [1]. The interest is driven by the

need to go beyond the present understanding of how to

operate a few qubits and build scalable and fault-tolerant

devices that can be easily controlled and manipulated.

New ideas for carrying out quantum information tasks,

such as quantum state transfer, have also increased the

need to better understand the behavior of many-particle

systems. These goals have led to a vivid exchange of

ideas between the quantum information and condensed

matter communities. As a result, novel approaches in-

spired by quantum information theory are now actively

being pursued for attacking problems in condensed mat-

ter physics, in particular in the field of strongly correlated

electrons. Conversely, analytical and numerical methods

— as well as intuition and «know-how» — from con-

densed matter physics naturally find their way into quan-

tum information science when exploring various designs

of solid-state hardware for quantum information process-

ing.

One of the central concepts of quantum information

theory [2] is that of entanglement: A state of a composite

system is said to be entangled if it cannot be written as a

direct product of the individual states of its constituents.

As pointed out by Schrödinger in his famous «cat para-

dox» paper from 1935, entanglement (in German

«Verschränkung») lies at the very heart of quantum me-

chanics: «...[the fact that] the best possible knowledge of

a whole does not necessarily include the same for its

parts. [...] The whole is in a definite state, the parts taken

individually are not... [This is] not one, but the essential

trait of the new theory, the one which forces a complete

departure from all classical concepts» [3]. Today we un-

derstand that entanglement — and the non-local correla-

tions that go with it [4] — are not only intrinsic to the fab-

ric of reality, but can also be exploited as a resource for

processing quantum information. Much of current theo-

retical research aims at quantifying «how much» entan-

glement there is in a given quantum many-particle system

and how it is distributed over the system. This is a prereq-

uisite for identifying useful Hamiltonians to produce and

control entangled states, and also for exploring schemes

for quantum computing which rely on the entanglement

of a large number of degrees of freedom (such as topolog-

ical quantum computing [5] or «one-way» quantum com-

puting [6]). There is also a fundamental aspect to this en-

deavor: By studying entanglement properties of a

many-particle system one may extract information about
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complex ground state wave functions without having to

calculate them explicitly!

One particular circle of problems that has attracted at-

tention in this context center around the use of entangle-

ment measures for identifying and characterizing quan-

tum phase transitions, following the pioneering work by

Osterloh et al. [7] and Osborne and Nielsen [8]. A quan-

tum phase transition (QPT) happens when the zero-tem-

perature quantum fluctuations in a quantum many-parti-

cle system cause a transition from one type of ground

state to another [9]. Such transitions are induced by the

change of a physical parameter (magnetic field, chemical

potential, pressure, ...) that enhances the quantum fluctu-

ations, or their effect on the system. The study of QPTs

has today become an important theme in condensed mat-

ter physics. The reason is that the very existence of a

quantum critical point, i.e. the point in the phase diagram

at which the QPT takes place, influences the physical

properties of the system also at experimentally accessible

temperatures, and opens up a quantum critical regime
with characteristics very different from what is expected

from conventional «text-book» theory. Theoretical sce-

narios invoking the existence of a (hypothetical) QPT to

explain certain anomalous, so called «non-Fermi liquid»

properties of a system are actively pursued in the field of

heavy-fermion physics [10]. Similar attempts are being

launched also at other problems in the physics of strongly

correlated quantum matter, from the study of complex

oxides [11] to ultra-cold gases trapped in optical lattices

[12].

The change of a ground state at a QPT is generically

associated with a non-analyticity in the ground state en-

ergy [9]. This is most often associated with an avoided

level crossing, where the non-analyticity develops as-

ymptotically in the thermodynamic limit. A special class

of QPTs are those where the transition is driven by a field

that couples to an operator that commutes with the rest of

the Hamiltonian. In such a case the non-analyticity simply

reflects the level crossing that goes with the transition.

Barring accidental cancellations, a nonanalyticity in the

energy automatically propagates into the elements of the

density matrix of the system. Since any measure of entan-

glement [13] is constructed from a (reduced) density ma-

trix one expects that the non-analyticity will somehow

show up also in the ground state entanglement. But how

exactly does it show up? And moreover, how does the

scale invariance at a continuous QPT (as happens when

there is an avoided level crossing, and the Hamiltonian

supports only local, or quasi-local, interactions) manifest

itself in the scaling of the entanglement as one approaches

the quantum critical point?

These are important questions, which are now just

beginning to be tackled. Some answers can already be

drawn from the large body of results for spin-1/2 models

in one dimension (interacting qubits on a 1D lattice). For

example, based on results for critical spin-1/2 chains, Wu

et al. [14] conjectured that a discontinuity [divergence] in

the [derivative of the] ground state concurrence is associ-

ated with a first [second] order QPT, barring the appear-

ance of accidental singularities [15]. The subsequent

proof that any entanglement measure can be expanded as

a unique functional of the first derivatives of the ground

state energy (with respect to the parameters that control

the QPT) puts this intuition on firm ground [16], as does

results from standard scaling theory [17]. Other related

results, employing the notion of localizable entanglement
[18], entanglement entropy [19], and generalized global
entanglement [20] have also been obtained. As to the

property of scale invariance at a continuous QPT, this is

strikingly seen in in the logarithmic divergence of the

block entanglement entropy with the length of the block

[21–23]. While some important issues remain to be clari-

fied — in particular about the connection between the

non-local correlations implied by entanglement and the

long-range («classical») correlations emerging at a QPT

[24] — the basic features of entanglement properties of

critical spin-1/2 systems are by now fairly well under-

stood. The frontier of this research area has advanced rap-

idly in the last year and is now making contact with poten-

tial applications in quantum information science, an

example being the use of spin chains for quantum state

transfer [25,26].

In contrast, less is known about the details of the en-
tanglement — QPT connection for systems of itinerant

particles. One difference from lattice qubit systems is that

the requirement of [anti-]symmetrization of the wave

function for indistinguishable [fermions] bosons implies

a physical Hilbert space that lacks a direct product struc-

ture. It is then no longer obvious how to define the very

notion of entanglement, i.e. the property that a many-par-

ticle wave function does not factorize into a product of

single-particle functions. There is an ongoing debate how

to unambiguously resolve this issue [27]. One possible

way to circumvent the problem and recover a direct prod-

uct structure of the Hilbert space, was suggested by

Zanardi [28]: Passing to an occupation number represen-

tation of local fermionic modes one takes as basis the 4 L

states | | |n n n L� � � � � �1 2 � , where, for spin-1/2 fer-

mions, | | , | , |n j j j j� � � �� ��0 , or |��� j is a local state at

site j, with L the number of sites on the lattice. Note that

the local Hilbert spaces are attached not to the individual

particles, but to the distinguishable sites of a lattice. Also

note that the labeling of occupied states by the spins of the

particles is not unique. Indeed, one could have opted in-

stead for a labeling in terms of the (crystal) momenta of

the particles. As this would imply infinite-dimensional

local Hilbert spaces, one usually makes the simpler

choice with spin quantum numbers as labels. Needless to
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say, which local Hilbert space to pick is dictated by the

(Gedanken) experiment that is to be carried out: The

states that span the local Hilbert spaces are those which

diagonalize the operator that represents the observable

that is to be measured. Still, even with the simplest choice

of spin labeling, the problem is harder than for qubits

since now each lattice site is associated with four local

states instead of two. For pure states the entanglement

(von Neumnann) entropy remains a well-defined measure

of entanglement, but for mixed states one has to trade the

preferred concurrence measure (related to the entangle-

ment of formation) [29] for the less tractable measure of

negativity [30].

Entanglement behavior at a fermionic QPT Leaving

the difficult problem of mixed states aside, we shall here

focus on the use of the pure state entanglement entropy as

a marker of QPTs in systems of interacting spin-1/2 fer-

mions [31]. For that purpose we split our lattice fermion

system into two parts, A and B, and define as usual the en-

tanglement entropy � of the ground state |� 0� (with re-

spect to the chosen partition) by [32]

� � �Tr log( )	 	A A2 . (1)

The reduced density matrix 	A is obtained from the full

density matrix 	 � �� �
| |0 0 by tracing over the local

states belonging to B: 	 	A B� Tr ( ). (Taking a trace over

the local states belonging to A gives the same result.) By

choosing A to be a single site, call it j, with B the rest of

the system, one thus arrives at the single-site entangle-
ment. Assuming translational invariance, and that the

ground state |� 0� is a superposition of basis states with

the same number of particles and with the same total spin

(as guaranteed by a translational invariant Hamiltonian

that conserves total spin and particle number), it is easy to

verify that the reduced ground state density matrix 	 j for

the single site j is diagonal in the chosen basis. Intro-

ducing the expectation values that a single site is doubly

occupied ( )�2 , singly occupied by a fermion with spin-up

[spin-down], ( )[ ]�� � , or empty ( )�0 , we have that
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Here � � �
†n c cj j j  � is the number operator that checks site

j for a fermion of spin  �� �, , n n nj j� 
 � �� �� �0 0| � � | is

the average ground state occupation number, and

m n nj j� � 
 � �� �( ) | � � |1 2 0 0� � is the ground state magneti-

zation per site. It follows that
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Combining Eqs. (1), (2), and (3) the single-site entangle-

ment can then be expressed as
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Suppose that the single-site entanglement thus con-

structed is non-analytic, as signaled by a singularity in its

( )k �1 st derivative at a value, call it gc , of some control

parameter g (with all lower-order derivatives being con-

tinuous and finite). To single out g we write the

Hamiltonian �( )g of the system as � �( )g g� �0 � (with

� the conjugate operator to which g couples, and with all

other control parameters kept fixed and absorbed in �0).

To be specific, we shall assume that g is a magnetic field

strength ( )g h� , a chemical potential ( )g � � , or a local

on-site interaction ( )g U� . Note that g is precisely the

f ie ld conjugate to one of the order parameters

�g � 
 �� �0 0| |� that parameterize the reduced density

matrix: the magnetization per site m, the average occupa-

tion number n, or the expectation value �2 for double oc-

cupancy*.

Repeated differentiation of Eq. (4) yields
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where «...» denote terms that contain lower-order deriva-

tives, all of which are continuous and finite (since other-

wise the ( )k �2 nd derivative of � would also be singular,

contrary to the assumption). A singularity in � � �� �k kg1 1
�

must hence reside in the terms in containing derivatives

of order k �1. Since the order parameter�g conjugate to g
is one of the parameters m n, or �2 (or possibly a linear

combination of m n, and�2), it follows that � � �� �k
g

kg1 1
�

also has a divergence or a discontinuity at g gc� . By the
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Hellman–Feynman theorem, � �0 0 0� � � � � � �� g e g,

we conclude that the ground state energy e0 has a singu-

larity in its kth derivative. But this is precisely what we

mean by a kth order QPT! Summarizing: a singularity in

the ( )k �1 st derivative of the single-site entanglement im-

plies a kth order QPT (with the proviso that the QPT is

«generic», that is, driven by a change in magnetic field,

chemical potential, or a local interaction) [31].

A few comments may here be in order. First, one could

think that the close link between the scaling of

� � �� �k kg1 1
� and that of � � �� �k

g
kg1 1

� would allow for

the critical exponent that controls �g to be directly read

off from � � �� �k kg1 1
� . This inference is invalid, though.

As a counter example, take a second order QPT ( )k � 2

w i t h �g ��2, w h e r e � � � � � ��� 	
2

1u u u c~ | | a s

g g uc c� � . By inspection of Eq. (5) one notes that the

leading scaling of � � �� g will be governed by the same ex-

ponent	only if m and n are independent of�2, or, they de-

pend on �2 as a power with exponent � 1. Whether this is

the case can only be determined on a case-to-case basis. A

second, important comment concerns the logarithmic fac-

tors in (5). These will cause logarithmic divergences if

one or several of the occupation parameters � � �0, ,� �
and �2 vanish at the transition (cf. the expression in (2)).

Such logarithmic corrections, multiplying the leading

scaling of � � �� �k kg1 1
� inherited from �g , thus signal a

change of the dimension of the accessible local Hilbert

space as the system undergoes the transition. This is a

useful and important property of the single-site entangle-

ment scaling not shared by the scaling of�g or its deriva-

tives. It is here important to note that a spurious signaling

of a kth order QPT by a divergence in � � �� �k kg1 1
� caused

by a vanishing occupation parameter is blocked by all

lower-order derivatives of � being continuous and finite.

Putting our result to use, are we sure to identify all
fermionic QPTs? In other words, is the non-analyticity in

the single-site entanglement not only a sufficient, but also

a necessary condition for the appearance of a QPT? The

answer comes with a negative signature. First, the diag-

nostics becomes fuzzy for a QPT of infinite order [33], a

Berezinskii–Kosterlitz–Thouless (BKT) type transition

being the paradigm case [34]. Although the essential sin-

gularity that here is present in the ground state is expected

to «infect» also the single-site entanglement via the re-

duced density matrix, its identification may be too diffi-

cult to serve as a useful tool. The situation becomes even

less transparent for other non-conventional QPTs that are

not associated with non-analyticities in the ground state

energy [35], the transition a between two quantum Hall

plateaus in the integer quantum Hall effect being an out-

standing example. While our result does not apply to

these cases, it is conceivable, maybe even expected, that

the change of ground state at the transition will still show

up as a non-analyticity in the entanglement. If and how

this happens is a question well worth further studies. A

class of QPTs where the single-site entanglement obvi-

ously fails as a marker for a QPT are those where the con-

trol parameter does not couple to a single-site. As we

shall discuss below, while such QPTs in principle can be

analyzed along the same lines as their simpler counter-

parts discussed above, the practical implementation of the

analysis may meet with certain difficulties. There is, how-

ever, another, more insidious way that the single-site en-

tanglement will fail to signal a QPT. This happens if all

local basis states | | , | , |n j j j j� � � �� ��0 , and |��� j be-

come equally populated as one approaches the transition.

As seen from (5), the ( )k �1 st derivative terms then vanish

identically, killing off the signal of the QPT. The simulta-

neous vanishing of � � �� g implies that � has a local

extremum at the transition (expected to be a maximum

since in this case all local basis states are equally repre-

sented in the make-up of the many-particle ground state).

However, one cannot a priori exclude that � is at an

extremum without the occurrence of a QPT. Hence, an
extremum of the single-site entanglement does not neces-

sarily signal a QPT. Whether a QPT is present or not in

this case requires information beyond that provided by

the entanglement measure. Unfortunately, this simple ob-

servation has been overlooked in some of the literature on

the subject, leading to unnecessary confusion and specu-

lations.

Having uncovered the general features of entangle-

ment scaling at a fermionic QPT, let us now look at a few

examples [31,36,37].

Case studies

As our first example we take the 1D Hubbard model

� � � �
�

� �

� �
�

�� �t c c U n nj
j

L

j j
j

L

j�

�

��
†

� �

1
1

1

. (6)

Here c j�
† c j� are the usual fermionic creation and annihi-

lation operators attached to site j of the lattice, with spin

� �� �, , and with �
†n c cj j j� � �� the corresponding number

operator. In the following we shall work with dimen-

sionless quantities u U t� � 4 and h H tB� �� , putting t �1

(of dimension energy), and assume periodic boundary

conditions. This model, which has long served as a para-

digm for strongly correlated electron systems [38], has

received renewed attention due to its possible realization

in 1D optical lattices with trapped ultra-cold gases of

fermionic atoms [39]. The sign and the strength of the

on-site interaction U and the tunneling rate t between

neighboring minima of the lattice potential can here be

chosen at will by tuning a Feshbach resonance, thus mak-

ing possible a fully «controllable» fermionic system gov-

erned by the Hubbard Hamiltonian in Eq. (6).
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At half-filling of the lattice, n �1(i.e. with on average

one fermion/site), the model exhibits a QPT at u � 0, sepa-

rating a Mott insulating phase ( )u  0 from a metallic

phase ( )u ! 0 . The ground state energy density becomes

non-analytic at the transition, but allows for an asymp-

totic power series expansion with all derivatives being fi-

nite and continuous [40]. The QPT is thus of infinite or-

der, and can be shown to belong to the BKT universality

class [41]. As found by Gu et al. [42], the single-site en-

tanglement has a maximum at the transition, reflecting the

equipartition of empty-, singly- and doubly occupied lo-

cal states when u � 0 (non-interacting fermions). This

transition is thus special on two counts: it is of infinite or-

der and it supports an equipartition of local states. This

makes it an exceptional example of a fermionic QPT,

where no information can be deduced from the single-site

entanglement measure.

A metal-insulator transition can also be triggered when

u  0 by connecting the system to a particle reservoir and

t u n i n g t h e c h e m i c a l p o t e n t i a l g � � ( w i t h � a

dimensionless chemical potential multiplied by the hop-

ping amplitude t �1). The corresponding Hamiltonian is

given by that in Eq. (6), with the added term

�� �� � �
�

� ��( � � ).

j

L

j jn n

1

(7)

It is here important to point out that provided that there is

no interaction with the reservoir, a pure state entangle-

ment measure is still applicable at zero temperature. For

the case of repulsive on-site interaction, u  0, and with

n " 1, the system exhibits two quantum critical points

[43]: � c1 2� � and

� � � � �c J u d2 1

0

12 4 1 2� � �

�
�# ( )( [ exp ( )]) ,

with J 1( )� a first-order Bessel function. Both transi-

tions are second-order with diverging charge susceptibili-

ties $ � �Ci cic u i� � �� �( )| | , ,1 2 1 2 in the limits � �� �c1

(empty lattice transition) and � �� �c2 (Mott transition),
respectively (with c u( ) a positive u-dependent constant).

To obtain the single-site entanglement � we make the ob-

servation that �� conserves spin and particle number for

fixed �, and that hence the expression for � in (4) remains

valid. Recalling from the Lieb–Mattis theorem [44] that

the ground state has zero spin (for any n with nL an even

integer) we put m � 0 in (4). Using the Hellman–Feynman

theorem, the value of�2 can be extracted from the ground

state energy via the relation �2 0 4� � � � �( )E u L. Ex-

ploiting the Bethe Ansatz solution of the model [43], E0

can be expressed via a 1 � u expansion [45]:

E
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�

�
�

�
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�%
% &sin ( ) ( ) . (8)

The values of & l n( ) are tabulated to fifth order in Ref. 45.

The ground state energy in (8) also determines the chemi-

cal potential as function of filling: �( )n E n� � � �0 . By in-

verting �( )n and inserting the resulting values for the

w-parameters from (2) into (4) we can plot � vs. � for any

value of u  1. Some representative plots are shown in

Fig. 1, together with the single-site entanglement for free

fermions (u � 0).

In order to analytically explore the quantum critical re-

gions � �� �c1 and � �� �c2 we first consider the u � �
l imit where �2 0� . In this limit (8) implies that

n( ) ( ) ( )� % �� � � �1 2arccos . Combining this expression

with (4) we obtain

�
�
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�

�

$
� �( )

ln( )
(ln| | ), ,1

2 2
1 2i Ci

ci iconst (9)

for � �� �c1 and � �� �c2 , respectively. Turning to the

case of large but finite u, we focus on the Mott transition

� �� �c2 . A straightforward analysis, again using the

Bethe Ansatz result in (8), yields for the leading behavior

of the single-site entanglement:

�
�

� �
�

�
$C u C( ) ,2 (10)

with C u( ) a positive u-dependent constant.

The results in Eqs. (9) and (10) well illustrate our ge-

neral discussion in the previous section. For finite u the

logarithms in Eq. (5) add up to the u-dependent constant

C u( ), whereas in the limit u � � the entanglement
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Fig. 1. Entanglement entropy � of a single site versus chemical

potential � for the repulsive Hubbard model. The plateaus cor-

respond to half-filling ( )n �1 , cut off at � � 2. The solid curve is

that for free fermions ( )u � 0 , plotted in the region 0 2" "n .



measure detects a change in the dimension of the local

Hilbert space, as signaled by the logarithmic correction

to the leading scaling. In the u � � limit the singly

occupied [empty] local states get suppressed when

� � � �� �� �c c1 2[ ], while for finite u both the metallic

( )� �! c2 and insulating (� � c2) ground states are super-

positions of all four types of local states | , | , |0� �� ��j j j ,

and |��� j .

Let us next study the case of a QPT driven by an ap-

plied magnetic field, again using a Bethe Ansatz approach

to the 1D Hubbard model as work horse. The Hamiltonian

is now written:

� � � � �
�
��

� �
�

�
�

� � �t c c U n n H Sj
j

L

j j
j

L

j B j
z

j

L

�

�

�� �†

1
1

1 1

. (11)

Here S n n
z

j j
j � � �� �( ) 2 is a spin-1/2 operator attached

to lattice site j. As before, we use dimensionless quanti-

ties: u U t� � 4 and h H tB� �� . Focusing on the limit

| |u   1 with u ! 0 (attractive interaction), and with n �1

(half-filling), we can again exploit the Hellman–Feyn-

man theorem. Together with the known Bethe Ansatz re-

sult for the ground state energy [46],

E L u m m u0 4 1 2 1 2 2 1� � � � � � � �( ) ( ) sin ( ) ( )% % � ,

we obtain

�2
0 21

4

1

2
1�

�

�
� � � �

L

E

u
m u�( ). (12)

Neglecting the �( )1 2� u corrections it follows immedi-

ately from Eq. (4) that

� � � � � � �2 2 1 2
1

2
02 2m m m m hlog ( ) ( ) log ( ), . (13)

The dependence of the magnetization on the applied field

can also be derived from the ground state energy, and one

finds

m h

h h

u
h

h h

c

c( )

, ,

,�

" !

� �
�

�
�

�

�
�

�

�
��

�

�
�� " "

0 0

1

2 4

1

1%
arccos h

h h

c

c

2

2
1

2

,

, ,!

'

(

)
))

*

)
)
)

(14)

with lower [upper] cri t ical f ield* h uc1 4 1� � +(| | )

+ � �[ (| | )]h uc2 4 1 . The single-site entanglement as a func-

tion of magnetic field, � �� ( )h , can now be read off from

(4) and (14). The result for the | |u   1 limit is plotted in

Fig. 2 for large values of h. Note that in this limit there are

two local states, |0� and |���, available to the system when

h hc! 1, implying that �( )h �1. In contrast, the fully mag-

netized state for h hc 2 is a direct product of local

spin-up states, and hence �( )h � 0. For comparison we

have plotted the single-site entanglement for free fer-

mions also in Fig. 2 (for both positive and negative values

of the magnetic field). This result is easily obtained from

Ref. 46 by noting that �2
21 4� � �m when u � 0, with

m h� � �( ) ( )1 4% arcsin in the interval � ! !4 4h .

The phase transitions at hc1 and hc2 are second

order, with diverging spin susceptibili t ies $ Si �
� � � �( | | )32 2 1 2% h hci , i �1 2, [15]. The plot in (2) indeed

suggests a corresponding divergence of � � �� h as

h hc� �1 and h hc� �2 as predicted by our general result

in the previous section. As an analytical check we write

u h h h ici
i� � � � � � � �4 4 1 1 2( ) ( ) , , and expand � � �� h

in h hc� 1 and h hc2 � , to obtain

�
�

� � � � �
�

h
h h ii Si

ci( )
ln

(ln | | ), ,1
2

1 2
$

const (15)

for h hc� �1 and h hc� �2 , respectively. This confirms

that � � �� h does diverge at the magnetic phase transitions,

in accordance with our general result.

Turning to the half-filled case with repulsive inter-

action, u  0, a QPT now occurs only at the value

of the field for which the magnetization saturates:
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* The QPT at the upper critical field, the saturation point, is of a special type: Although being nontopological, there is no sym-

metry breaking at the transition. For a discussion, see [47].

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Magnetic field

S
in

g
le

-s
it

e
en

ta
n
g
le

m
en

t

4(|u|–1) 4(|u|) 4(|u|+1)

u = 0
|u| >> 1

Fig. 2. Entanglement entropy � of a single site versus magnetic

field h for the attractive Hubbard model with | |u   1 (dotted

curve). For comparison, the single-site entanglement for the

free case (u � 0) is shown by the solid curve (on a different

scale).



h u uc2
24 1� � �( ) [48]. As shown by Takahashi, the

ground state energy for any finite value of u  0 in the crit-

ical region h hc� �2 can be expanded in terms of the ex-

pectation value for single spin-down occupancy [49]:
E

L
u u n

u
n n

j

j j

0 2

0

2

2 0

3

0

4

4
1

24

1

1

� � � � �

�
�

�

�

� �

( )

( ) .
%

� (16)

With the same procedure as used for the attractive case

above, Eq. (16), together with (2) and (4), yield:

�
�

� � � � �
�

h

C
h h h hS c c

2 2
2 2

ln
const$ (ln | | ), . (17)

H e r e C u u� � � �2 1 2 , a n d 2 4 4 2 1 4%$ S u� � +�( )

+ � � �| |h hc2
1 2. The logarithmic correction in (17) now

signals the suppression of all but the spin-up states as one

approaches the saturation point hc2 from below.

The reason for the similarity of the scaling formulas in

Eqs. (15) and (17) can be made transparent by exploiting

a particle-hole transformation � for spin-up fermions:

� : ( ) ,
†c c
j

j
j� �, �1 (18)

(leaving the spin-down fermions untouched). This trans-

formation maps the zero-field repulsive Hubbard model

with a chemical potential onto the half-filled attractive

Hubbard model with an applied magnetic field. It follows

that the single-site entanglement at � �c c1 2( ) has the same

behavior as at h hc c2 1( ); cf. Figs. 3 and 4.

As a second example, let us briefly discuss how the

Mott–Hubbard transition in the 1D Hubbard model with

long-range hopping gets signaled by the single-site entan-

glement. The model is defined by [50]

�t m

m

L

m

l

L

t c c u n n� �
- �
�� �

�
�

�� ��

�

� � �

1 1


 

,

†
� � � � , (19)

with t i l mm
l m

� � � �� �( ) ( )( )1 1. The ground state energy

density at half-filling is given by

e un u n n uu

u u u u

c c

c c

0

3 2

1 4 1 24� � � � � � +

+ � � � �

[ ( ) ) ( ( )]

[( ) (( ) 4 3 2uu nc ) ]�

with u c � 2% the critical point [50]. This implies that

�2 0� � � �e u has a discontinuity in its second order deri-

vative with respect to u at u c and hence the transition

is third order. From Eq. (4) with n �1 it follows that

the s ing le s i te en tanglement can be wr i t ten as

� � � � � � �( ) log ( ) log ( )1 2 1 2 22 2 2 2 2 2� � � � w h e n n o

magnetic field is present (i.e. m � 0), and one immediately

verifies that � � �2 2
� u is also discontinuous at the transi-

tion point u c . Since the local basis states do not become

equally populated at u c — in contrast to the u � 0

metal–insulator transition of the ordinary Hubbard model

— the single-site entanglement here provides an accurate

diagnostics of the transition. A plot of the single-site en-

tanglement as function of u is shown in Fig. 5. This QPT

is unusual in exhibiting a discontinuity rather than a di-

vergence in a higher-order derivative of the ground state

energy. As one expects second- and higher-order phase

transitions to be continuous one may worry that some-

thing is askew. However, the reason for the «anomaly» is

simply that the Hamiltonian in [50] contains a long-range

hopping process, thus breaking scale invariance at large

distances (i.e. also in the «scaling limit»).

One can drive a Mott—Hubbard metal–insulator tran-

sition also by tuning the chemical potential when u u c ,

in exact analogy with the ordinary Hubbard model. Ex-

pressing n as a function of �, and applying the

Hellman–Feynman theorem to the ground state energy e0

above, one obtains a discontinuity in � � �n � at

1238 Fizika Nizkikh Temperatur, 2007, v. 33, No. 11

Henrik Johannesson and Daniel Larsson

–2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Chemical potential

S
in

g
le

-s
it

e
en

ta
n
g
le

m
en

t

u = 2

Fig. 3. Entanglement entropy � of a single site vs. chemical

potential for u � 2.
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Fig. 4. Entanglement entropy � of a single site vs. magnetic

field for u � �2 and at half-filling ( )n �1 , obtained from Fig. 3

via the particle-hole transformation � in Eq. (18).



� � %� �c

� � %� �c [51]. Eq. (5) immediately implies that � � �� � is

also discontinuous at� �� c , with the transition being sec-

ond order. In the limit u � � this discontinuity is multi-

plied by a logarithmic divergent factor when � �� �c , re-

flecting the suppression of empty states in this case.

Extensions of the theory: the one-dimensional

UV Hubbard model

The modification of the ordinary one-dimensional

Hubbard model obtained by allowing long-range hopping

is only one of several possible ones. A more realistic ex-

tension of the model that mimics the effect of a fi-

nite-range Coulomb interaction is the 1D extended Hub-
bard model [52,53], alias the 1D UV Hubbard model.

With the notation of Eq. (6), its Hamiltonian is written as

�UV j
j

L

j j
j

L

j j

j

L

t c c U n n V n� � � �
�

� �

� �
�

�
�

� � ��

�

��
†

� � � �

1
1

1 1

n j � 1 ,

(20)

where � � �n n nj j j� �� � . The term V is a nearest-neighbor

interaction that emulates a finite-range (screened) Cou-

lomb interaction. The inclusion of this term destroys the

integrability of the model, but its possible phases can be

extracted by exact diagonalization and variational tech-

niques, supplemented by exact results in various limits.

One finds a rich phase diagram in the UV -plane, with

phases exhibiting enhanced correlations for charge- and

spin density waves, singlet- and triplet superconducting

correlations, and a region of phase separation [53,54].

Some of the coexistence lines separating the various

phases were qualitatively reconstructed at half-filling by

numerically identifying the ridges of the single-site en-

tanglement as function of U and V [42]. Attempts to

improve upon this result — including an identification of

transitions to phases with enhanced pairing correlations

— were subsequently carried out via a study of the scaling

of the block entropy for the model [55].

Here we are more concerned with the detailed ana-

lyticity properties of the ground state entanglement as one

approaches a QPT. As long as the QPT is driven by an ex-

ternal field that couples locally to single sites on the lat-

tice, or by the on-site interaction ~ U , we can carry over

the approach above intact.

As an example, let us consider the model in the V � �
limit and at quarter filling ( )n � �1 2 . For this case only

every other site will be occupied since the energy cost to

put two particles on neighboring sites is infinite. There

are three distinct phases for this case: U  4, where every

second site will occupied by precisely one particle;

� ! !4 4U , with a mixture of doubly and singly occupied

sites; and U ! � 4, where all sites are doubly occupied. As

we tune the on-site interaction U , while staying in the

V � � limit, we expect that the single-site entanglement

will signal the QPTs that occur at U � 4 (metal–insulator

transition) and U � � 4 (transition to a spin-gapped phase)

respectively. To obtain an expression for the single-site

entanglement, we take off from the parameterization of

the reduced density matrix as given in Eq. (2). From

Ref. 54 we have that

�
%2 2 1

1

4
� � �

�
�

�

�
�

�

�
�( ) ,n

n U
arccos (21)

which at quarter filling (n � �1 2) takes the form

�
%2
1

2 4
� �

�

�
�

�

�
�arccos

U
. (22)

The Lieb–Mattis theorem [44] implies that the ground

state is a spin singlet (m = 0), and we thus conclude from

Eqs. (2) and (22) that

� �
%� �� � � �

�

�
�

�

�
�

1

4

1

2 4
arccos

U
, (23)

�
%0

1

2

1

2 4
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�

�
�

�

�
�arccos

U
.

Using Eq. (4) we can immediately write down the sin-

gle-site entanglement:

�( ) logU
U U
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Fig. 5. Entanglement entropy � of a single site vs. on-site in-

teraction u in the Hubbard model with long-range hopping at

half-filling ( )n �1 . Note that the Mott–Hubbard transition at

uc � �% 2 is away from the maximum of the entanglement en-

tropy, in contrast to the case of the ordinary Hubbard model.



Differentiating with respect to U yields the following ex-

pression:

�
�

�
� �

� �
�

�
�
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�
��
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U U
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(26)

By inspection of Eq. (26) we pinpoint divergences at

U � � 4, signaling a second order QPT. Explicitly,

1 2�
�

3
�

�
�

U U U
U U

c
c

1

4 2

1
2

% | |
log (| | ) (27)

where we used the relations

1 4 2 16 22� � � � � � � � 3 � �( ) ( ) ( ) ( )u U U U U U Uc c c

when U c � 4,

and

1 4 2 16 22� � � � � � � � 3 � �( ) ( ) ( ) ( )U U U U U U Uc c c

when U c � � 4.

The divergences in (27) were expected, since it is already

known that U � � 4 define critical points for the two sec-

ond-order QPTs: from a metal to an insulator atU � 4, and

from an ordinary metal to a metallic phase with supercon-

ducting correlations at U � � 4 [54].

Suppose that we instead wish to explore a QPT driven

by a change in the nearest-neighbor interaction V . The

conjugate order-parameter is now that for nearest-neigh-

bor occupancies, 
 � �� �� �0 1 0 1| � � |n n n nj j j j , which does

not enter the reduced density matrix from which the sin-

gle-site entanglement measure is constructed (cf. Eq. (2)).

Hence, given our result from the previous section, the sin-

gle-site entanglement is not expected to signal a QPT

when driven by a change inV . The way out is obvious: We

have to construct a two-site entanglement measure, based

on the reduced density matrix for the two neighboring

sites j and j � 1. (In analogy with the analysis above,

which two sites that we choose is immaterial, provided

that the system is translationally invariant.) The extension

to a two-site measure is conceptually straightforward

[55–58], allowing us in principle to carry over our results

for non-analyticities in the entanglement unadorned.

However, the practical implementation of the theory

meets with certain obstacles. First, the reduced density

matrix now acts on a 16-dimensional space, with many

more entries to keep track on. Secondly, and more seri-

ously, there are no exact analytical results for the ground

state energy for arbitrary values of U and V that we can

draw upon.

Fortunately, in the limit U � � (still at quarter filling,

n � �1 2), the theory simplifies and we can make some
progress: When U � �, double occupancies of single

sites get suppressed, and as a consequence the dynamics

becomes insensitive to the spin of the fermions. The local

Hilbert spaces collapse to qubit spaces, spanned by the

two states |0� («empty») and |1� («singly occupied»).

Working with (dynamically) spinless fermions, one can

then exploit the time-honored Jordan–Wigner transfor-

mation [59], and map the model onto the Bethe Ansatz
solvable spin-1/2 XXZ chain [60]

� � � �
�

�

� � ��     i
x

i

i
x

i
y

i
y

i
z

i
z

1

1 1 14 . (28)

The Mott–Hubbard critical point at V � 2 [59] in this

way gets mapped onto the isotropic point 4 �1, separating

a spin liquid phase at � ! !1 14 from an Ising antiferro-

magnetic phase at 4  1. It follows that the desired infor-

mation about the critical entanglement properties can be

extracted by studying the two-site entanglement measure

for the XXZ model at 4 �1. The two-site reduced density

matrix for the XXZ model is well-known [61–63], and the

associated two-site entanglement is readily obtained [64],

revealing a local maximum at 4 �1, with all its higher-or-

der derivatives being finite and continuous. This atypical

behavior can be ascribed to the particular population of

local states at the Mott transition which conspires to kill

off the first-derivative of the two-site entanglement (with

respect to V ), in exact analogy to the vanishing of the

first-derivative of the single-site entanglement when the

local states are equally populated. This masks the ex-

pected non-analyticity of the entanglement, replacing it

by a local maximum. In fact, the QPT is here of BKT type,

just as for the Mott transition in the ordinary Hubbard

model [41], making the detection of the non-analyticity

(an essential singularity!) highly non-trivial.

As should be clear from this brief exposition, an ana-

lytical study of the complete phase diagram of the UV ex-

tended Hubbard model from the perspective of entangle-

ment scaling is not an easy task. Quite possibly it must

await further theoretical breakthroughs.

Outlook

Before concluding, one may ask: «What is the advan-

tage of probing the entanglement at a QPT rather than di-

rectly studying the behavior of the ground state energy?».

There are several answers to this question. First, as we

have already noted, certain QPTs can not be traced back

to a nonanalyticity in the ground state energy, a case in

point being the transitions between quantum Hall pla-

teaus [35]. There are reasons to expect that a singular be-

havior of some entanglement measure may still apply to

these transitions, and could serve as a convenient diag-
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nostic tool. To find out, one needs to practice on the sim-

pler conventional QPTs, sorting out generic from acci-

dental non-analyticities. Secondly, to understand to what

extent non-local quantum correlations are implied in the

scaling and universal properties exhibited by systems un-

dergoing QPTs requires a detailed study of the associated

entanglement properties. Our results for the Hubbard

model [31,36,37], reviewed in the previous section, here

provide a rich backdrop, with the entanglement scaling

governed by the associated thermodynamic susceptibili-

ties (and with logarithmic corrections encoding a change

of dimension of the accessible local Hilbert spaces (see

also Ref. 65)). Moreover, recent theoretical developments

suggesting the use of many-particle entanglement for in-

formation processing may benefit from getting a firm

handle on entanglement properties at QPTs. For example,

certain schemes for quantum adiabatic computing [66] re-

lies on (the assumed) entanglement scaling properties

close to a QPT [67].

This is an area of research rich in opportunities. As it

comes to models of interacting fermions, there is cur-

rently an ongoing activity by several research groups to

explore QPTs in other extensions of the one-dimensional

Hubbard model. Progress has been made for the

bond-charge extended Hubbard model, where Anfossi

et al. [56,57] have obtained important results, clarifying

the role of multi-partite entanglement, as well as the rela-

tion between classical and quantum correlations at criti-

cality More work should also be done — for fermionic

and spin models — as it comes to unearthing effects from

disorder, impurities, local fields, and boundaries. A par-

ticularly promising class of models to practice on — hith-

erto unexplored in this context — are the integrable

multichain models discussed in the review by Zvyagin

[68]. Another fascinating direction of research would be

to study the quantum analogies [69,70] of the elusive and

highly nontrivial phase transitions «by breaking of

analyticity», known from commensurate-incommensu-

rate transitions [71,72]. A related class of phenomena in

the context of low-dimensional quantum spin models

have recently been discussed in Ref. 73. The study of en-

tanglement behavior may here open up new landscapes

for exploration.
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