PACS numbers: 61.43.Fs, 61.46.Bc, 77.84.Bw, 78.30.Ly, 78.66.Jg, 81.05.Gc

# Дослідження структури стекол системи As-Sb-S-I методою КР-спектроскопії

### В. М. Рубіш, В. О. Стефанович<sup>\*</sup>, О. Г. Гуранич, О. В. Горіна, В. В. Рубіш

Ужгородський науково-технологічний центр матеріалів оптичних носіїв інформації ІПРІ НАН України, вул. Замкові сходи, 4<sup>a</sup>, 88000 Ужгород, Україна <sup>\*</sup>Ужгородський національний університет, вул. Підгірна, 46, 88000 Ужгород, Україна

Наведено результати досліджень спектрів комбінаційного розсіяння (КР) світла стекол  $(As_2S_3)_{100-x}(SbSI)_x$  ( $0 \le x \le 97$ ). Встановлено їх наногетерогенну будову. Матриця стекол, побудована переважно бінарними структурними угрупуваннями  $AsS_{3/2}$ ,  $SbS_{3/2}$ ,  $As(Sb)S_{3/2}$ , містить певну кількість фраґментів з гомополярними зв'язками (As–As, S–S, Sb–Sb), а також молекулярні асоціяти  $AsI_3$  і SbI<sub>3</sub>. Кристалізація стекол з x > 50 відбувається за переважним механізмом з виділенням стабільної фази SbSI.

The results of Raman spectra investigations of glasses  $(As_2S_3)_{100-x}(SbSI)_x$  $(0 \le x \le 97)$  are presented. Their nanoheterogeneous structure is revealed. Glass matrix is built mainly by binary structural groupings,  $AsS_{3/2}$ ,  $SbS_{3/2}$ ,  $As(Sb)S_{3/2}$ , and contains a certain amount of fragments with homopolar bonds (As–As, S–S, Sb–Sb) as well as molecular associates (AsI<sub>3</sub> and SbI<sub>3</sub>). Glass crystallization for x > 50 takes place according to predominant mechanism and with separation of the SbSI stable phase.

Приведены результаты исследований спектров комбинационного рассеяния (КР) света стекол  $(As_2S_3)_{100-x}(SbSI)_x$  ( $0 \le x \le 97$ ). Установлено их наногетерогенное строение. Матрица стекол построена преимущественно бинарными структурными группировками  $AsS_{3/2}$ ,  $SbS_{3/2}$ ,  $As(Sb)S_{3/2}$  и содержит определенное количество фрагментов с гомополярными связями (As-As, S–S, Sb–Sb), а также молекулярные ассоциаты  $AsI_3$  и SbI<sub>3</sub>. Кристаллизация стекол с x > 50 происходит по преимущественному механизму с выделением стабильной фазы SbSI.

Ключові слова: халькогенідні стекла, спектр комбінаційного розсіяння світла.

1119

(Отримано 23 листопада 2007 р.)

### 1. ВСТУП

При дослідженні температурних залежностей діелектричних параметрів ( $\epsilon$  і tg $\delta$ ) халькогенідних стекол на основі сульфойодиду стибію (системи As<sub>2</sub>S<sub>3</sub>-SbSI, As<sub>2</sub>Se<sub>3</sub>-SbSI, GeS<sub>2</sub>-SbSI), який у кристалічному стані має сеґнетоелектричні властивості, в інтервалі температур  $T_{a}$ -*T<sub>c</sub>* (*T<sub>g</sub>*, *T<sub>c</sub>* — температури склування і кристалізації відповідно) були виявлені аномалії, пов'язані з переходом стекол у полярний стан і наступною їх кристалізацією [1-5]. Кристалізація стекол супроводжується виразним зростанням діелектричної проникности. Дослідження дифрактограм та спектрів комбінаційного розсіяння закристалізованих стекол показали, що структура фази, яка виникає в матриці стекол, відповідає структурі кристалічного SbSI [2, 5, 6]. Даний висновок підтверджується і результатами досліджень температурних залежностей є та tgб закристалізованих зразків. На залежностях  $\varepsilon(T)$  і tg $\delta(T)$  в інтервалі температур 250–290 К були виявлені максимуми, характерні для розмитого сеґнетоелектричного фазового переходу.

Зрозуміло, що виникнення кристалічної фази SbSI у склоподібній матриці супроводжується суттєвими структурними перетвореннями. Однак, на даний час структура халькогенідних стекол і механізм структурних перетворень, які відбуваються в них при кристалізації, вивчені недостатньо.

Дана робота присвячена вивченню структури стекол системи  $As_2S_3$ -SbSI методою KP-спектроскопії та встановленню механізму структурних перетворень і природи кристалічних включень в їх матриці.

### 2. МЕТОДИКА ЕКСПЕРИМЕНТУ

Склоподібні зразки системи  $As_2S_3$ -SbSI готувались методою вакуумного топлення (~ 0,01 Па) відповідних сумішей компонентів  $As_2S_3$  та SbSI. Синтеза шихти SbSI проводилася як із елементарних компонентів, взятих у стехіометричному співвідношенні, так і з попередньо приготованих бінарних сполук  $Sb_2S_3$  та  $SbI_3$ . Сульфойодид стибію одержано у вигляді полікристалічного зливку охолодженням гомогенізованого протягом 72 год. розтопу від 900 К у режимі вимкненої печі. Трисульфід арсену у склоподібному вигляді одержаний охолодженням гомогенізованого протягом 48 год. розтопу від 780 К на повітрі. Температури гомогенізації розтопів  $(As_2S_3)_{100-x}(SbSI)_x$  складали 780–870 К, а час гомогенізації 24–36 год. Періодично розтопи перемішували. Охолодження більшости розтопів виконувалося на повітрі, а розтопів з  $x \ge 80$  — у холодній (273 К) воді. Дослідження показали, що одержані матеріяли є рентґеноаморфними (дифрактограми знімалися на Рентґеновім апараті ДРОН-З з використанням Си $K_{\alpha}$ -випромінення ( $\lambda = 1,5418$  Å)). Не виявлено мікрокристалічних включень у стеклах і при спостереженні у поляризаційному мікроскопі. Диференційно-термічна аналіза засвідчила відсутність ефектів кристалізації в стеклах (As<sub>2</sub>S<sub>3</sub>)<sub>100-x</sub>(SbSI)<sub>x</sub> з вмістом SbSI менше 51 мол.%.

КР-спектри одержувалися в 90- і 180-градусній геометрії з використанням спектрофотометра ДФС-24 і Не–Nе-лазера ( $\lambda = 630$  нм). Роздільна здатність складала 1–3 см<sup>-1</sup> при реєстрації в 90-градусній геометрії і 4 см<sup>-1</sup> — в 180-градусній. Дослідження виконувалися при кімнатній температурі.

### 3. РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ

Спектри комбінаційного розсіяння світла стекол  $(As_2S_3)_{100-x}(SbSI)_x$ наведені на рис. 1. КР-спектри склоподібного  $As_2S_3$  досліджувались нами раніше [7–10]. Вони містять інтенсивну смугу при 343 см<sup>-1</sup>, обумовлену коливаннями атомів арсену і сірки у тригональних піра-



**Рис. 1.** КР-спектри стекол (As<sub>2</sub>S<sub>3</sub>)<sub>100-x</sub>(SbSI)<sub>x</sub>: x = 5 (1); 10 (2); 20 (3); 30 (4); 40 (5); 50 (6); 90 (7); 97 (8).

мідах  $AsS_3$ , низку слабких смуг в ділянці 146–231 см<sup>-1</sup> та 426–493 см<sup>-1</sup> та ряд особливостей при 316, 330, 360 та 380 см<sup>-1</sup>. Широке плече в ділянці 380 см<sup>-1</sup> може бути віднесене до взаємодії між пірамідами  $AsS_3$ . Слабкі смуги при 146 і 162 см<sup>-1</sup> відносяться до As-S-As коливань. Плече при 316 см<sup>-1</sup> відповідає деформаційним коливанням S-As-S зв'язків структурних одиниць  $AsS_3$ . Смуга при 187 см<sup>-1</sup> може відповідати інтенсивній смузі 186 см<sup>-1</sup> у спектрах кристалів  $As_4S_4$ , обумовленій As-As-коливаннями.

Гомополярним зв'язкам As–As може бути приписана і достатньо інтенсивна смуга при 231 см<sup>-1</sup> [11]. Структурним одиницям As<sub>4</sub>S<sub>4</sub> відповідають і особливості при 300 і 360 см<sup>-1</sup>. Слабкі смуги при 426 і 493 см<sup>-1</sup> можуть бути пов'язані з наявністю у структурній сітці склоподібного трисульфіду арсену фраґментів кілець S<sub>8</sub>. Слід відмітити, що вміст структурних угрупувань з гомополярними зв'язками As– As та S–S суттєво залежить від умов одержання стекол [7, 10]. Зростання нерівноважности процесу одержання стекол (від вищих температур гомогенізації розтопу і з більшими швидкостями охолодження) призводить до збільшення кількости гомополярних зв'язків у їх матриці.

Характерною особливістю КР-спектру  $As_2S_3$  є наявність так званого Бозонового піку, який спостерігається у низькочастотній ділянці при 25 см<sup>-1</sup> [8, 9], і зв'язаного з кореляційним розміщенням атомів на масштабах середнього порядку. Визначена в [8] зона структурної кореляції (2 $R_0$ ) трисульфіду арсену складає ~ 0,66 нм. Діяметер же піраміди  $AsS_3 \sim 0,66$  нм. Це означає, що локальні кластери складаються, як мінімум, з двох пірамід  $AsS_{3/2}$  [3]. Аналіза одержаних даних дозволяє зробити висновок, що скло  $As_2S_3$  має наногетерогенну будову. Його матриця побудована переважно тригональними пірамідами  $AsS_3$ , пов'язаних між собою через двічі координовані атоми сірки, і містить структурні елементи з гомополярними зв'язками As–As та S–S.

Введення сульфойодиду стибію у склад  $As_2S_3$  у кількости 2 мол.% суттєво не впливає на форму і положення максимумів коливних мод у КР-спектрах складних стекол у порівнянні зі спектром склоподібного трисульфіду арсену. Спостерігається тільки незначне (3 см<sup>-1</sup>) зміщення максимуму основної смуги в ділянку менших частот. Смуги ж при 187, 231, 493 см<sup>-1</sup>, обумовлені наявністю в матриці стекол гомополярних зв'язків As–As i S–S, практично не зазнають змін [12].

Незначними є й зміни положення Бозонового піку з варіяцією складу. З ростом вмісту сульфойодиду стибію у складі стекол  $(As_2S_3)_{100-x}(SbSI)_x$  він зміщується у сторону менших частот (до 22 см<sup>-1</sup> для скла  $(As_2S_3)_{50}(SbSI)_{50}$ ). Однак, зробити коректний висновок про розмір зони структурної кореляції не видається можливим через відсутність даних щодо швидкостей (поперечних і поздовжніх) розповсюдження акустичних хвиль у цих стеклах. Можна тільки припустити, що величина  $2R_0$  багатокомпонентних стекол дещо більша, ніж

у  $As_2S_3$ , оскільки довжини зв'язків Sb–S в піраміді SbS<sub>3</sub> (0,25 нм) і Sb–I в піраміді SbI<sub>3</sub> (0,275 нм) більші, ніж довжини зв'язків As–S в піраміді AsS<sub>3</sub> (0,228 нм) [3].

Подальше збільшення концентрації SbSI призводить до значної перебудови спектрів (рис. 1). У спектрах КР стекол не проявляється особливість при 187 см<sup>-1</sup>, але з'являються смуги при 168–170 і 205–209 см<sup>-1</sup>, які обумовлені коливаннями зв'язків Sb і I та As і I у тригональних структурних одиницях SbI<sub>3</sub> [12–14] та AsI<sub>3</sub> [15, 16], інтенсивність яких зростає з ростом вмісту йоду. Інтенсивність смуги при 205–209 см<sup>-1</sup> максимальна для скла (As<sub>2</sub>S<sub>3</sub>)<sub>60</sub>(SbSI)<sub>40</sub>. При x > 40 її інтенсивність закономірно зменшується і для стекол, близьких по складу до стехіометричного SbSI, вона вироджується в плече (рис. 1, криві 7, 8).

З ростом вмісту SbSI у складі стекол  $(As_2S_3)_{100-x}(SbSI)_x$  проходить зміщення максимуму основної смуги у низькочастотну область (наприклад, для скла  $(As_2S_3)_3(SbSI)_{97}$  (рис. 1, крива 8) він знаходиться при 312 см<sup>-1</sup>) з одночасним її розмиттям. Зміщується у низькочастотну область і смуга, що відповідає структурним одиницям SbI<sub>3</sub> (від 170 см<sup>-1</sup> для скла  $(As_2S_3)_{95}(SbSI)_5$  до 151 для скла  $(As_2S_3)_3(SbSI)_{97}$ . Положення ж смуги, обумовленої пірамідами AsI<sub>3</sub> (205–209 см<sup>-1</sup>) практично не змінюється. В області частот 150–160 см<sup>-1</sup> є активними і коливні моди, обумовлені наявністю в стибієвмісних стеклах структурних угрупувань з гомополярними зв'язками Sb–Sb [17, 18].

Для склоподібного As<sub>2</sub>S<sub>3</sub> прийнятним є шарувато-ланцюжковий модель структури [3]. Шари утворені тригональними пірамідами AsS<sub>3/2</sub> і з'єднуються між собою через місткові комплекси As-S-As. При введенні у трисульфід арсену Sb<sub>2</sub>S<sub>3</sub> відбувається поступова заміна атомів As на атоми Sb в структурних одиницях  $AsS_{3/2}$ , руйнування містків As-S-As і утворення змішаних містків As-S-Sb [19]. При введенні SbSI в  $As_2S_3$  картина структурних змін дещо інша. У першу чергу проходить руйнування місткових комплексів As-S-As, про що свідчить зменшення інтенсивности смуги при 316 см<sup>-1</sup> і її відсутність для стекол  $(As_2S_3)_{100-x}(SbSI)_x$  з x > 10. Не показують спектри КР і на утворення містків As-S-Sb. Зміщення основної смуги (343 см<sup>-1</sup>) у низькочастотну область і її розмивання свідчать про заміну певної частини атомів арсену на атоми стибію в пірамідах  $AsS_3$  і розупорядкування структурної сітки скла. Цьому процесу сприяє і наявність у ній значної кількости структурних угрупувань SbI<sub>3</sub> і AsI<sub>3</sub>, концентрація яких із збільшенням х зростає. Видно, що в процесах хемічної взаємодії елементів системи найбільш активним є стибій. При значних концентраціях йоду у складі стекол можлива асоціяція молекуль SbI<sub>3</sub> у більші ланцюжкові комплекси, які вплітаються у сітку скла. Підтвердженням цьому може бути зсув смуги, відповідальної за коливання цих молекуль, у низькочастотну область спектру. Особливостей, які могли б свідчити про наявність у сітці стекол (As<sub>2</sub>S<sub>3</sub>)<sub>100-г</sub>(SbSI), потрійних ланцюжкових структурних одиниць



Рис. 2. КР-спектри полікристалічних SbSI (1) і SbI<sub>3</sub> (2) та закристалізованого протягом 1 год. при T = 488 К скла (As<sub>2</sub>S<sub>3</sub>)<sub>40</sub>(SbSI)<sub>60</sub> (3).

SbS<sub>2/2</sub>I, за допомогою яких побудована кристалічна ґратниця SbSI [20], у КР-спектрах не виявлено.

Не проявляються такі потрійні структурні угрупування і в КР- та ІЧ-спектрах стекол  $(Sb_2S_3)_{100-x}(SbI_3)_x$  [3, 13, 21]. Однак, автори роботи [21] при інтерпретації ІЧ-спектрів зробили висновок, що стекла заевтектичних складів (x > 25) побудовані із атомових ланцюжків, у яких кожний атом Sb зв'язаний з двома атомами S та одним атомом I, а атом S з двома атомами Sb (структурна одиниця  $SbS_{2/2}$ I).

Структура кристалу SbSI визначається подвійними ланцюжками [(SbSI)<sub>∞</sub>]<sub>2</sub>, які зв'язані між собою силами Ван-дер-Ваальсовими. Два ланцюжки, які утворюють подвійний ланцюжок, мають ґвинтову вісь симетрії і з'єднані короткими і міцними зв'язками Sb–S, тобто стибій одного з них наближений до сірки, яка належить другому ланцюжку[20, 22]. При цьому сили зв'язків між атомами, як і їх заряди, різні у різних площинах. Подвійний ланцюжок формується багатьма елементарними комірками, які складаються з 12 атомів. Відповідно, спрощена комірка містить шість атомів (дві молекулі SbSI). Всередині ланцюжків хемічний зв'язок має йонно-ковалентний характер.

Спектер комбінаційного розсіяння світла полікристалічного SbSI наведений на рис. 2 (крива 1). Він містить смуги при 318, 157, 138 і  $108 \text{ см}^{-1}$  та ряд фононних смуг в ділянці частот < 100 см<sup>-1</sup>. На цьому

ж рисунку (крива 2) наведений КР-спектер полікристалічного SbI<sub>3</sub>. Він містить дві інтенсивні смуги при 137 і 157 см<sup>-1</sup> та ряд смуг у ділянці < 100 см<sup>-1</sup>.

З рисунків 1 і 2 видно, що положення смуг, які відповідають коливанням пар атомів Sb та I в тригональних пірамідах  $SbI_3$  і пар атомів Sb та S в пірамідах SbS<sub>3</sub>, в КР-спектрах стекол  $(As_2S_3)_{100-x}(SbSI)_x$  узгоджуються з положенням смуг при 157 і 318  $cm^{-1}$  відповідно в спектрах полікристалів SbSI та SbI<sub>3</sub>. Для стекол системи Sb<sub>2</sub>S<sub>3</sub>-SbI<sub>3</sub> максимум смуги, що відповідає структурним угрупуванням SbI<sub>3</sub>, локалізований в ділянці ~165 см<sup>-1</sup>, а смуги, обумовленої тригональними пірамідами SbS<sub>3</sub> — в ділянці 290-307 см<sup>-1</sup> [3, 13]. Одержані результати дозволяють зробити висновок про «квазиевтектичну» (наногетерогенну) будову стекол системи  ${
m Sb}_2{
m S}_3-$ SbI<sub>3</sub>. Сітка скла побудована в основному тригональними пірамідами SbS<sub>3/2</sub>, у якій знаходяться окремі молекулі SbI<sub>3</sub> або, що ймовірно (зважаючи на будову кристалів SbI<sub>3</sub> [23]), асоціяти на їх основі. Якщо у цих стеклах і можливе утворення ланцюжків, то це є ланцюжки, утворені молекулями  $SbI_3$  і вплетені у сітку на основі пірамід SbS<sub>3/2</sub>. На користь молекулярного характеру взаємодії між елементами «квазіевтетики» свідчать і порівняно низькі температури склування стекол (Sb<sub>2</sub>S<sub>3</sub>)<sub>x</sub>(SbI<sub>3</sub>)<sub>100-x</sub> [3, 24].

Аналогічний висновок можна зробити і по відношенню до стекол системи  $As_2S_3$ -SbSI. У побудові їх структурної сітки беруть участь тільки бінарні структурні угрупування  $AsS_{3/2}$ ,  $SbS_{3/2}$ ,  $As(Sb)S_{3/2}$ ,  $AsI_3$ ,  $SbI_3$ , а також невелика кількість структурних фраґментів з гомополярними зв'язками.

На рисунку 2 (крива 3) наведений типовий для всіх досліджених матеріялів КР-спектер закристалізованого протягом 1 год. при T = 488 К (ця температура відповідає максимуму екзотермічного ефекту) скла (As<sub>2</sub>S<sub>3</sub>)<sub>40</sub>(SbSI)<sub>60</sub>. Спектер закристалізованого скла містить гострі смуги при 109, 140 і 319 см<sup>-1</sup>, які практично співпадають з положенням смуг у полікристалічному SbSI (рис. 2, крива 1). Фононні смуги в ділянці частот < 100 см<sup>-1</sup> в КР-спектрах закристалізованих стекол проявляються дуже слабко через значне Релейове розсіяння. Одержані дані свідчать про подібність структури кристалічних включень, які формуються в матриці стекол (As<sub>2</sub>S<sub>3</sub>)<sub>100-x</sub>(SbSI)<sub>x</sub> з x > 50 при відпалі, та полікристалів SbSI.

Механізм утворення кристалічних включень в матриці скла можна представити таким чином. Як відмічалося вище, матриця стекол даної системи побудована бінарними структурними угрупуваннями  $AsS_3$ ,  $SbS_3$ ,  $As(Sb)S_3$ ,  $AsI_3$ ,  $SbI_3$ . Наявність декількох типів структурних угрупувань в структурній сітці призводить до їх взаємодії, деформації і, як наслідок, до значної нееквівалентности довжин і сил зв'язків між атомами.

При нагріванні змішаних стекол лабільність структурної сітки ще

більше зростає і в інтервалі температур  $T_g - T_c$  стає можливим розрив і перемикання хемічних зв'язків Sb–S, Sb–I, As–I та інших у вказаних бінарних структурних угрупуваннях. Даний процес супроводжується дифузією атомів на відстані порядку міжатомових. У результаті утворюються потрійні ланцюжкові угрупування, характерні для кристалічного SbSI. При температурах, близьких до температури початку кристалізації, і при малих часах відпалу розміри утворених у склоподібній матриці кристалів незначні, і одержується сеґнетоелектрична нанокераміка [2, 6]. У цьому випадку, напевно, розміри нанозерен порядку кореляційної довжини і, відповідно, діелектрична проникність змінюється порівняно слабко. Підвищення температури і часу відпалу призводить до зростання розмірів зерен і суттєвого збільшення діелектричної проникности [4]. При цьому атоми, які формують ланцюжкові угрупування, дифундують на значні відстані. Даний висновок підтверджується результатами дослідження дифрактограм і КР-спектрів закристалізованих стекол [5, 6]. При збільшенні температури і часу відпалу інтенсивність рефлексів на дифрактограмах зростає, а їх півширина зменшується. Аналогічно ведуть себе і спектри комбінаційного розсіяння світла закристалізованих стекол, причому при значних часах відпалу проявляються фононні смуги в області спектру ω ≤ 100 см<sup>-1</sup>. Це свідчить про зростання розмірів кристалів SbSI у склоподібній матриці і їх структурне упорядкування [3, 6].

## 4. ВИСНОВКИ

В результаті досліджень спектрів комбінаційного розсіяння світла стекол системи As<sub>2</sub>S<sub>3</sub>–SbSI встановлено, що вони мають наногетерогенну будову. Їх матриця побудована тільки бінарними структурними одиницями As(Sb)S<sub>3</sub> та As(Sb) I<sub>3</sub> і містить незначну кількість молекулярних фраґментів з гомополярними зв'язками. При нагріванні стекол з вмістом SbSI понад 50 мол.% в інтервалі температур  $T_g$ – $T_c$  проходить розрив і перемикання хемічних зв'язків As–S, Sb–S, As–I, Sb–I у бінарних структурних угрупуваннях з утворенням потрійних ланцюжкових угрупувань SbS<sub>2/2</sub>I, характерних для кристалів SbSI.

### ЦИТОВАНА ЛІТЕРАТУРА

- 1. V. M. Rubish, J. of Optoelectronics and Advanced Mater., 3, No. 4: 941 (2001).
- 2. В. М. Рубіш, О. Г. Гуранич, Д. С. Леонов, *Наносистеми*, наноматеріали, нанотехнології, **3**, № 4: 911 (2005).
- 3. А. П. Шпак, В. М. Рубіш, Склоутворення і властивості сплавів в халькогенідних системах на основі миш'яку та сурми (Київ: ІМФ НАНУ: 2006).
- 4. В. М. Рубіт, Сенсорна електроніка і мікросистемні технології, 1: 62 (2007).

- 5. A. P. Shpak, V. V. Rubish, and V. M. Rubish, *Abstr. Intern. Meeting on Materials for Electronic Applications—'IMMEA-2007' (2007, Marrakech, Morocco)*, p. 57.
- 6. В. М. Рубіш, Фізика і хімія твердого тіла, 8, № 1: 41 (2007).
- 7. В. М. Рубіш, Я. П. Куценко, О. Ю. Полтавцев и др., *Тр. МЭИ*, **667**: 31 (1993).
- 8. В. М. Рубіш, В. О. Стефанович, В. В. Рубіш та ін., *Металлофиз. новейшие технол.*, **28**, № 5: 643 (2006).
- 9. V. M. Rubish, O. G. Guranich, and V. V. Rubish, *Photoelectronics*, 16: 41 (2007).
- 10. М. Ю. Риган, П. П. Штець, В. В. Рубіш та ін., *Реєстрація, зберігання та* обробка даних, **9**, № 3: 145 (2007).
- 11. D. G. Georgiev, P. Boolchand, and K. A. Jackson, *Phil. Mag.*, **83**, No. 25: 2941 (2003).
- 12. V. M. Rubish, O. G. Guranich, and V. O. Stefanovich, Mat. Intern. Meeting 'Clusters and Nanostructured Materials (CNM'2006)' (2006, Uzhgorod, Ukraine), p. 319.
- 13. В. М. Рубіш, П. П. Штець, В. В. Рубіш, Д. Г. Семак, *Наук. вісник Ужгород. ун-ту. Сер. Фізика*, **7**: 58 (2000).
- 14. V. Rubish, I. Yurkin, V. Malesh et al., Proc. SPIE, 2648: 531 (1995).
- 15. L. Koudelká and M. Pisárčik, Solid State Communs, 41, No. 1: 115 (1982).
- 16. L. Koudelká and M. Pisárčik, J. Non-Cryst. Solids, 64, № 1: 87 (1984).
- 17. В. М. Рубиш, В. О. Стефанович, П. П. Штец и др., ЖПС, 52, № 1: 53 (1990).
- 18. В. М. Рубіш, А. П. Шпак, В. І. Малеш, Наносистеми, наноматеріали, нанотехнології, **3**, вип. 2: 425 (2007).
- 19. F. Sava, J. of Optoelectronics and Advanced Mater., 3, No. 2: 425 (2001).
- 20. J. Grigas, E. Talic, and V. Lasauskas, Ferroelectrics, 284: 147 (2003).
- В. С. Герасименко, В. П. Захаров, И. М. Миголинец, М. Ю. Сичка, УФЖ, 20, № 11: 1859 (1975).
- 22. V. Lazauskas, V. Nelkinas, J. Grigas et al., *Lithuanian J. of Physics*, 46, No. 2: 205 (2006).
- 23. Р. Ф. Ролстен, Иодидные металлы и иодиды металлов (Москва: Металлургия: 1968).
- 24. V. M. Rubish, M. V. Dobosh, H. H. Shtets et al., J. Phys. Studies, 8, No. 2: 178 (2004).