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1. Introduction

In this paper we consider the following equation on R
3
+ :

(@t + U@x1)
2� = ��; x = (x1; x2; x3) 2 R

3
+ = fx : x3 > 0g; (1)

@�

@x3

����
x3=0

= 0; (2)

�(0) = �0; �t(0) = �1: (3)

The equations of this type arise, for example, in aerodynamics of potential gas

�ows. We consider the following motivating model. Gas occupies the half-space

R
3
+ and moves along x1-axis with the velocity U � 0; U 6= 1. Then the potential

of the velocity of a perturbed gas �ow � satis�es (1)�(3).

The problem of the trace regularity of solutions to hyperbolic equations fre-

quently arises in hybrid systems theory. In particular, for the purposes of [1, 2]

we need to study the regularity of the function (@t + U@x1)�(x1; x2; 0), where �
is a solution to (1)�(3). In the present paper we will prove several new results on

the smoothness concerned with the equation (1)�(3).
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The regularity of solutions to general hyperbolic equations and of their traces

on the boundary were studied by I. Lasiecka and R. Triggiani (see [3, 4] and

references therein). Their results [3, 4] give the following trace regularity for the

problem (1)�(3).

Theorem 1. Let �(t) be a solution to (1)�(3) with the initial conditions

(�0; �1), �T = R
2� [0; T ] and [�] be the Sobolev trace of a function de�ned on R

3
+

onto the plane fx : x3 = 0g. Then the mapping (�0; �1) 7�! [�] is a continuous

operator from H1(R3
+) � L2(R3

+) to H3=4(�T ) and from L2(R3
+ ) � (H1(R3

+))0 to
H�1=4(�T ) for every 0 < T < +1.

Set U = 0 and denote ~� = �t. Formally di�erentiating (1), we obtain that ~�
satis�es (1)�(2) with the initial conditions ~�(0) = �1; ~�t(0) = ��0. If (�0; �1) 2
H1(R3

+)� L2(R3
+), then (�1;��0) 2 L2(R3

+)� (H1(R3
+))0. Thus, Th. 1 can give

us only @t[�] 2 H�1=4(�).
Our main result improves Th. 1 in two directions. First, we prove that @t[�] 2

L2(0; T ;H�1=4(R2)) provided initial conditions (�0; �1) 2 H1(R3
+)�L2(R3

+). Sec-
ond, we can in some sense improve this result, �nding an appropriate decompo-

sition of @t[�] as a sum @t[�] = f1 + f2. This new idea allows us to prove

that f1 2 L1(0; T ;H�1=4��(R2 )) and f2 2 L2(0; T ;L2(R2)), provided initial con-

ditions (�0; �1) 2 H1(R3
+) � L2(R3

+ ). We also study, how the trace regularity

can be improved when more smooth initial conditions are considered, and what

happens if �0 lies in a homogeneous Sobolev space.

In the proof of Th. 3 we rely on some ideas borrowed from [3], and �rst study

a trace regularity of nonomogeneous problem with zero initial conditions. These

results are collected in Th. 4, which, we believe, is an interest on itself.

The structure of the paper is as follows. In Section 2 we introduce the de�-

nitions and notations we need and state our main results. In Section 3 we study

the properties of solutions to wave equation (1)�(3) with smooth initial condi-

tions and prove some results on the interpolation of functional spaces we use. In

Section 4 we prove Th. 4. In Section 5 we use Th. 4 to prove Th. 3. In Section 6

we prove a "local" version of Th. 3.

2. Notations and Main Results

To describe the behaviour of a solution � to (1)�(3) we use a homogeneous

Sobolev space H1(R3
+). We de�ne the space H1(R3) (see, e.g., [5]) as the closure

of C1
0 (R3 ) with respect to the norm jjujjH1(R3) = jjrujjR3 . For H1(R3

+) de�ned as

the space of restrictions of functions from H1(R3) onto R
3
+ we use the equivalent

norm jjr�jjR3+ .
If we consider the system (1)�(3) as a model for a perturbed gas �ow, the

norm for � introduced above is natural. Indeed, in this case �(t) represents the
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potential of velocity of a perturbed gas �ow, and has no physical meaning itself,

while r�(t) is the �eld of velocity of the perturbed �ow and gives the complete

information about the �ow. For (�0; �1) 2 H1(R3
+ ) � L2(R3

+) we de�ne a local

energy by

ER(�0; �1) =
Z
B
+
R

�
jr�0(x)j2 + j�1(x)j2

�
dx;

where B+
R = fx = (x1; x2; x3) : jxj < R; x3 > 0g.

Now we �nd the appropriate spaces for initial data which are "more smooth"

than H1(R3
+) � L2(R3

+) and introduce a suitable notion of local energy for these

spaces. First, we consider the wave equation in the whole space R3 with smooth

initial conditions

@2t � = ��; x 2 R
3 ; (4)

�(0) = �0; �t(0) = �1: (5)

Formally di�erentiating (4), we see that ��(t) = �t(t) satis�es (4) with the initial

conditions ��(0) = �1; ��t(0) = ��0. Thus energy conservation law for ��(t) gives
us the following energy relation for �:

jjr�t(t)jj20;R3 + jj��(t)jj20;R3 = jjr�1jj20;R3 + jj��0jj20;R3 :
The classical conservation law for (4)�(5), together with the previous relation

give us

jjr�(t)jj20;R3+jj��(t)jj20;R3+jj�t(t)jj21;R3 = jjr�0jj20;R3+jj��0jj20;R3+jj�1jj21;R3 : (6)

Hence, if we de�ne W1;1(R3) as the closure of C1
0 (R3) with respect to the norm

jj � jj2
W1;1(R3)

= jj� � jj2
0;R3

+ jjr � jj2
0;R3

, we can easily verify that for initial data

(�0; �1) 2 W1;1(R3 )�H1(R3 ) the problem (4)�(5) possesses precisely one solution

(�(t); �t(t)) 2 C(0; T ;W1;1(R3) � H1(R3)) for any T > 0 for which the energy

relation (6) holds.

We consider initial data from the spaces that are "intermediate" between

H1(R3 ) and W1;1(R3). These spaces can be de�ned via Fourier transform (see

Prop. 2). The space W1;s(R3 ); s � 0 consists of all distributions f 2 S0(R3) such
that its Fourier transform ~f is a regular distribution and the integral

jjf jj2
W1;s(R3) =

Z
R3

d�(1 + j�j)2sj�j2j ~f(�)j2

is �nite. It is easy to see that there is another description of W1;s(R3):

W1;s(R3 ) = ff 2 H1(R3 ) : rf 2 (Hs(R3 ))3g (7)

with the equivalent norm jjf jjW1;s(R3) = jjrf jjs;R3 .
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Now we return to the wave equation in the half-space. De�ne the space

W1;s(R3
+), s 2 [0; 1], as the space of restrictions of functions from W1;s(R3 )

onto R
3
+ . Due to description (7) we see that jjrf jjs;R3+ is an equivalent norm in

W1;s(R3
+). Similarly as in the case of H1(R3

+) � L2(R3
+), we can de�ne a local

energy in the space W1;s(R3
+ )�Hs(R3

+):

EsR(�0; �1) = jjr�0jj2s;B+
R

+ jj�1jj2s;B+
R

; s 2 [0; 1]:

In order to obtain smooth solutions to (1)�(3) we need not only the smooth ini-

tial data but also consistency conditions imposed on these initial data. Therefore

we need the spaces

W1;s
(R3

+) =

(
f 2 W1;s(R3

+) :
@f

@x3

����
x3=0

= 0

)
; s > 1=2;

with the same norm as in W1;s(R3
+).

The following interpolation lemma is valid.

Lemma 1. [W1;1
(R3

+);H1(R3
+)][1��] = G�, where

G� =W1;�(R3
+); 0 � � < 1=2;

G1=2 = ff 2 H1(R3
+) : rf 2 (L2(R+ ;H1=2(R2)))2 �H

1=2
00 (R+ ;L2(R2))g; (8)

G� =W1;�
(R3

+); 1=2 < � � 1;

where H
1=2
00 (R+ ;L2(R2 )) = ff 2 H1=2(R+ ;L2(R2)) : x

�1=2
3 f 2 L2(R3

+)g with the

norm jjf jj2
H

1=2
00 (R+;L2(R2))

= jjf jj2
H1=2(R+;L2(R2))

+ jjx�1=2
3 f jj2

L2(R3+)
.

Now we can state the following existence theorem for the wave equation in

the half-space.

Theorem 2. Assume that initial data (�0; �1) 2 G� �H�(R3
+). Then:

(i) For every T > 0 there exists precisely one solution to (1)-(3) (�; �t)(t) 2
C(0; T ;G� �H�(R3

+)).
(ii) The norm of the solution does not increase. For � 2 [0; 1]; � 6= 1=2 the

following inequality is valid:

jjr�(t)jj2
�;R3+

+ jj�t(t)jj2�;R3+ � jjr�0jj
2
�;R3+

+ jj�1jj2�;R3+ : (9)

(iii) For every R > 0 and � 2 [0; 1] the local energy E�R(�(t); �t(t))! 0, when
t! +1.
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We will use weight spaces of X-valued functions. The space L2(
;X; d�)
consists of all functions mapping 
 into X such that

jjf jj2L2(
;X;d�) =

Z



jjf(t)jj2Xd� <1

Here X is a normed space and d� is a measure on 
. In the case X = R we omit

X in the notation.

Further we state our main results.

Theorem 3. Assume that �(t) is a solution to (1)�(3) with the initial condi-

tions �0 2 G�(R3
+); �1 2 H�(R3

+), � 2 [0; 1]; � 6= 1=2. Then:

(i) (@t + U@x1)[�] 2 L2(0; T ;H
�1=4+�

loc
(R2)). The following estimate takes

place

jj(@t + U@x1)[�]jjL2(0;T ;H�1=4+�(B)) � C(T;U;B)
�
jjr�0jj�;R3+ + jj�1jj�;R3+

�
:

for any bounded set B � R
2 .

(ii) (@t + U@x1)[�] = f1 + f2, where f1 2 L1(0; T ;H
�1=4+���

loc
(R2)) for any

� > 0, f2 2 L2(0; T ;H�
loc(R

2)), and

jjf1jjL1(0;T ;H�1=4+���(B)) � C(T;U; �;B)
�
jjr�0jj�;R3+ + jj�1jj�;R3+

�
;

jjf2jjL2(0;T ;H�(B)) � C(T;U;B)
�
jjr�0jj�;R3+ + jj�1jj�;R3+

�
for any bounded set B � R

2 .

Remark 1. Since the inclusion G� � L2(R3
+) does not take place, estimates

for (@t + U@x1)[�] have only local character. However, if �0 2 G�
T
L2(R3

+) �
H1+�(R3

+ ) we have the estimate

jj(@t + U@x1)[�]jjL2(0;T ;H�1=4+�(R2)) � C(T;U)
�
jj�0jj1+�;R3+ + jj�1jj�;R3+

�
in point (i) of Th. 3 and the estimates

jjf1jjL1(0;T ;H�1=4+���(R2)) � C(T;U; �)
�
jj�0jj1+�;R3+ + jj�1jj�;R3+

�
;

jjf2jjL2(0;T ;H�(R2)) � C(T;U)
�
jj�0jj1+�;R3+ + jj�1jj�;R3+

�
in point (ii) of Th. 3.

The theorem implies the following local energy estimate.
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Corollary 1. Assume that �(t) is a solution to (1)�(3) with the initial condi-

tions �0 2 G�(R3
+); �1 2 H�(R3

+), � 2 [0; 1]; � 6= 1=2. Let 
 be a bounded smooth

domain in R
2 , and r
 be the operator of restriction of a function de�ned on R

2

to 
. Then:

(i) r
(@t + U@x1)[�] 2 L2(0; T ;H�1=4+�(
)). The following estimate takes

place

jjr
(@t + U@x1)[�]jj2L2(0;T ;H�1=4+�(
))
� CE�R(�0; �1):

The constants C;R depend only on T , 
, and U .

(ii) r
(@t + U@x1)[�] = f1 + f2, where f1 2 L1(0; T ;H�1=4+���(
)) for any

� > 0, f2 2 L2(0; T ;H�(
)), and

jjf1jj2L1(0;T ;H�1=4+���(
))
� CE�R(�0; �1);

jjf2jj2L2(0;T ;H�(
)) � CE�R(�0; �1):

The constants C;R depend on T , 
, and U , the constant C in the �rst inequality

depends also on �.

Remark 2. Theorem 3 and Corollary 1 allow us to justify the stabilization

results of [1, 2] for the initial data (�(0); �t(0)) 2 G� � H�(R3
+), � 2 (0; 1],

� 6= 1=2.

The theorem below deals with the trace regularity of the nonhomogeneous

wave equation. Following [3], we choose a certain function f in (10) and obtain

Th. 3 as a consequence of the following theorem.

Theorem 4. Consider the problem

(@t + U@x1)
2� = ��+ f(t; x); x 2 R

3
+ ; (10)

@�

@x3

����
x3=0

= 0; �(0) = �t(0) = 0: (11)

(i) Let f 2 L2(0; T ;H�(R3
+)). Then (@t + U@x1)[�] 2 L2(0; T ;H�1=4+�(R2))

and the following estimate takes place

jj(@t + U@x1)[�]jjL2(0;T ;H�1=4+�(R2)) � C(T;U)jjf jjL2(0;T ;H�(R3+)):

(ii) Let f 2 L1(R+ ;H�(R3
+)). Then (@t + U@x1)[�] = f1 + f2, where

f1 2 L1(0; T ;H�1=4+���(R2 )), � > 0, f2 2 L2(0; T ;H�(R2 )), and the follow-

ing estimates are valid

jjf1jjL1(0;T ;H�1=4+���(R2)) � C(T;U; �)jjf jjL1(R+;H�(R3+));

jjf2jjL2(0;T ;H�(R2)) � C(T;U)jjf jjL1(R+;H�(R3+)):
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3. Smooth Solutions to the Wave Equation

and Interpolation Spaces

For the proof of Th. 3 we need to generalize spaces W1;s. De�ne space

W�;�(Rn) as the space of distributions f 2 S0(Rn) such that their Fourier trans-

forms ~f are regular distributions and

jjf jj2
W�;�(Rn) =

Z
Rn

j�j2�(1 + j�j)2� j ~f(�)j2d� <1:

The Sobolev trace theorem can be easily generalized for these spaces.

Lemma 2. The Sobolev trace operator is continuous from W�;�(Rn) to

W��1=2;�(Rn�1 ), if � > 1=2.

The following embedding takes place.

Lemma 3. If � < n=2 then W�;0(Rn) is continuously embedded in Lp(Rn),
p = 2n=(n� 2�).

P r o o f. f 2 W�;0(Rn) if and only if g = F�1j�j�Ff 2 L2(Rn). Equivalently,
f = F�1j�j��Fg 2 Lp(Rn) if and only if F�1j�j��F is a continuous operator from

L2(Rn) to Lp(Rn). Thus, the assertion of the lemma follows from Th. 1.11 [6].

This means that for � < n=2 functions formW�;0(Rn) are locally L2-integrable.

First, we prove interpolation Lem. 1 which will be used in the proofs of Th. 2

on smooth solutions to the wave equation and in the main Th. 3.

P r o o f o f L e m m a 1. Let the following propositions be proved.

Proposition 1.

W1;�(R3
+) =

n
f 2 H1(R3

+) : rf 2 (L2(R+ ;H�(R2 )))2 �H�(R+ ;L2(R2))
o
;

if 0 � � � 1, and

W1;�
(R3

+) =
n
f 2 H1(R3

+) : rf 2 (L2(R+ ;H�(R2 )))2 �H�
0 (R+ ;L2(R2))

o
;

if 1=2 < � � 1.

Proposition 2.

[W1;1(R3);H1(R3)][1��] =W1;�(R3); � 2 [0; 1]:
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Proposition 3. Let f be a continuous function on R
3
+ . Then we can de�ne

an operator of even extension as

~f(x1; x2; x3) =

(
f(x1; x2; x3); x3 � 0;

f(x1; x2;�x3); x3 < 0:

The operator of even extension ~� can be extended to a continuous operator

~� : G� !W1;�(R3 ); � 2 [0; 1];

where G� is de�ned by (8).

Proposition 4. There exists an operator R such that

R 2 L(H1(R3);H1(R3
+)); R 2 L(W1;1(R3 );W1;1

(R3
+));

R~u = u; 8u 2 H1(R3
+); 8u 2 W1;1

(R3
+);

where ~� is the operator of even extension de�ned in Prop. 3.

In this proof we assume that G� is de�ned by the equalities (8).

First we prove that [W1;1
(R3

+);H1(R3
+)][1��] � G�. Due to Prop. 1 we have

that

r : H1(R3
+)! (L2(R+ ;L2(R2)))2 � L2(R+ ;L2(R2));

r : W1;1
(R3

+)! (L2(R+ ;H1(R2)))2 �H1
0 (R+ ;L2(R2))

is a continuous operator. Thus Ths. 11.6, 11.7 [7, Ch. 1] imply that

r : [W1;1
(R3

+);H1(R3
+)][1��] ! (L2(R+ ;H�(R2 )))2 �H�(R+ ;L2(R2 ));

0 � � < 1=2;

r : [W1;1
(R3

+ );H1(R3
+)][1=2] ! (L2(R+ ;H1=2(R2)))2 �H

1=2
00 (R+ ;L2(R2 ));

� = 1=2;

r : [W1;1
(R3

+);H1(R3
+)][1��] ! (L2(R+ ;H�(R2 )))2 �H�

0 (R+ ;L2(R2 ));

1=2 < � � 1;

is also a continuous operator. Since u 2 [W1;1
(R3

+);H1(R3
+)][1��] implies

u 2 H1(R3
+), using Prop. 1 we obtain the desired embedding.

Now we prove the embedding G� � [W1;1
(R3

+);H1(R3
+)][1��]. Consider u 2 G�.

Using Props. 2 and 3, we have ~u 2 W1;�(R3) = [W1;1(R3 );H1(R3)][1��]. Using

Prop. 4 and interpolation, we obtain R~u = u 2 [W1;1
(R3

+);H1(R3
+)][1��]. The

proof of the lemma will be complete when we prove Props. 1�4.

Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4 475



I.A. Ryzhkova

P r o o f o f P r o p o s i t i o n 1. Using the de�nition of W1;�(R3) via
Fourier transform, we can easily verify that

W1;�(R3) = L2(R;W1;� (R2 ))
\
W1;�(R;L2(R2)):

Thus, we obtain the �rst representation

W1;�(R3
+) = L2(R+ ;W1;�(R2))

\
W1;�(R+ ;L2(R2)); 0 � � � 1;

W1;�
(R3

+) = L2(R+ ;W1;�(R2 ))
\
W1;�

(R+ ;L2(R2)); 1=2 < � � 1:

Using representation (7), we �nish the proof.

P r o o f o f P r o p o s i t i o n 2. Following [7], in the space H1(R3) we
construct the operator A = F�1(1+j�j2)1=2F with D(A) =W1;1(R3). It is easy to
verify that we can de�ne the operator A� = F�1(1+j�j2)�=2F , where F is a Fourier

transform, with D(A�) = W1;�(R3). Obviously, A� is really A to power �. Since

A is a closed maximal accretive operator, D(A�) = [W1;1(R3 );H1(R3)][1��] [8].

P r o o f o f P r o p o s i t i o n 3. Since C1
0 (R

3

+) is dense in H1(R3
+) and

C0(R
3)
T
C1(R3

+)
T
C1(R3

�) is dense in H1(R3), it is easy to prove that the even
extension is a continuous operator from H1(R3

+) in H1(R3 ). Prop. 1 implies that

the even extension of a function f is continuous if and only if the odd extension of

@x3f is continuous. Evidently, the odd extension of @x3f is a continuous operator:

H�(R+ ;L2(R2))! H�(R;L2(R2)); 0 � � < 1=2;

H�
00(R+ ;L2(R2 ))! H�(R;L2(R2 )); � = 1=2;

H�
0 (R+ ;L2(R2))! H�(R;L2(R2)); 1=2 < � � 1;

since the extension by zero is a continuous operator between the above mentioned

spaces (see [7, Ch. 1], Th. 11.4). The proof is complete.

P r o o f o f P r o p o s i t i o n 4. Set (Ru)(x) = 1=2(f(x) + f(�x)). It is
easy to verify that this operator satis�es all assertions of the proposition.

Now we can prove Th. 2.

P r o o f o f T h e o r e m 2. The existence and uniqueness of solution to (1)�

(3) with the initial data (�0; �1) 2 H1(R3
+)�L2(R3

+) is a well-known fact, as well

as the energy conservation law and the decay of local energy E0R(�(t); �t(t)) for
this case. Using formal di�erentiation with respect to t, we can easily prove points

(i), (ii), and (iii) of the theorem for the initial data (�0; �1) 2 W1;1
(R3

+)�H1(R3
+).

Using interpolation Lem. 1, we complete the proof of points (i) and (ii). To prove

(iii) for all � 2 [0; 1] we need the following criterium of the pointwise convergence

of an operator sequence.

476 Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4



On Trace Regularity of Solutions to a Wave Equation...

Proposition 5. Let H1 be a Banach space and H2 be a pseudonormed space

with a pseudonorm p(�). Assume that fAng1n=1 is a sequence of the linear operators

An : H1 ! H2 such that p(Anh) � CjjhjjH1
8h 2 H1, and there exists a dense

set D � H1 such that 8h 2 D p(Anh) ! 0, when n ! +1. Then 8g 2 H1

p(Ang)! 0, when n! +1.

When H1 and H2 are both Banach spaces, the result is well known. The proof

of Prop. 5 is similar to the proof of this result.

Now we �x R and the set H1 = G� � H�(R3
+), H2 = H1+�(B+

R ) � H�(B+
R )

with the pseudonorm p('0; '1) = (jjr'0jj2�;B+
R

+ jj'1jj2�;B+
R

)1=2, An(�0; �1) =

r
B
+
R
(�(tn); �t(tn)), where (�(tn); �t(tn)) is the solution to (1)�(3) with the ini-

tial conditions (�0; �1) at the moment tn such that tn ! +1 when n ! +1.

The operator of restriction on B+
R r

B
+
R
is continuous from G� to H1+�(B+

R ) (see

[5] and interpolation Lem. 1). We chose D =W1;1
(R3

+)�H1(R3
+). Using the in-

terpolation inequality jjujj[X;Y ][�]
� jjujj1��X jjujj�Y (see, e.g., [7, Ch. 1]), we obtain

that for (�0; �1) 2 D

p(An(�0; �1)) = E�R(�(tn); �t(tn)) = jjr�(tn)jj2�;B+
R

+ jj�t(tn)jj2�;B+
R

� jjr�(tn)jj2�1;B+
R

jjr�(tn)jj2�2�

0;B+
R

+ jj�t(tn)jj2�1;B+
R

jj�t(tn)jj2�2�

0;B+
R

! 0;

when n ! +1. It is easy to see that all assumptions of Prop. 5 are satis�ed.

Thus we prove (iii) for all � 2 [0; 1]. The proof of Th. 2 is complete.

4. Proof of Theorem 4

In this section we need some facts on the Laplace and Fourier transforms.

Denote by D0(R; X) the space of distributions on R with the values in a Hilbert

space X and by S0(R;X) the space of X-valued temperate distributions. We also

set D0
+(X) = ff 2 D0(R; X) : suppf � fx : x � 0gg and D0

+(a;X) = ff 2
D0

+(X) : e�atf(t) 2 S0(R;X)g. For the functions from S(R;X) (test functions

for S0(R; X)) we de�ne the Fourier transform as

F [f(t)](�) =

Z
R

dte�it�f(t) (12)

and for functions from S0(R;X) by (F [f ]; �) = (f; F [�]), respectively. Further we
de�ne the Laplace transform for functions from D0

+(a;X) by

F(s) = L[f(t)](s) = F [e��tf(t)](�); s = �+ i�; � > a: (13)

The Laplace transform of a function from D0
+(a;X) is an analytic in the complex

half-plane C a = fs 2 C : Res > ag X-valued function.
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Next we de�ne a space Ha(X). This space consists of the analytic

in C a X-valued functions F(s) that satisfy the following growth condition: for

every � > 0 and �0 > a there exist constants C�(�0) � 0; m = m(�0) � 0 such

that

jjF(s)jjX � C�(�0)e
��Res(1 + jsjm); Res > �0: (14)

The following fundamental theorem takes place (see, e.g., [9]).

Theorem 5. A function f(t) 2 D0
+(a;X) if and only if its Laplace transform

F(s) 2 Ha(X).

Due to de�nition (13) L[f(t)](�+i�) 2 S0(R; X) as a function of the variable �,
provided � to be �xed, so the next representation takes place

L�1[F(� + i�)](t) = e�tF�1
� [F(�+ i�)](t): (15)

Lemma 4. Let B be a linear mapping that maps a function from Ha(X)
to a function from Ha(Y ), where X and Y are Hilbert spaces, and let there exist

a constant  > a such that the operator B : F(+i�) 7! (BF)(+i�) is a linear

bounded operator from L2(R;X) to L2(R; Y ). Then the operator A = L�1 ÆB ÆL
is a linear bounded operator from L2(R+ ;X; e�2tdt) to L2(R+ ;Y; e�2tdt).

P r o o f. Since BF 2 Ha(Y ), we can use representation (15) for the inverse

Laplace transform, thus

[Af ](t) = etF�1
� [BFt[e

�tf(t)](�)](t):

Using Plansherel's theorem (the Fourier transform is an isometry on L2(R;X)),
one can easily verify the assertion of the lemma.

Corollary 2. If A is a linear bounded operator from L2(R+ ;X; e�2tdt) to

L2(R+ ;Y; e�2tdt) then r(0;T )A is a linear bounded operator from L2(R+ ;X) to

L2(0; T ;Y ) and form L1(R+ ;X) to L2(0; T ;Y ), where r(0;T ) is the operator of

restriction of functions from L2(R+ ;Y; e�2tdt) to (0; T ). The operator norm

jjr(0;T )Ajj � C(T; ).

P r o o f o f T h e o r e m 4.

Remark 3. We can apply the following change of variables to (1)�(3) (and

also to (10)�(11)):

s = t; x1 = y1 + Ut; x2 = y2; x3 = y3:

Then equation (1) changes to @2s� = �y�, the operator (@t + U@x1)[�] changes
to @s[�], and initial conditions (3) remain unchanged. Thus, without loss of

generality, we give the proofs of all the theorems above only for the case U = 0.
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To prove part (i) of the theorem we consider the nonhomogeneous problem

(10)�(11) with f 2 L2(R+ ;H�(R3
+)) and U = 0. Similarly as in [3], we use the

Fourier transform in x1; x2 and the Laplace transform in t. We denote^= LtFx1x2 .

Applying the Fourier�Laplace transform to (10)�(11), we obtain

LtFx1x2(@t[�]) = s�̂(s; �; x3 = 0) = � sp
s2 + j�j2

�
1Z
0

e�y
p
s2+j�j2 f̂(s; �; y)dy:

(16)

Thus

js�̂(s; �; x3 = 0)j

� jsj
j
p
s2 + j�j2j

� (1 + j�j2)��=2q
2Re

p
s2 + j�j2

�

0
@(1 + j�j2)�

1Z
0

dyjf̂(s; �; y)j2
1
A

1=2

:

Now our aim is to �nd an appropriate Sobolev spaceH�(R2 ) such that @t[�] 2
L2(R+ ;H�(R2); e�2tdt), provided f 2 L2(R+ ;H�(R3

+); e�2tdt). That is, we

should �nd � and such that

K(s; �) =
jsj2(1 + j�j2)���

js2 + j�j2jRe
p
s2 + j�j2

� C� (17)

for some �xed � > 0. Here we denote s = �+ i�.

Similarly as in [3], we divide the �rst quarter of the half-plane (�; j�j) into four
domains:

R0 = f�2 + j�j2 � 1g;
R1 = f�=2 � j�j � 2�; �2 + j�j2 � 1g;

R2 = fj�j � 2�; �2 + j�j2 � 1g;
R3 = fj�j � �=2; �2 + j�j2 � 1g:

and estimate K(s; �) in each domain separately. We use the following inequalities

for complex numbers:

p
2jzj1=2 �

p
2Re

p
z =

p
Rez + jzj � jzj1=2; Rez � 0; (18)

p
2jzj1=2 �

p
2Re

p
z =

p
jzj � jRezj = 2��p

jzj �Rez
; Rez < 0: (19)

Further we denote z = s2 + j�j2 = �2 � �2 + j�j2 + 2i�� and D = jzjRepz.
Domain R0. It is easy to see that for every � > 0 (17) takes place without

any restriction on �.
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Domain R2. Here Rez � �2 + 3�2 � 0, therefore due to (18)

Re
p
z � Cjzj1=2 = C

�
(�2 � �2 + j�j2)2 + 4�2�2

�1=4 � C�j�j: (20)

Thus

K(s; �) � C
jsj2(1 + j�j2)���

jzj3=2 � C
(�2 + 1=2j�j2)(1 + j�j2)���

j�j3 � C�

for � � 1=2 + �.

Domain R1. In this domain we have jzj � j�j. If Rez � 0, then

Re
p
z � C�jzj1=2 � C�j�j1=2 (21)

and D � C�jzj3=2 � C�j�j3=2. If Rez < 0, then (19) implies

Re
p
z �

p
2��p

jzj �Rez
� C�

j�jp
jzj

� C�j�j1=2 (22)

and D � C�j�j3=2. Thus, in R1

K(s; �) � C�

(�2 + �2)(1 + j�j2=4)���
j�j3=2 � C�

for � � �1=4 + �.

Domain R3. In this domain Rez = �2 � �2 + j�j2 � �2 � 3=4�2. If Rez � 0,
then

Re
p
z � Cjzj1=2 � C�j�j (23)

and D � Cjzj3=2 � Cj�j3. If Rez < 0, (19) implies

2jRe
p
zj2 � 4�2�2

�Rez +
p

(Rez)2 + 4�2�2
� C�: (24)

Since in R3 D � C�j�j2 we have K(s; �) � C�.

Combining the inequalities for R0�R4, we get K(s; �) � C� for � = �1=4+�.

The proof of part (i) of Th. 4 is complete.

To prove (ii) we use a rather di�erent technique. Here and further in this

section we assume f 2 L1(R+ ;H�(R3
+)). Denote Fx1x2 =~. Formally applying

the inverse Laplace transform to (16), we get

@t ~�(t; �; x3 = 0)

= �L�1

"
sp

s2 + j�j2

#
(t; �)

t� L�1

2
4 1Z
0

e�y
p
s2+j�j2 f̂(s; �; y)dy

3
5 (t; �): (25)
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De�ne

[Bf̂ ](s; �) =

1Z
0

e�y
p
s2+j�j2 f̂(s; �; y)dy: (26)

If [Bf̂ ](s; �) 2 Ha(Y ), as soon as f̂ 2 Ha(X) for certain spaces X; Y , the equality

(25) is meaningful due to Th. 5. In fact, we can prove even a stronger assertion

on operator B.

Lemma 5. The operator B has the following properties:

(i) The function [Bf̂ ](s; �) 2 H0(L
2(R2 ; (1+j�j)2�d�)) provided f̂ 2 H0(L

2(R3
+ ;

(1 + j�j)2�d�dy)).
(ii) Denote [B f̂ ](�; �) = [Bf̂ ]( + i�; �). There exists  > 0 such that B :

L2(R;L2(R3
+ ; (1 + j�j)2�d�dy))! L2(R;L2(R2 ; (1 + j�j)2�d�)) is a bounded linear

operator.

P r o o f. First we prove that [Bf̂ ](s; �) is a holomorphic function of the

variable s in the complex half-plane fs : Res > 0g. Due to the Dunford theorem

it is enough to prove that [Bf̂ ](s; �) is weakly holomorphic. Let g(�) 2 L2(R2 ;

(1 + j�j)�2�d�). Then

(Bf̂; g) =

Z
R2

d�g(�)

1Z
0

dy � e�y
p
s2+j�j2 f̂(s; �; y):

Consider the following expression

d

ds

Z
j�j<Q

d�g(�)

RZ
0

dy � e�y
p
s2+j�j2 f̂(s; �; y)

= �
Z

j�j<Q

d�g(�)

RZ
0

dy � ye�y
p
s2+j�j2 sp

s2 + j�j2
f̂(s; �; y)

+

Z
j�j<Q

d�g(�)

RZ
0

dy � e�y
p
s2+j�j2 d

ds
f̂(s; �; y) = A1(s;Q;R) +A2(s;Q;R): (27)
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Estimate the �rst term. Using the Schwartz inequality, we get

jA1(s;Q;R)j

� C

Z
j�j<Q

d�g(�)

����� sp
s2 + j�j2

����� (1 + j�j)��
(Re

p
s2 + j�j2)3=2

0
@(1 + j�j)2�

RZ
0

dyjf̂(s; �; y)j2
1
A

1=2

� C

0
B@ Z

j�j<Q

d�(1 + j�j)2�
RZ
0

dyjf̂(s; �; y)j2

1
CA

1=2

�

0
B@ Z

j�j<Q

d�jg(�)j2 � jsj2(1 + j�j)�2�

js2 + j�j2j(Re
p
s2 + j�j2)3

1
CA

1=2

:

If we prove that

K1(s; �) =
jsj2

js2 + j�j2j(Re
p
s2 + j�j2)3

� C(s); Res > a; (28)

this will imply

jA1(s;Q;R)j � C(s)jjgjjL2(R2;(1+j�j)�2�d�)jjf(s)jjL2(R3+;(1+j�j)
2�d�dy); Res > a:

(29)

We use the method of the proof of part (i) of the theorem: denote s = � + i�,

z = s2 + j�j2, D = js2 + j�j2j(Re
p
s2 + j�j2)3, divide the �rst quarter of the

half-plane (�; j�j) into four domains, and use inequalities (18), (19) .

For the domain R0 (28) is evident with a = 0. In the domain R2 D �
C(�)jzj5=2 � C(�)j�j5, therefore K1(s; �) � C(�), � > 0. In the domain R3 (23),

(24) imply D � C(�)jzj2 � C(�)j�j4, hence, K1(s; �) � C(�), � > 0. In the

domain R1 D � C(�)jzj5=2 � C(�)j�j5=2 if Rez � 0 and, provided Rez < 0, (22)
yields D � C(�)j�j5=2, too. Thus, K1(s; �) � C(�), � > 0 for all s; j�j : Res =
� > 0 and (28) together with (29) are proved.

Now we estimate the second term in (27). Using the Schwartz inequality, we

obtain

jA2(s;Q;R)j � C

0
B@ Z

j�j<Q

d�(1 + j�j)2�
RZ
0

dy

���� ddsf̂(s; �; y)
����
2

1
CA

1=2

�

0
B@ Z

j�j<Q

d�jg(�)j2 � (1 + j�j)�2�

Re
p
s2 + j�j2

1
CA

1=2

:
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Estimates (20)�(22) imply

K2(s; �) =
1

Re
p
s2 + j�j2

� C(�); � = Res > 0; (30)

and, consequently,

jA2(s;Q;R)j � C(s)jjgjjL2(R2;(1+j�j)�2�d�)

 ddsf(s)

L2(R3+;(1+j�j)

2�d�dy)

: (31)

Now, letting Q; R to tend to +1 in (27) and using (29), (31), we prove week

(and, consequently, strong) analyticity of [Bf̂ ](s; �).
It is easy to see that the constants C(s) in (29), (31) grow as jsjm, jsj ! +1

for some m, and therefore the growth condition (14) is ful�lled. Thus, part (i) of

the lemma is proved.

The estimate (30) guarantees that part (ii) of the lemma is also true.

Corollary 3. The operator A = L�1 ÆB Æ L is bounded from L1(R+ ;L2(R3
+ ;

(1 + j�j)2�d�dy)) to L2(0; T ;L2(R2 ; (1 + j�j)2�d�)).
The assertion of the lemma follows directly from Lems. 4, 5 and Cor. 2.

Returning to (25), we note (see, e.g., [10]) that

L�1

 
� sp

s2 + j�j2

!
= �(t)j�jJ1(j�jt)� Æ(t)J0(0):

Thus @t ~�(t; �; 0) can be represented as a sum [A1
~f ](t; �) + [A2

~f ](t; �), where

[A1
~f ](t; �) = (�(t)j�jJ1(j�jt))

t� [L�1 ÆB Æ L ~f ](t; �)

[A2
~f ](t; �) = (�Æ(t)J0(0))

t� [L�1 Æ B Æ L ~f ](t; �) = �J0(0)[L�1 Æ B Æ L ~f ](t; �):

It is easy to verify that

jjF�1
x1x2

Æ A2 Æ Fx1x2f jjL2(0;T ;H�(R2)) � Cjjf jjL1(R+;H�(R3+)); � 2 [0; 1]: (32)

As for [A1
~f ](t; �), denoting g(t; �) = [L�1 Æ B Æ L ~f ](t; �) and using the Schwartz

inequality one can get

jj[A1
~f ](t; �)jj2L2(R2;(1+j�j)�2�d�)

=

Z
R2

d�
1

(1 + j�j)2�

������
tZ

0

j�jJ1(j�j(t � �))g(�; �)

������
2

�
Z
R2

d�
j�j1��

(1 + j�j)2(�+�)

�
tZ

0

d�
1

(t� �)2�

tZ
0

jj�j�(t� �)�J1(j�j(t� �))j2(1 + j�j)2�jg(�; �)j2;
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for all t < T . The asymptotical properties of the Bessel functions imply that

x�J1(x) is bounded on R+ provided 0 � � � 1=2. The integral
R t
0
(t � �)�2�d�

converges for � < 1=2, and for ��� = (1��)=2 the function j�j1��=(1+ j�j)2(���)
is bounded for all � 2 R

2 . Thus, using Cor. 2, we obtain

jjA1
~f jjL1(0;T ;L2(R2;(1+j�j)�1+�+2�d�)) � C(T; �)jjgjjL2(0;T ;L2(R2;(1+j�j)2�d�))

� C(T; �)jj ~f jjL1(R+;L2(R3+;(1+j�j)
2�d�dy)); � < 1=2:

Hence, we have

jjF�1
x1x2

ÆA1 Æ Fx1x2f jjL1(0;T ;H�1=4+���(R2)) � C(T; �)jjf jjL1(R+;H�(R3+)): (33)

Combining (32) and (33), we obtain part (ii) of the theorem.

5. Proof of Theorem 3

Let us consider the problem (1)�(3). Due to Remark 3 we can prove this

theorem only for the case U = 0, i. e., we consider the problem

@tt� = ��; x 2 R
3
+ ; (34)

@�

@x3

����
x3=0

= 0; �(0) = �0; �t(0) = �1: (35)

We introduce the following operators concerning this problem.

An operator A on L2(R3
+) is de�ned as

A = ��; D(A) =

�
f 2 H2(R3

+) :
@f

@x3

����
x3=0

= 0

�
: (36)

The operator �A generates a s.c. cosine operator C(t) on L2(R3
+) with the

sine operator S(t) =
tR
0

d�C(�) [11]. For the problem (34)�(35) we can write them

down explicitly:

C(t)�0(x) =
1

(2�)3=2

Z
R3

ei�x cos (j�jt)[Fx�̂0](�)d�; (37)

S(t)�0(x) =
1

(2�)3=2

Z
R3

ei�x
sin (j�jt)
j�j [Fx�̂0](�)d�; (38)

where �̂0 is an even extension of �0 from R
3
+ onto R

3 .
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The solution to (34)�(35) can be represented as �(t) = C(t)�0 + S(t)�1. It is
well known that

dC(t)x

dt
= �AS(t)x; x 2 D(A1=2): (39)

The following lemma is also true.

Lemma 6. Denote G�(R3
+) = [W1;1

(R3
+);H1(R3

+)][1��]. Then

C(t) : H�(R3
+)! C(0; T ;H�(R3

+)); (40)

AS(t) : G�(R3
+)! C(0; T ;H�(R3

+)) (41)

are continuous operators.

P r o o f. The continuity of cosine operator is evident. For the sine operator

and �0 smooth enough we have the following:

AS(t)�0 = S(t)A�0 = F�1
� (sin (j�jt)j�j[Fx�̂0](�));

where �̂0 is an even extension of �0 from R
3
+ onto R3 . Assume that �0 2 H1(R3

+).

Proposition 3 implies jj�̂0jjH1(R3) � Cjj�0jjH1(R3+) and therefore jjAS(t)�0jjL2(R3+)

� Cjj�0jjH1(R3+) for all t > 0. If �0 2 W1;1
(R3

+), then in the same way we obtain

that jjAS(t)�0jjH1(R3+) � Cjj�0jj
W

1;1
(R3+)

for all t > 0. Continuity with respect to

t can be proved in the standard way. Finally, we use the interpolation Lem. 1 and

prove the second assertion of the present lemma.

We will need the Neumann map N connected with the operator A. Since

Ker(A) = f0g (due to (36) it can be easily veri�ed), N is de�ned as follows:

u = Nh ,
�
�Au = 0 in R

3
+ ;

@u

@x3

����
x3=0

= h

�
:

The following fact also holds true [12]: N�A�y = [y], where [y] denotes the
Sobolev trace of function y from R

3
+ onto R

2 and A� is the L2(R3
+ )-adjoint of A.

Now we are ready to prove Th. 3. The idea of the proof was also borrowed

from [3]. It was already mentioned that a solution to (34)�(35) can be represented

as �(t) = C(t)�0 + S(t)�1. Then due to (39)

@t[�](t) = N�A�AS(t)�0 +N�A�C(t)�1: (42)

To analyze each term in (42), we consider the problem

@tt� = ��+ f(x; t); x 2 R
3
+ ; (43)

@�

@x3

����
x3=0

= 0; �(T ) = �t(T ) = 0 (44)

with a certain function f .
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Step 1. Term N�A�C(t)�1. Let in (43)�(44) f(t; x) = C(t)�1. Due to

Lemma 6 f 2 L1(R+ ;H�(R3
+)) provided �1 2 H�(R3

+). Then for this problem

@t[�](t) = N�A�

TZ
t

C(� � t)C(�)�1:

Using the formula C(t1) � C(t2) = 1=2 (C (t1 + t2) + C (t1 � t2)), we obtain that

@t[�](t) =
1

2
N�A�C(t)�1(T � t) +

1

4
N�A�(S(2T � t)� S(t))�1: (45)

Theorem 4 (i) and (40) imply

jj@t[�](t)jjL2(0;T ;H�1=4+�(R2)) � CT jjC(t)�1jjL1(R+;H�(R3+)) � CT jj�1jjH�(R3+):

(46)

Lemma 2 yields to the following estimate of the second term in (45):

jjN�A�(S(2T � t)� S(t))�1jjC(0;T ;W1=2;�(R2)) � Cjj�1jjH�(R3+); (47)

where C does not depend on T . Estimates (46) and (47) together with Lem. 3

give us that N�A�C(t)�1 2 L2(0; T � 1;H
�1=4��

loc (R2)) and

jjN�A�C(t)�1jjL2(0;T�1;H�1=4��(B)) � C(T;B)jj�1jjH�(R3+) (48)

for any bounded set B � R
2 . Form the other hand, using Th. 4 (ii) and (47), we

get

N�A�C(t)�1 = A1 +A2; (49)

where A1 2 L1(0; T ;H
�1=4+���

loc (R2 )), A2 2 L2(0; T ;H�
loc(R

2 )), and

jjA1jjL1(0;T ;H�1=4+���(B)) � C(T;B; �)jj�1jjH�(R3+); (50)

jjA2jjL2(0;T ;H�(B)) � C(T;B)jj�1jjH�(R3+) (51)

for any bounded set B � R
2 .

Step 2. Term N�A�AS(t)�0. Let in (43)�(44) f(t; x) = AS(t)�0. Due to

Lemma 6 f 2 L1(R+ ;H�(R3
+)) provided �0 2 G�(R3

+). Then for this problem

@t[�](t) = N�A�

TZ
t

C(� � t)AS(�)�0:

Using the formula S(t1) � C(t2) = 1=2 (S (t1 + t2)� S (t1 � t2)), we obtain

@t[�](t) =
1

2
N�A�AS(t)�0(T � t) +

1

4
N�A�(C(2T � t)� C(t))�0:
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Theorem 4 yields

jj@t[�](t)jjL2(0;T ;H�1=4+�(R2)) � CT jjAS(t)�0jjL1(R+;H�(R3+)) � CT jj�0jjG�(R3+):

(52)

Similarly as in Step 1,

jjN�A�(C(2T � t)� C(t))�0jjC(0;T ;W1=2;�(R2)) � Cjj�0jjG�(R3+); (53)

where C does not depend on T , and, �nally, (52), (53), and Lem. 3 imply

N�A�AS(t)�0 2 L2(0; T � 1;H
�1=4+�

loc (R2 )) and

jjN�A�AS(t)�0jjL2(0;T�1;H�1=4+�(B)) � C(T;B)jj�0jjG�(R3+) (54)

for any bounded set B � R
2 . From the other hand, Th. 4 and (53) give us

N�A�AS(t)�0 = B1 +B2; (55)

where B1 2 L1(0; T ;H
�1=4+���

loc (R2)), B2 2 L2(0; T ;H�
loc(R

2 )), and

jjB1jjL1(0;T ;H�1=4+���(B)) � C(T;B; �)jj�0jjG�(R3+); (56)

jjB2jjL2(0;T ;H�(B)) � C(T;B)jj�0jjG�(R3+) (57)

for any bounded set B � R
2 .

Since T was chosen arbitrary, (48) and (54) give us assertion (i) of the theorem,

and (49)�(51), (55)�(57) give us assertion (ii) of the same theorem.

Remark 4. The norm in G1=2 is not equivalent to jjr � jj1=2;R3+ (see [7, Ch.

1], Th. 11.7), therefore the case � = 1=2 is excluded from Th. 3 and Cor. 1.

6. Proof of Corollary 1

The representation of a solution to (34)�(35) given by Th. 3.3 [13] implies,

that the solution (�; �t)(t0) in a half-ball of radius R depends only on the initial

data values in the ball of radius R1(R; t0). Moreover, r�(t0) depends only on

r�0 in this ball. Chose new initial data. For �0 the Poincar�e inequality holds

jj�0jj21;B+
R1

� C

0
BB@jjr�0jj20;B+

R1

+

��������
Z

B
+
R1

�0(x)dx

��������

21
CCA :

We set ~�0 = �0 � C1, where C1 = 1=mes(B+
R1

)
R
B
+
R1

�0(x)dx. Thus, for ~�0 we

have jj~�0jj21;B+
R1

� Cjjr~�0jj20;B+
R1

and, consequently, jj~�0jj21+�;B+
R1

� Cjjr~�0jj2�;B+
R1

,
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� 2 [0; 1]. There exists an operator of �nitary extension L� from H�(B+
R1

) to

H�(R3
+), � 2 [0; 2] such that suppLu � B+

2R1
. Since for � > 3=2 we need boundary

conditions (2) to be satis�ed by the initial datum �0, we apply the operator R

de�ned in Prop. 4, to L� ~�0. We keep the same notation for the obtained operator.

Hence, we have

jjrL~�0jj�;B+
2R1

� CjjL~�0jj�+1;R3+
� Cjj~�0jj�+1;B+

R1

� Cjjr~�0jj�;B+
R1

= Cjjr�0jj�;B+
R1

;

for � 2 [0; 1]. We de�ne new initial data as follows:

�(0) = L1+�
~�0; �t(0) = L��1; � 2 [0; 1]; � 6= 1=2:

Denote by (��; ��t)(t) the solution to (34)�(35) with this new initial data. Obvi-

ously, (��; ��t)(t0) = (�; �t)(t0) in B+
R . Thus, Th. 3 implies Cor. 1.
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