Journal of Mathematical Physics, Analysis, Geometry 2007, vol. 3, No. 4, pp. 424–447

Scattering Scheme with Many Parameters and Translational Models of Commutative Operator Systems

V.A. Zolotarev

Department of Mechanics and Mathematics, V.N. Karazin Kharkiv National University 4 Svobody Sq., Kharkiv, 61077, Ukraine

E-mail: Vladimir. A. Zolotarev@univer. kharkov. ua

Received February 27, 2006

The scattering scheme with many parameters for a commutative system of linear bounded operators $\{T_1, T_2\}$, when T_1 is a contraction, is built. Using this construction of the scattering scheme, the translation model of the semigroup with two parameters $T(n) = T_1^{n_1}T_2^{n_2}$, $n = (n_1, n_2) \in \mathbb{Z}_+^2$ is obtained. Description of characteristic properties of the dilation U of the contraction T_1 , that follows from the commutative property of the operators T_1 and T_2 , in terms of external parameters lies in the basis of the method of the construction of the translational models for T(n).

Key words: scattering scheme with many parameters, translational model, commutative operator system.

Mathematics Subject Classification 2000: 47A45.

The construction of the functional and translational models for a contracting operator T ($||T|| \leq 1$) and its unitary dilation U [3, 6] is based on the study of the basic properties of the wave operators W_{\pm} and scattering operator S [6]. Immediate generalization of these constructions for the case of the commutative operator system $\{T_1, T_2\}, [T_1, T_2] = 0$ is not trivial and not always possible.

In this paper, a new method generalizing the scattering scheme on the case of many parameters by P. Lax and R. Fillips is presented. This method uses the isometric expansion $\left\{V_s, \overset{+}{V_s}\right\}_1^2$ [7] based on isometric dilation for the commutative operator system $\{T_1, T_2\}$ of the class $C(T_1)$ [7, 8] constructed in [8]. Unlike in a one-variable situation, two scattering operators S(p,k) and $\tilde{S}(p,k)$, $p, k \in \mathbb{Z}_+$ appear here. These operators have the property $S^*(0,0) = \tilde{S}(0,0)$. Using the method presented in [6], the generalization of construction of translational models for one operator T_1 for the commutative operator system $\{T_1, T_2\}$, when one of the operators, e. g., T_1 , is a contraction, is presented in this paper.

© V.A. Zolotarev, 2007

1. Isometric Dilations of Commutative Operator System

I. Consider the commutative system of linear bounded operators $\{T_1, T_2\}$, $[T_1, T_2] = T_1T_2 - T_2T_1 = 0$ in the separable Hilbert space H. Hereinafter, we will suppose that one of the operators of the system $\{T_1, T_2\}$, e.g., T_1 , is a contraction, $||T_1|| \leq 1$. Following [4, 7, 8], define the commutative unitary expansion for the system $\{T_1, T_2\}$.

Definition 1. Let the commutative system of the linear bounded operators $\{T_1, T_2\}$ be given in the Hilbert space H, where T_1 is a contraction, $||T_1|| \leq 1$. The set of mappings

$$V_{1} = \begin{bmatrix} T_{1} & \Phi \\ \Psi & K \end{bmatrix}; \quad V_{2} = \begin{bmatrix} T_{2} & \Phi N \\ \Psi & K \end{bmatrix}; \quad H \oplus E \to H \oplus \tilde{E};$$

$$V_{1} = \begin{bmatrix} T_{1}^{*} & \Psi^{*} \\ \Phi^{*} & K^{*} \end{bmatrix}; \quad V_{2} = \begin{bmatrix} T_{2}^{*} & \Psi^{*} \tilde{N}^{*} \\ \Phi^{*} & K^{*} \end{bmatrix}: \quad H \oplus \tilde{E} \to H \oplus E,$$

(1.1)

where E and E are Hilbert spaces, is said to be the commutative unitary expansion of the commutative system of operators T_1 , T_2 in H, $[T_1, T_2] = 0$, if there are such operators σ , τ , N, Γ and $\tilde{\sigma}$, $\tilde{\tau}$, \tilde{N} , $\tilde{\Gamma}$ in the Hilbert spaces E and \tilde{E} , where σ , τ , $\tilde{\sigma}$, $\tilde{\tau}$ are selfadjoint, that the following relations take place:

1)
$$\overset{+}{V_1} V_1 = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix};$$
 $V_1 \overset{+}{V_1} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix};$
2) $V_2^* \begin{bmatrix} I & 0 \\ 0 & \tilde{\sigma} \end{bmatrix} V_2 = \begin{bmatrix} I & 0 \\ 0 & \sigma \end{bmatrix};$ $\overset{+}{V_2^*} \begin{bmatrix} I & 0 \\ 0 & \tau \end{bmatrix} \overset{+}{V_2} = \begin{bmatrix} I & 0 \\ 0 & \tilde{\tau} \end{bmatrix};$
3) $T_2 \Phi - T_1 \Phi N = \Phi \Gamma;$ $\Psi T_2 - \tilde{N} \Psi T_1 = \tilde{\Gamma} \Psi;$ (1.2)
4) $\tilde{N} \Psi \Phi - \Psi \Phi N = K \Gamma - \tilde{\Gamma} K;$

5)
$$\tilde{N}K = KN$$
.

Consider the following class of commutative systems of linear operators $\{T_1, T_2\}$.

Definition 2. The commutative system of operators T_1 , T_2 belongs to the class $C(T_1)$ and is said to be the contracting operator system for T_1 if:

1) T_1 is a contraction, $||T_1|| \leq 1$; 2) $E \stackrel{def}{=} \overline{\tilde{D}_1 H} \supseteq \overline{\tilde{D}_2 H}$; $\tilde{E} \stackrel{def}{=} \overline{D_1 H} \supseteq \overline{D_2 H}$; 3) dim $\overline{T_2 \tilde{D}_1 H}$ = dim E; dim $\overline{D_1 T_2 H}$ = dim \tilde{E} ; 4) operators $D_1|_{\tilde{E}}$, $\tilde{D}_1|_E$, $\tilde{D}_1 T_2^*|_{\overline{T_2 \tilde{D}_1 H}}$, $\tilde{D}_1|_E$, $T_2^* D_1|_{\overline{D_1 T_2 H}}$ are boundedly invertible, where $D_s = T_s^* T_s - I$, $\tilde{D}_s = T_s T_s^* - I$, s = 1, 2. (1.3)

It is easy to see that if $\{T_1, T_2\} \in C(T_1)$, then the unitary expansion (1) always exists.

Let E and E be Hilbert spaces defined in 2) (1.3). Choose the unitary operators V and \tilde{V} , V: $\overline{T_2\tilde{D}_1H} \to \overline{\tilde{D}_1H}$; \tilde{V} : $\overline{T_2^*D_1H} \to \overline{D_1H}$, what is always possible in view of 3) (1.3). Define now the invertible operators $N_1 = \tilde{D}_1T_2^*V^*$ and $\tilde{N}_1 = \tilde{V}T_2^*D_1$ in E and \tilde{E} (see 4) (1.3)). It is easy to see that the operators $\sigma_1 = -N_1^{*-1}\tilde{D}_1^{-1}N_1$ in E and $\tilde{\sigma}_1 = -D_1$ in \tilde{E} are invertible, selfadjoint and nonnegative in view of 1), 4) (1.3). Consider the following set of operators

$$\begin{split} N &= \sqrt{\sigma_1} N_1^{-1} \tilde{D}_2 T_1^* \sqrt{\sigma_1^{-1}}; \quad \tilde{N} = \sqrt{\tilde{\sigma}_1} \tilde{N}_1^{-1} T_1^* D_2 \sqrt{\tilde{\sigma}_1^{-1}}; \\ \Gamma &= \sqrt{\sigma_1} N_1^{-1} \left(\tilde{D}_1 - \tilde{D}_2 \right) \sqrt{\sigma_1^{-1}}; \quad \tilde{\Gamma} = \sqrt{\tilde{\sigma}_1} \tilde{N}_1^{-1} \left(D_1 - D_2 \right) \sqrt{\tilde{\sigma}_1^{-1}}; \\ \sigma &= -\sqrt{\sigma_1^{-1}} T_1 \tilde{D}_2 T_1^* \sqrt{\sigma_1^{-1}}; \quad \tilde{\sigma} = -\sqrt{\tilde{\sigma}_1^{-1}} D_2 \sqrt{\tilde{\sigma}_1^{-1}}; \\ \tau &= -\sqrt{\sigma_1} N_1^{-1} D_2 N_1^{*-1} \sqrt{\sigma_1}; \quad \tilde{\tau} = -\sqrt{\sigma_1} \tilde{N}_1^{-1} T_1^* D_2 T_1 \tilde{N}_1^{*-1} \sqrt{\tilde{\sigma}_1}; \\ \varphi &= P_E N_1 \sqrt{\sigma_1^{-1}}; \quad \psi = \sqrt{\tilde{\sigma}_1} P_{\tilde{E}}; \quad K = \sqrt{\tilde{\sigma}_1} T_1^* T_2^* \sqrt{\sigma_1^{-1}}, \end{split}$$

where P_E and $P_{\tilde{E}}$ are orthoprojectors on E and E, respectively. It is easy to prove that in this case relations 1.2 are true for $\left\{V_s, \overset{+}{V_s}\right\}_1^2$ (1.1). Thus for the commutative operator system $\{T_1, T_2\}$ of the class $C(T_1)$ there always exists the unitary isometric expansion (1.1), (1.2).

Note that the conditions 1) and 2) (1.2) for the expansions $\left\{V_s \ V_s^+\right\}_1^2$ (1.1) have a standard nature and play an important role in the construction of isometric (unitary) dilations [3, 6, 7]. One should consider relations 3)–5) (1.2) as the conditions of concordance of these expansions which follow from the commutative property of the operator system $\{T_1, T_2\}$.

II. Remind the construction of the unitary dilation [3, 6] for a contraction T_1 . As usually [6, 7], we will denote by $l_M^2(G)$ the Hilbert space of *G*-valued functions u_k which assume a value in the Hilbert space G, $u_k \in G$, where $k \in M$ and $M \subseteq \mathbb{Z}$ are such that $\sum_{k \in M} ||u_k||^2 < \infty$. Let \mathcal{H} be the Hilbert space of the following type

$$\mathcal{H} = D_{-} \oplus H \oplus D_{+}, \tag{1.4}$$

where $D_{-} = l_{\mathbb{Z}_{-}}^{2}(E)$ and $D_{+} = l_{\mathbb{Z}_{+}}^{2}(\tilde{E})$. Specify the dilation U on the vectorfunctions $f = (u_{k}, h, v_{k})$ from \mathcal{H} (1.4) in the following way:

$$Uf = \left(P_{D_{-}}u_{k-1}, \tilde{h}, \tilde{v}_{k}\right), \qquad (1.5)$$

Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4

where $\tilde{h} = T_1 h + \Phi u_{-1}$, $\tilde{v}_0 = \Psi h + K u_{-1}$, $\tilde{v}_k = v_{k-1}$ (k = 1, 2, ...), and P_{D_-} is the operator of contraction on D_- . The unitary property of U (1.5) in \mathcal{H} follows from 1) (1.2).

To construct the isometric dilation [8] of a commutative operator system $\{T_1, T_2\} \in C(T_1)$, continue the incoming D_- and outgoing D_+ subspaces

$$D_{-} = l_{\mathbb{Z}_{-}}^{2}(E); \quad D_{+} = l_{\mathbb{Z}_{+}}^{2}(\tilde{E})$$
(1.6)

by the second variable " n_2 ". At first, continue functions $u_{n_1} \in l^2_{\mathbb{Z}_-}(E)$ from the semiaxis \mathbb{Z}_- into the domain

$$\tilde{\mathbb{Z}}_{-}^{2} = \mathbb{Z}_{-} \times (\mathbb{Z}_{-} \cup \{0\}) = \left\{ n = (n_{1}; n_{2}) \in \mathbb{Z}^{2} : n_{1} < 0; n_{2} \le 0 \right\}$$
(1.7)

using the following Cauchy problem [7, 8]:

$$\begin{cases} \tilde{\partial}_2 u_n = \left(N \tilde{\partial}_1 + \Gamma \right) u_n; & n = (n_1, n_2) \in \tilde{\mathbb{Z}}_-^2; \\ u_n|_{n_2 = 0} = u_{n_1} \in l_{\mathbb{Z}_-}^2(E), \end{cases}$$
(1.8)

where $\tilde{\partial}_1 u_n = u_{(n_1-1,n_2)}$, $\tilde{\partial}_2 u_n = u_{(n_1,n_2-1)}$. As a result, we obtain the Hilbert space $D_-(N,\Gamma)$ which is formed by u_n , the solutions of (1.8), at the same time the norm in $D_-(N,\Gamma)$ is induced by the norm of initial data $||u_n|| = ||u_{n_1}||_{l^2_{\mathbb{Z}}}$ (E).

Similarly, continue functions $v_{n_1} \in l^2_{\mathbb{Z}_+}(\tilde{E})$ from the semiaxis \mathbb{Z}_+ into the domain $\mathbb{Z}^2_+ = \mathbb{Z}_+ \times \mathbb{Z}_+$ using the Cauchy problem

$$\begin{cases} \tilde{\partial}_2 v_n = \left(\tilde{N}\tilde{\partial}_1 + \tilde{\Gamma}\right) v_n; & n = (n_1, n_2) \in \mathbb{Z}_+^2; \\ v_n|_{n_2=0} = v_{n_1} \in l_{\mathbb{Z}_+}^2(E). \end{cases}$$
(1.9)

Thus we obtain the Hilbert space $D_+(\tilde{N}, \tilde{\Gamma})$ that is made of solutions v_n (1.9), besides $||v_n|| = ||v_{n_1}||_{l^2_{\mathbb{Z}_+}(\tilde{E})}$. Unlike the evident recurrent scheme (1.8) of the layer-to-layer calculation of $n_2 \to n_2 - 1$ for u_n , in this case, while constructing v_n in \mathbb{Z}^2_+ , we are dealing with the implicit linear system of equations for layer-to-layer calculation of $n_2 \to n_2 + 1$ for the function v_n .

Hereinafter, the following lemma plays an important role. The proof of the lemma is given in [8].

Lemma 1.1. Suppose the commutative unitary expansion V_s , $\overset{+}{V}_s$ (1.1) is such that

$$\operatorname{Ker} \Phi = \operatorname{Ker} \Psi^* = \{0\}. \tag{1.10}$$

Then Ker $N \cap \text{Ker } \Gamma = \{0\}$ given Ker $K^* = \{0\}$, and respectively Ker $\tilde{N}^* \cap \text{Ker } \tilde{\Gamma}^* = 0$ given Ker $K = \{0\}$.

The solvability of the Cauchy problem (1.9) easily follows [8] from the given lemma.

Statement 1.1. Let dim $E < \infty$ and the assumptions of Lem. 1.1 be true, then the solution v_n of the Cauchy problem (1.9) exists and is unique in the domain \mathbb{Z}^2_+ for all initial data v_{n_1} from $l^2_{\mathbb{Z}_+}(\tilde{E})$.

Consider now the operator-function of discrete argument

$$\tilde{\sigma}_{\Delta} = \begin{cases} I: \quad \Delta = (1;0); \\ \tilde{\sigma}; \quad \Delta = (0,1). \end{cases}$$
(1.11)

Let L_0^n be the nonincreasing polygon that connects points O = (0,0)and $n = (n_1, n_2) \in \mathbb{Z}_+^2$ and linear segments of which are parallel to the axes OX $(n_2 = 0)$ and OY $(n_1 = 0)$. Denote by $\{P_k\}_0^N$ all integer-valued points from \mathbb{Z}_+^2 , $P_k \in \mathbb{Z}_+^2$ $(N = n_1 + n_2)$ that lie on L_0^n , beginning with (0,0) and finishing with the point (n_1, n_2) , that are numbered in nondescending order (of one of the coordinates of P_k). Assuming that $P_{-1} = (-1,0)$, define the quadratic form

$$\left\langle \tilde{\sigma} v_k \right\rangle_{L_0^n}^2 = \sum_{k=0}^N \left\langle \tilde{\sigma}_{P_k - P_{k-1}} v_{P_k}, v_{P_k} \right\rangle \tag{1.12}$$

on the vector-functions $v_k \in D_+(\tilde{N}, \tilde{\Gamma})$.

Similarly, consider the nondecreasing polygon L_m^{-1} in \mathbb{Z}_-^2 (1.7) that connects points $m = (m_1, m_2) \in \mathbb{Z}_-^2$ and (-1, 0), the straight segments of which are parallel to OX and OY. Let $\{Q_s\}_M^{-1}$ $(M = m_1 + m_2)$ be all integer-valued points on L_m^{-1} , beginning with $m = (m_1, m_2)$ and finishing with (-1, 0), that are numbered in nondescending order (of one of the coordinates of Q_s). Define the metric in $D_-(N, \Gamma)$,

$$\langle \sigma u_k \rangle_{L_m^{-1}}^2 = \sum_{s=M}^{-1} \langle \sigma_{Q_s - Q_{s-1}} u_{Q_s}, u_{Q_s} \rangle,$$
 (1.13)

besides $Q_M - Q_{M-1} = (1, 0)$, and the operator-function σ_{Δ} is defined similarly to $\tilde{\sigma}_{\Delta}$ (1.11). Denote by \tilde{L}_{-n}^{-1} the polygon in \mathbb{Z}_{-}^2 that is obtained from the curve L_0^n in \mathbb{Z}_{+}^2 $(n \in \mathbb{Z}_{+}^2)$ using the shift by "n"

$$\tilde{L}_{-n}^{-1} = \left\{ Q_s = (l_1, l_2) \in \tilde{\mathbb{Z}}_{-}^2 : (l_1 + n_1 + 1, l_2 + n_2) = P_k \in L_0^n \right\}.$$
(1.14)

III. Having now the Hilbert space $D_{-}(N, \Gamma)$, that is formed by the solutions of the Cauchy problem (1.8) and the space $D_{+}(\tilde{N}, \tilde{\Gamma})$, that is formed by the solutions of (1.9), we can define the Hilbert space

$$\mathcal{H}_{N,\Gamma} = D_{-}(N,\Gamma) \oplus H \oplus D_{+}(\tilde{N},\tilde{\Gamma}), \qquad (1.15)$$

Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4

the norm in which is defined by the norm of the initial space $\mathcal{H} = D_- \oplus H \oplus D_+$ (1.4). Denote by $\hat{\mathbb{Z}}^2_+$ the subset in \mathbb{Z}^2_+ ,

$$\hat{\mathbb{Z}}_{+}^{2} = \mathbb{Z}_{+}^{2} \setminus (\{0\} \times \mathbb{N}) = \{(0,0)\} \cup (\mathbb{N} \times \mathbb{Z}_{+}), \qquad (1.16)$$

that is obviously an additional semigroup.

For every $n \in \hat{\mathbb{Z}}_{+}^{2}$ (1.16), define an operator-function U(n) that acts on the vectors $f = (u_k, h, v_k) \in \mathcal{H}_{n,\Gamma}$ (1.15) in the following way:

$$U(n)f = f(n) = (u_k(n), h(n), v_k(n)), \qquad (1.17)$$

where $u_k(n) = P_{D_-(N,\Gamma)}u_{k-n}$ $(P_{D_-(N,\Gamma)})$ is an orthoprojector that corresponds to the restriction on $D_-(N,\Gamma)$; $h(n) = y_0$, besides $y_k \in H$ $(k \in \mathbb{Z}^2_+)$ is a solution of the Cauchy problem

$$\begin{cases} \partial_1 y_k = T_1 y_k + \Phi u_{\tilde{k}}; \\ \tilde{\partial}_2 y_k = T_2 y_k + \Phi N u_{\tilde{k}}; \\ y_n = h; \quad k = (k_1, k_2) \in \mathbb{Z}_+^2 \quad (0 \le k_1 \le n_1 - 1, \quad 0 \le k_2 \le n_2); \end{cases}$$
(1.18)

at the same time $\tilde{k} = k - n$ when $0 \le k_1 \le n_1 - 1$, $0 \le k_2 \le n_2$, and finally

$$v_k(n) = \hat{v}_k + v_{k-n} \tag{1.19}$$

and $\hat{v}_k = K u_{\tilde{k}} + \Psi y_k$, where y_k is a solution of the Cauchy problem (1.18).

It is easy to see that the operator-function U(n) (1.17) maps the space $\mathcal{H}_{N,\Gamma}$ (1.15) into itself for all $n \in \hat{\mathbb{Z}}^2_+$ (1.16), moreover, the following theorem takes place [8].

Theorem 1.1. Suppose dim $\tilde{E} < \infty$ and the suppositions of Lem. 1.1 take place, then the following conservation law is true for the vector-function f(n) = U(n)f(1.17):

$$|h(n)||^{2} + \langle \tilde{\sigma} v_{k}(n) \rangle_{L_{0}^{\hat{n}}}^{2} = ||h||^{2} + \langle \sigma u_{k} \rangle_{\tilde{L}_{-n}^{-1}}^{2}$$
(1.20)

for all $n \in \mathbb{Z}_{+}^{2}$ (1.16) and for all nondecreasing polygons $\hat{L}_{0}^{\hat{n}}$ that connect points O = (0,0) and $\hat{n} = (n_{1} - 1, n_{2}) \in \mathbb{Z}_{+}^{2}$, where $\tilde{L}_{-\hat{n}}^{-1}$ is a polygon obtained from L_{0}^{n} by the shift (1.14) by "n", at the same time the corresponding σ -forms in (1.20) have the form of (1.12) and (1.13). The operator-function U(n) (1.17) is a semigroup, $U(n) \cdot U(m) = U(n + m)$, for all $n, m \in \mathbb{Z}_{+}^{2}$ (1.16).

It follows from [8] and from this theorem that the operator-function U(n)(1.17) is an isometric dilation of the semigroup

$$T(n) = T_1^{n_1} T_2^{n_2}, \quad n = (n_1, n_2) \in \mathbb{Z}_+^2.$$
 (1.21)

IV. Make the similar continuation of the subspaces D_+ and D_- (1.6) from the semiaxes \mathbb{Z}_+ and \mathbb{Z}_- by the second variable " n_2 ", corresponding to the dual

situation. Denote by $D_+(\tilde{N}^*, \tilde{\Gamma}^*)$ the Hilbert space generated by solutions \tilde{v}_n of the Cauchy problem

$$\begin{cases} \partial_2 \tilde{v}_n = \left(\tilde{N}^* \partial_1 + \tilde{\Gamma}^*\right) \tilde{v}_n; \quad n = (n_1, n_2) \in \mathbb{Z}_+^2; \\ \tilde{v}_n|_{n_2=0} = v_{n_1} \in l_{\mathbb{Z}_+}^2(\tilde{E}), \end{cases}$$
(1.22)

in which the norm is induced by the norm of the initial data $\|\tilde{v}_n\| = \|v_{n_1}\|_{l^2_{\mathbb{Z}_+}(E)}$, besides $\partial_1 \tilde{v}_n = \tilde{v}_{(n_1+1,n_2)}, \ \partial_2 \tilde{v}_n = \tilde{v}_{(n_1,n_2+1)}$.

Continue now every function $u_{n_1} \in l^2_{\mathbb{Z}_-}(E)$ into the domain $\tilde{\mathbb{Z}}^2_-$ (1.7) using the Cauchy problem

$$\begin{cases} \partial_2 \tilde{u}_n = (N^* \partial_1 + \Gamma^*) \tilde{u}_n; & n = (n_1, n_2) \in \mathbb{Z}_-^2; \\ \tilde{u}_n|_{n_2=0} = u_{n_1} \in l_{\mathbb{Z}_-}^2(E). \end{cases}$$
(1.23)

As a result, we obtain the Hilbert space $D_{-}(N^*, \Gamma^*)$ generated by \tilde{u}_n , solutions of (1.23), besides $\|\tilde{u}_n\| = \|u_{n_1}\|_{l^2_{\mathbb{Z}_{-}}(E)}$. Using now Lem. 1.1, we can formulate an analogue of St. 1 [8].

Statement 1.2. Let dim $E < \infty$ and the suppositions of Lem. 1.1 be true, then the solution \tilde{u}_n of the Cauchy problem (1.23) exists and is unique in the domain $\tilde{\mathbb{Z}}_{-}^2$ (1.7) for all initial data $u_{n_1} \in l_{\mathbb{Z}_{-}}^2(E)$.

O b s e r v a t i o n 1.1. The sufficient condition for the simultaneous existence of solutions of the Cauchy problems (1.9) and (1.23), in view of the reversibility of operators K and K^* , according to Lem. 1.1, is the following: all hypotheses of Lem. 1.1 are met and dim $E = \dim \tilde{E} < \infty$.

Hence we come to the Hilbert space

$$\mathcal{H}_{N^*,\Gamma^*} = D_-(N^*,\Gamma^*) \oplus H \oplus D_+\left(\tilde{N}^*,\tilde{\Gamma}^*\right), \qquad (1.24)$$

where the metric is induced by the norm of the initial space $\mathcal{H} = D_- \oplus H \oplus D_+$ (1.4). Note that the dual feature of the spaces $\mathcal{H}_{N,\Gamma}$ (1.15) and $\mathcal{H}_{N^*,\Gamma^*}$ (1.24) is that differential operators of the Cauchy problems (18) and (1.23) and operators (1.9) and (1.22) also are adjoint with each other respectively in the metric l^2 .

Define now the operator-function $\overset{+}{U}(n)$ for $n \in \hat{\mathbb{Z}}^2_+$ (1.16) in the space $\mathcal{H}_{N^*,\Gamma^*}$ (1.24), which acts on $\tilde{f} = (\tilde{u}_k, \tilde{h}, \tilde{v}_k) \in \mathcal{H}_{N^*,\Gamma^*}$ in the following way:

$$\overset{+}{U}(n)\tilde{f} = \tilde{f}(n) = \left(\tilde{u}_k(n), \tilde{h}(n), \tilde{v}(n)\right), \qquad (1.25)$$

where $\tilde{v}_k(n) = P_{D_+(\tilde{N}^*,\tilde{\Gamma}^*)} \tilde{v}_{k+n} \left(P_{D_+(\tilde{N}^*,\tilde{\Gamma}^*)} \text{ is an orthoprojector onto } D_+(\tilde{N}^*,\tilde{\Gamma}^*) \right);$

Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4

 $\tilde{h}(n) = \tilde{y}_{(-1,0)}$, besides \tilde{y}_k $(k \in \mathbb{Z}_-^2)$ satisfies the Cauchy problem

$$\begin{aligned}
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.26) \\
& (1.2$$

besides $\tilde{k} = k + n \text{ III} (-n_1 \le k_1 \le -1; -n_2 \le k_2 \le 0)$; and finally

$$\tilde{u}_k(n) = \hat{u}_k + \tilde{u}_{k+n}, \qquad (1.27)$$

and $\hat{u}_k = K^* \tilde{v}_{\tilde{k}} + \Phi^* \tilde{y}_k$, where \tilde{y}_k is a solution of the system (1.26).

Similarly to (1.11), define the operator-function

$$\tau_{\Delta} = \begin{cases} I; & \Delta = (-1,0); \\ \tau; & \Delta = (0,-1). \end{cases}$$
(1.28)

Denote by L_m^{-1} a nondecreasing polygon in \mathbb{Z}_-^2 (1.7) with the linear segments that are parallel to the axes OX and OY which connects the points $m = (m_1, m_2) \in \mathbb{Z}_-^2$ and (-1, 0). Choose now all the points $\{Q_s\}_M^{-1}$ $(M = m_1 + m_2)$ on L_m^{-1} that are numerated in nonascending order (of one of the coordinates Q_s) beginning with the point (-1, 0) and finishing with $m = (m_1, m_2) \in \mathbb{Z}_-^2$. Define the quadratic form

$$\langle \tau \tilde{u}_k \rangle_{L_m^{-1}}^2 = \sum_{s=M}^{-1} \langle \tau_{Q_s - Q_{s+1}} \tilde{u}_{Q_s}, \tilde{u}_{Q_s} \rangle$$
 (1.29)

in the space $D_{-}(N^*, \Gamma^*)$, where $Q_0 = (0, 0)$. For the polygon L_0^n in \mathbb{Z}_+^2 , $n = (n_1, n_2) \in \mathbb{Z}_+^2$, of the similar type with points $\{P_k\}_0^N$ $(N = n_1 + n_2)$ on L_0^n which are also chosen in nonascending order, define the quadratic form for the functions $\tilde{v}_k \in D_+(\tilde{N}^*, \tilde{\Gamma}^*)$

$$\left\langle \tilde{\tau} \tilde{v}_k \right\rangle_{L_0^n}^2 = \sum_{k=0}^N \left\langle \tilde{\tau}_{P_k - P_{k+1}} \tilde{v}_{P_k}, \tilde{v}_{P_k} \right\rangle, \qquad (1.30)$$

where $P_N - P_{N+1} = (-1, 0)$ and $\tilde{\tau}_{\Delta}$ is defined similarly to τ_{Δ} (1.28). Denote by \tilde{L}_0^m the polygon in \mathbb{Z}_+^2 obtained from the curve L_m^{-1} from $\tilde{\mathbb{Z}}_-^2$ using the shift by "m"

$$\tilde{L}_0^m = \left\{ P_k = (l_1, l_2) \in \mathbb{Z}_+^2 : (l_1 + m_1, l_2 + m_2) = Q_s \in L_m^{-1} \right\},$$
(1.31)

where $m = (m_1, m_2) \in \mathbb{Z}_{-}^2$. Similarly to Th. 1.1, the following statement [8] takes place.

Theorem 1.2. Suppose that dim $E < \infty$ and that the hypotheses of Lem. 1.1 take place, then for the vector-function $\tilde{f}(n) = \stackrel{+}{U}(n)\tilde{f}$ (1.25) the equality

$$\|\tilde{h}(n)\|^{2} + \langle \tau \tilde{u}_{k}(n) \rangle_{L^{-1}_{-n}}^{2} = \|h\|^{2} + \langle \tilde{\tau} \tilde{v}_{k} \rangle_{\tilde{L}^{-n}_{0}}$$
(1.32)

takes place for all $n \in \hat{\mathbb{Z}}_{+}^{2}$ (1.16) and for all polygons L_{-n}^{-1} connecting points $-n = (-n_{1}, -n_{2}) \in \tilde{\mathbb{Z}}_{-}^{2}$ and (-1, 0), where \tilde{L}_{0}^{-n} is a curve in \mathbb{Z}_{+}^{2} obtained from L_{-n}^{-1} using the shift (1.31) by "-n", and corresponding τ -forms in (1.32) have the form of (1.29) and (1.30). The operator-function $\overset{+}{U}(n)$ (1.25) has the semigroup property, $\overset{+}{U}(n) \overset{+}{U}(m) = \overset{+}{U}(n+m)$ for all $n, m \in \hat{\mathbb{Z}}_{+}^{2}$ (1.16).

The fact that the semigroup $\overset{\tau}{U}(n)$ (1.25) is the isometric dilation of the semigroup $T^*(n)$, where T(n) has the form of (1.21), is proved in [8].

In the conclusion of this paragraph, note that the dilations U(n) (1.17) and $\stackrel{+}{U}(n)$ (1.25) are unitary linked, i.e., $U^*(n_1, 0) f = \stackrel{+}{U}(n_1, 0) f$ for all $f \in \mathcal{H}$ (1.4) and for all $n_1 \in \mathbb{Z}_+$, and the narrowing $U(n_1, 0)$ onto \mathcal{H} is a unitary semigroup.

2. Scattering Scheme with Many Parameters and Translational Models

I. As it is known [3, 6], a translational (as well as a functional) model of the contraction T and its dilation U (1.5) is based on the study of the main properties of the wave operators W_{\pm} and scattering operator S.

In order to construct the wave operators W_{\pm} in the case of many parameters, it is necessary also to continue the vector-functions from $l_{\mathbb{Z}}^2(\tilde{E})$ and $l_{\mathbb{Z}}^2(E)$ from the axis \mathbb{Z} into the domain \mathbb{Z}^2 . Continue every function $u_{n_1} \in l_{\mathbb{Z}}^2(E)$ to the function u_n , where $n = (n_1, n_2) \in \mathbb{Z}^2$, using the Cauchy problem

$$\begin{cases} \tilde{\partial}_2 u_n = \left(N\tilde{\partial}_1 + \Gamma\right) u_n; & n \in \mathbb{Z}^2; \\ u_n|_{n_2=0} = u_{n_1} \in l_{\mathbb{Z}}^2(E); \end{cases}$$
(2.1)

besides $||u_n|| = ||u_{n_1}||_{l^2_{\mathbb{Z}}(E)}$. Note that this continuation into the lower semiplane $(n_2 \in \mathbb{Z}_-), u(n_1, n_2) \to u(n_1, n_2 - 1)$, has a recurrent nature and continuation into the upper semiplane $u(n_1, n_2) \to u(n_1, n_2 + 1)$ may be carried out in a non-explicit way, certainly, in the context of suppositions of Lem. 1.1 and dim $E < \infty$. As a result, we obtain the Hilbert space $l^2_{N,\Gamma}(E)$ the norm of which is induced by the norm of the initial data.

Define now the shift operator V(p)

$$V(p)u_n = u_{n-p},\tag{2.2}$$

Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4

where $u_n \in l^2_{N,\Gamma}(E)$ for all $p \in \mathbb{Z}^2$. Obviously, this operator V(p) (2.2) is an isometric one.

Knowing the perturbed U(n) (1.17) and the free V(n) (2.2) operator semigroups, it is natural to define the wave operator $W_{-}(n)$,

$$W_{-}(k) = s - \lim_{n \to \infty} U(n,k) P_{D_{-}(N,\Gamma)} V(-n,-k)$$
(2.3)

for every fixed $k \in \mathbb{Z}_+$, where $P_{D_-(N,\Gamma)}$ is the orthoprojector of the narrowing onto the component u_n^- from $l_{N,\Gamma}^2(E)$ obtained as a result of continuation into \mathbb{Z}_-^2 (1.7) from the semiaxis \mathbb{Z}_- using the Cauchy problem (2.1). It is obvious that $W_-(0) = W_-$, where the wave operator W_- corresponds with the dilation U (1.5) and the shift operator V in $l_{\mathbb{Z}}^2(E)$ [6]. Thus, $W_-(k)$ (2.3) is a natural continuation of the wave operator W_- onto the "k-th" horizontal line in \mathbb{Z}^2 for $k \in \mathbb{Z}_+$.

Denote by $L_{0,k}^{\infty}$ the polygon in \mathbb{Z}_{+}^{2} consisting of two linear segments: the first one is a vertical segment connecting points O = (0,0) and (0,k), where $k \in \mathbb{Z}_{+}$, and the second segment is a horizontal semiline from the point (0,k) to (∞,k) . Similarly, choose the polygon $\tilde{L}_{-\infty,p}^{-1}$ in \mathbb{Z}_{-}^{2} (1.7) that consists also of two linear segments, the first of which is a semiline from $(-\infty, -p)$ to the point (-1, -p), where $p \in \mathbb{Z}_{+}$, and the second one is a vertical segment from the point (-1, -p)to (-1, 0). In the space $\mathcal{H}_{N,\Gamma}$ (1.15), specify the following quadratic forms:

$$\langle f \rangle_{\sigma(p,k)}^{2} = \langle \sigma u_{n} \rangle_{\tilde{L}_{-\infty,p}^{-1}}^{2} + \|h\|^{2} + \langle \tilde{\sigma} v_{n} \rangle_{L_{0,k}^{\infty}}^{2} ;$$

$$\langle f \rangle_{\tilde{\sigma}(k)}^{2} = \|u_{n}\|_{l^{2}}^{2} + \|h\|^{2} + \langle \tilde{\sigma} v_{n} \rangle_{L_{0,k}^{\infty}}^{2} ;$$

$$\langle f \rangle_{\sigma(p)}^{2} = \langle \sigma u_{n} \rangle_{\tilde{L}_{-\infty,p}^{-1}}^{2} + \|h\|^{2} + \|v_{n}\|_{l^{2}}^{2} ,$$

$$(2.4)$$

where corresponding σ and $\tilde{\sigma}$ forms in (2.4) are understood in the sense of (1.12) and (1.13). It is easy to see that $\langle f \rangle^2_{\sigma(0,0)} = \langle f \rangle^2_{\tilde{\sigma}(0)} = \langle f \rangle^2_{\sigma(0)} = ||f||^2_{\mathcal{H}_{N,\Gamma}}$ and $\langle f \rangle^2_{\sigma(0,k)} = \langle f \rangle^2_{\tilde{\sigma}(k)}, \langle f \rangle^2_{\sigma(p,0)} = \langle f \rangle^2_{\sigma(p)}.$

Similarly to (2.4), specify in $l_{N,\Gamma}^2(E)$ the following σ -forms:

$$\langle u_n \rangle_{\sigma(p,k)}^2 = \langle \sigma u_n^- \rangle_{\tilde{L}_{-\infty,p}^{-1}}^2 + \langle \sigma u_n^+ \rangle_{L_{0,k}^{\infty}};$$

$$\langle u_n \rangle_{\sigma_+(k)}^2 = \|u_n^-\|_{l^2}^2 + \langle \sigma u_n^+ \rangle_{L_{0,k}^{\infty}};$$

$$\langle u_n \rangle_{\sigma_-(p)}^2 = \langle \sigma u_n^- \rangle_{\tilde{L}_{-\infty,-p}^{-1}}^2 + \|u_n^+\|_{l^2}^2,$$

$$(2.5)$$

where u_n^{\pm} are the continuations of $l_{\mathbb{Z}\pm}^2(E)$ from the semiaxes using the Cauchy problem (2.1). Note that $\langle u_n \rangle_{\sigma(0,k)}^2 = \langle u_n \rangle_{\sigma+(k)}^2$; $\langle u_n \rangle_{\sigma(p,0)}^2 = \langle u_n \rangle_{\sigma-(p)}^2$ and finally $\langle u_n \rangle_{\sigma(0,0)}^2 = \langle u_n \rangle_{\sigma+(0)}^2 = \langle u_n \rangle_{\sigma-(0)}^2 = ||u_n||_{l^2}^2$.

Theorem 2.1. The wave operator $W_{-}(k)$ (2.3) mapping $l^{2}_{N,\Gamma}(E)$ into the space $\mathcal{H}_{N,\Gamma}$ (1.15) exists for all $k \in \mathbb{Z}_{+}$, and it is an isometry

$$\langle W_{-}(k)u_{n}\rangle_{\sigma(p,k)}^{2} = \langle u_{n}\rangle_{\sigma(p,k)}^{2}$$
(2.6)

in metrics (2.4), (2.5) for all $p \in \mathbb{Z}_+$. Moreover, the wave operator $W_-(k)$ (2.3) meets the conditions

1)
$$U(1,s)W_{-}(k) = W_{-}(k+s)V(1,s);$$

2) $W_{-}(k)P_{D_{-}(N,\Gamma)} = P_{D_{-}(N,\Gamma)}$
(2.7)

for all $k, s \in \mathbb{Z}_+$, where $P_{D_-(N,\Gamma)}$ is an orthoprojector onto $D_-(N,\Gamma)$.

P r o o f. Relation 2) (2.7) is proved exactly in the same way as for W_{-} [6]. The isometric property (2.6) for $W_{-}(k)$ (2.3) follows from Th. 1.1. In order to prove 1) (2.7), consider the identity

$$U(1,s)U(n,k)P_{D_{-}(N,\Gamma)}V(-n,-k)$$

= $U(n+1,k+s)P_{D_{-}(N,\Gamma)}V(-n-1,-k-s)V(1,s),$

where the limit process leads us to equality 1) when $n \to \infty$. And since

$$W_{-}(s)V(1,s) = U(1,s)W_{-}(0),$$

then $W_{-}(s)$ existence follows from the existence of $W_{-}(0) = W_{-}[6]$ for all $s \in \mathbb{Z}_{+}$.

Note that the equalities

=

1)
$$U(1,0)W_{-}(k) = W_{-}(k)V(1,0);$$

2) $U(1,k)W_{-}(0) = W_{-}(k)V(1,k)$
(2.8)

for all $k \in \mathbb{Z}_+$ follow from 1) (2.7).

II. Consider now the continuation of the vector-functions v_{n_1} from $l_{\mathbb{Z}}^2(\tilde{E})$ into the domain \mathbb{Z}^2 using the Cauchy problem

$$\begin{cases} \tilde{\partial}_2 v_n = \left(\tilde{N}\tilde{\partial}_1 + \tilde{\Gamma}\right) v_n; & n = (n_1, n_2) \in \mathbb{Z}^2; \\ v_n|_{n_2=0} = v_{n_1} \in l_{\mathbb{Z}}^2 \left(\tilde{E}\right). \end{cases}$$

$$(2.9)$$

As in the case of problem (2.1), in the semiplane $n_2 \in \mathbb{Z}_-$ we have a recurrent way of the continuation from the axis $n_2 = 0$, $n_2 \to n_2 - 1$ and, when $n_2 \in \mathbb{Z}_+$, this continuation may be carried out in the context of Supposition 1.1. The Hilbert space obtained in this way may be denoted by $l_{\tilde{N},\tilde{\Gamma}}(\tilde{E})$, besides $||v_n|| = ||v_{n_1}||_{l_{\mathbb{Z}}^2(\tilde{E})}$.

Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4

Similarly to V(p) (2.2), introduce the shift operator

$$V(p)v_n = v_{n-p} \tag{2.10}$$

for all $p \in \mathbb{Z}^2$ and all $v_n \in l^2_{\tilde{N},\tilde{\Gamma}}\left(\tilde{E}\right)$. Define the wave operator $W_+(p)$ from $\mathcal{H}_{N,\Gamma}$ into the space $l^2_{\tilde{N},\tilde{\Gamma}}\left(\tilde{E}\right)$,

$$W_{+}(p) = s - \lim_{n \to \infty} \tilde{V}(-n, -p) P_{D_{+}(\tilde{N}, \tilde{\Gamma})} U(n, p)$$

$$(2.11)$$

for all $p \in \mathbb{Z}_+$, where U(n) has the form of (1.17). It is obvious that $W_+(0) = W_+^*$, where W_+ is a traditional wave operator [6] corresponding to U (1.5) and to the shift \tilde{V} in $l_{\mathbb{Z}}^2(\tilde{E})$. Similarly to Th. 2.1, the following statement is true.

Theorem 2.2. For all $p \in \mathbb{Z}_+$, the wave operator $W_+(p)$ (2.11) acting from the space $\mathcal{H}_{N,\Gamma}$ into $l^2_{\tilde{N},\tilde{\Gamma}}(\tilde{E})$ exists and satisfies the relations

1)
$$W_{+}(p)U(1,s) = \tilde{V}(1,s)W_{+}(p+s);$$

2) $W_{+}(p)P_{D_{+}(\tilde{N},\tilde{\Gamma})} = P_{D_{+}(\tilde{N},\tilde{\Gamma})}$
(2.11)

for all $p, s \in \mathbb{Z}_+$, where $P_{D_+(\tilde{N},\tilde{\Gamma})}$ is an orthoprojector onto $D_+(\tilde{N},\tilde{\Gamma})$.

The proof of this statement is similar to the proof of Th. 2.1. The equalities

1)
$$W_{+}(p)U(1,0) = \tilde{V}(1,0)W_{+}(p);$$

2) $W_{+}(0)U(1,p) = \tilde{V}(1,p)W_{+}(p)$
(2.12)

for all $p \in \mathbb{Z}_+$ easily follow from 1) (2.11).

Knowing the wave operators $W_{-}(k)$ (2.3) and $W_{+}(p)$ (2.11), define the scattering operator in a traditional way [6]:

$$S(p,k) = W_{+}(p)W_{-}(k)$$
(2.13)

for all $p, k \in \mathbb{Z}_+$. It is obvious that, when p = k = 0, we have S(0,0) = S, where S is a standard scattering operator $S = W_+^* W_-$ for the dilation U(1.5) [6]. The following statement results from Ths. 2.1 and 2.2.

Theorem 2.3. The scattering operator S(p,k) (2.13) represents the bounded operator from $l^2_{N,\Gamma}(E)$ into $l^2_{\tilde{N},\tilde{\Gamma}}(\tilde{E})$ satisfying the following relations:

1)
$$S(p,k)V(1,q) = \tilde{V}(1,q)S(p+q,k-q);$$

2) $S(p,k)P_{-}l_{N,\Gamma}^{2}(E) \subseteq P_{-}l_{\tilde{N},\tilde{\Gamma}}^{2}\left(\tilde{E}\right)$
(2.14)

for all $p, k, q \in \mathbb{Z}_+, 0 \le q \le k$, where P_- is the narrowing orthoprojector onto the solutions of the Cauchy problems (2.1) and (2.9) with the initial data on the semiaxis \mathbb{Z}_- when $n_2 = 0$.

Note that the translational invariability of S(p,k) (2.13) with respect to the shift by the first variable " n_1 "

$$S(p,k)V(1,0) = \tilde{V}(1,0)S(p,q)$$
(2.15)

for all $p, k \in \mathbb{Z}_+$ follows from the equality 1) (2.14). Moreover, from 1) it follows that

1)
$$S(p,k)V(1,k) = V(1,k)S(p+k,0)$$
 $(k=q);$
2) $S(0,k)V(1,k) = \tilde{V}(1.k)S(k,0)$ $(k=q,p=0);$ (2.16)

and thus the scattering operator S(p, k) (2.13) is the function of sum (up to the multiplication of V(1, k) and $\tilde{V}(1, k)$) for all p and k from \mathbb{Z}_+ , and it may be obtained from the operator S(k, 0) (or from S(0, k)) using the "bordering" by the shift operators V(1, k) and $\tilde{V}(1, k)$.

III. Specify now the mapping $\mathcal{P}_{p,k}$ from $l_{N,\Gamma}^2(E) + l_{\tilde{N},\tilde{\Gamma}}^2(\tilde{E})$ into the Hilbert space $\mathcal{H}_{N,\Gamma}$ (1.15)

$$f_{p,k} = \mathcal{P}_{p,k}(g_n) = \mathcal{P}_{p,k}\begin{pmatrix} v_n \\ u_n \end{pmatrix} = W_+^*(p)v_n + W_-(k)u_n, \qquad (2.17)$$

where $v_n \in l^2_{\tilde{N},\tilde{\Gamma}}\left(\tilde{E}\right)$, $u_n \in l^2_{N,\Gamma}(E)$, besides $p, k \in \mathbb{Z}_+$ and $W^*_+(p)$ adjoined to the operator $W_+(p)$ is understood in the sense of Hilbert metric l^2 .

For the commutative operator systems $\{T_1, T_2\} \in C(T_1)$ (1.3), the simplicity of the expansion V_s , $\overset{+}{V_s}$ (1.1) is guaranteed by the operator T_1 [4, 8]. Therefore in the case of simplicity of the expansion V_s , $\overset{+}{V_s}$ (1.1), the functions $f_{p,k} = \mathcal{P}_{p,k}(g_k)$ (2.17) form the everywhere dense set in the space $\mathcal{H}_{N,\Gamma}$ when $g_n \in l^2_{\tilde{N},\tilde{\Gamma}}(\tilde{E}) + l^2_{n,\Gamma}(E)$ for all fixed p and k from \mathbb{Z}_+ . And thus "every" function f from the functions of the space $\mathcal{H}_{N,\Gamma}$ (e.g., every finite one) may have various forms $f = f_{p,k}$ or $f = f_{p',k'}$ ($p \neq p', k \neq k'$) when one takes different mappings $\mathcal{P}_{p,k}$ (2.17). It is easy to see that

$$\langle f_{p,k}, f_{p,k} \rangle_{\mathcal{H}_{N,\Gamma}} = \langle W_{p,k}g_n, g_n \rangle_{l^2}$$

when the weight operator-function $W_{p,k}$ has the form

$$W_{p,k} = \begin{bmatrix} W_+(p)W_+^*(p) & S(p,k) \\ S^*(p,k) & W_-^*(k)W_-(k) \end{bmatrix},$$
(2.18)

and the scattering operator S(p,k) is defined by formula (2.13).

Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4

O b s e r v a t i o n 2.1. All the elements of the weight operator-function $W_{p,k}$ (2.18) have the translational invariance with respect to the shift by the variable " n_1 " in view of 1) (2.8), 1) (2.12) and (2.15), and also the unitarity of the operator U(1,0).

So, the mapping $\mathcal{P}_{k,s}$ (2.17) defines the isomorphism between the spaces $\mathcal{H}_{N,\Gamma}$ (1.15) and

$$l^{2}(W_{p,k}) = \left\{ g_{n} = \begin{pmatrix} v_{n} \\ u_{n} \end{pmatrix} : \langle W_{p,k}g_{n}, g_{n} \rangle_{l^{2}} < \infty \right\},$$
(2.19)

where $u_n \in l_{N,\Gamma}^2(E)$, $v_n \in l_{N,\Gamma}^2\left(\tilde{E}\right)$ and the operator $W_{p,k}$ has the form of (2.18). It is obvious that the space $l^2(W_{p,k})$ (2.19) coincides with the well-known space $l^2\begin{pmatrix}I & S\\S & I\end{pmatrix}$ [6] when p = k = 0. From the relations 1) (2.8), 1) (2.12) and from the unitarity of U(1,0), it follows that the dilation U(1,0) in every space $l^2(W_{p,k})$ (2.19) is carried out by the shift operator

$$\hat{U}(1,0)g_n = \begin{bmatrix} \tilde{V}(1,0) & 0\\ 0 & V(1,0) \end{bmatrix} g_n$$
(2.20)

for all $g_n \in l^2(W_{p,k})$.

Study now how the dilation U(1,s) (1.17) acts on the vector-functions $f_{p,k} = \mathcal{P}_{p,k}(g_n)$ (2.17) when $s \neq 0$. First of all, note that it follows from 1) (2.7) that an application of U(1,s) to the wave operator $W_-(k)$ (2.3) from the left increases the index $k \in \mathbb{Z}_+$ by s, i.e. $k \to k + s$, and it follows from the equality 1) (2.11) that an application of the dilation U(1,s) to the wave operator $W_+(p)$ (2.11) from the right also changes the parameter $p \in \mathbb{Z}_+$, namely, $p \to p + s$. Therefore the dilation U(1,s) maps the element $f_{p,k}$ from $\mathcal{H}_{N,\Gamma}$ to the representative $f_{p-s,k+s}$ in the space $\mathcal{H}_{N,\Gamma}$ (1.15), where $0 \leq s \leq p$. Consider only the case when the dilation U(1,p) (1.17) acts on the vectors of the form $f_{p,0} = \mathcal{P}_{p,0}(g_n)$ (2.17).

So, in view of above, consider the scalar product

$$\left\langle U(1,p)f_{p,0}, \hat{f}_{0,p} \right\rangle_{\tilde{\sigma}(p)} = \left\langle U(1,p)W_{+}^{*}(p)v_{n}, W_{+}^{*}(0)\hat{v}_{n} \right\rangle_{\tilde{\sigma}(p)} + \left\langle U(1,p)W_{+}^{*}(p)v_{n}, W_{-}(p)\hat{u}_{n} \right\rangle_{\tilde{\sigma}(p)} + \left\langle U(1,p)W_{-}(0)u_{n}, W_{+}^{*}(0)\hat{v}_{n} \right\rangle_{\tilde{\sigma}(p)} + \left\langle U(1,p)W_{-}(0)u_{n}, W_{-}(p)\hat{u}_{n} \right\rangle_{\tilde{\sigma}(p)},$$

$$(2.21)$$

where $f_{p,0} = \mathcal{P}_{p,0}(g_n)$, $\tilde{f}_{0,p} = \mathcal{P}_{0,p}(\hat{g}_n)$ (2.17). Simplify every element from the right part in (2.21). It is easy to see that the third and the fourth elements have the form

$$\langle U(1,p)W_{-}(0)u_{n},W_{+}^{*}(0)\hat{v}_{n}\rangle_{\tilde{\sigma}(p)} = \langle S(0,p)V(1,p)u_{n},\hat{v}_{n}\rangle_{\tilde{\sigma}_{+}(p)};$$

$$\langle U(1,p)W_{-}(0)u_{n}, W_{-}(p)\hat{u}_{n}\rangle_{\tilde{\sigma}(p)} = \langle V(1,p)u_{n}, \hat{u}_{n}\rangle_{\sigma_{+}(p)}$$

taking into account property 2) (2.8), the form of the operator S(0, p) (2.13), and the σ -isometric condition of the wave operator $W_{-}(p)$ (2.3) by Th. 2.1 and 2) (2.11) used in the first relation. In order to simplify the first elements in (2.21), use relations 2) (2.11) and 2) (2.12) for the wave operator $W_+(p)$ to obtain

$$\left\langle U(1,p)W_{+}^{*}(p)v_{n},W_{+}^{*}(0)\hat{v}_{n}\right\rangle_{\tilde{\sigma}(p)} = \left\langle \tilde{V}(1,p)W_{+}(p)W_{+}^{*}(p)v_{n},\hat{v}_{n}\right\rangle_{\tilde{\sigma}_{+}(p)}.$$

Finally, taking into account σ -isometric property of the dilation U(1, p) (Th. 1.1), for the second element we have

,

$$\begin{split} \left\langle U(1,p)W_{+}^{*}(p)v_{n},W_{-}(p)\hat{u}_{n}\right\rangle _{\tilde{\sigma}(p)} \\ &= \left\langle U(1,p)W_{+}^{*}(p)v_{n},U(1,p)W_{-}(0)V(-1,-p)\hat{u}_{n}\right\rangle _{\tilde{\sigma}(p)} \\ &= \left\langle W_{+}^{*}(p)v_{n},W_{-}(0)V(-1,p)\hat{u}_{n}\right\rangle _{\sigma(p)} = \left\langle S^{*}(p,0)v_{n},V(-1,-p)\hat{u}_{n}\right\rangle _{\sigma_{-}(p)} \end{split}$$

in view of 2) (2.7). Using now relation 2) (2.16), we obtain that

,

$$\begin{split} \left\langle U(1,p)W_{+}^{*}(p)v_{n}, W_{-}(p)\hat{u}_{n}\right\rangle_{\tilde{\sigma}(p)} &= \left\langle V^{*}(-1,-p)S^{*}(p,0)v_{n}, \hat{u}_{n}\right\rangle_{\sigma_{+}(p)} \\ &= \left\langle S^{*}(0,p)\tilde{V}^{*}(-1,-p)v_{n}, \hat{u}_{n}\right\rangle_{\sigma_{+}(p)}. \end{split}$$

Thus, we can write formula (2.21) in the following way:

$$\left\langle U(1,p)f_{p,0}\hat{f}_{0,p} \right\rangle_{\tilde{\sigma}(p)}$$

$$= \left\langle \begin{bmatrix} \tilde{V}(1,p)W_{+}(p)W_{+}^{*}(p)\tilde{V}^{*}(1,p) & S(0,p) \\ S^{*}(0,p) & I \end{bmatrix} \right|$$

$$\times \begin{bmatrix} \tilde{V}^{*}(-1,-p) & 0 \\ 0 & V(1,p) \end{bmatrix} g_{n},\hat{g}_{n} \right\rangle_{\tilde{\sigma}_{+}(p),\sigma_{+}(p)},$$

$$(2.22)$$

where the bi-linear form in the right part is understood component-wisely in the sense of $\tilde{\sigma}_+(p)$ and $\sigma_+(p)$ (2.5). Let

$$W'_{p,0} = \begin{bmatrix} \tilde{V}(1,p)W_{+}(p)W_{+}^{*}(p)\tilde{V}^{*}(1,p) & S(0,p) \\ S^{*}(0,p) & I \end{bmatrix};$$

$$\hat{V}(1,p) = \begin{bmatrix} \tilde{V}^{*}(-1,-p) & 0 \\ 0 & V(1,p) \end{bmatrix}.$$

(2.23)

Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4

O b s e r v a t i o n 2.2. Consider the mapping $\mathcal{P}_{p,0}$ (2.17) and let $f'_{p,0} = \mathcal{P}_{p,0}(g'_n) = W^*_+(p)\tilde{V}^*(1,p)v_n + W_-(0)V(-1,-p)u_n$, where $u_n \in l^2_{N,\Gamma}(E)$ and $v_n \in l^2_{\tilde{N},\tilde{\Gamma}}\left(\tilde{E}\right)$. Then it is easy to find that

$$\left\langle f_{p,0}^{\prime},f_{p,0}^{\prime}
ight
angle _{\mathcal{H}_{N,\Gamma}}=\left\langle W_{p,0}^{\prime}g_{n},g_{n}
ight
angle _{l^{2}}$$

in view of 2) (2.16). Thus the difference between the weight $W_{p,0}$ (2.18) and $W'_{p,0}$ (2.23) is that the components v_n and u_n are shifted by $\tilde{V}^*(1,p)$ and V(-1,-p) respectively after the mapping $\mathcal{P}_{p,0}$ (2.17).

Hence, the dilation U(1, p) (1.7) acts by the shift

$$\hat{U}(1,p)g_n = \hat{V}(1,p)g_n,$$
 (2.24)

(V(1, p) has the form of (2.23)) from the Hilbert space

$$l^{2}\left(W_{p,0}^{\prime}\right) = \left\{g_{n} = \left(\begin{array}{c}v_{n}\\u_{n}\end{array}\right) : \left\langle W_{p,0}^{\prime}g_{n},g_{n}\right\rangle_{l^{2}} < \infty\right\}$$
(2.19')

into the space $l^2(W_{p,0})$ (2.19).

It is obvious that the following subspaces

$$\hat{D}_{-}(N,\Gamma) = \begin{pmatrix} 0 \\ P_{-}l_{N,\Gamma}^{2}(E) \end{pmatrix}; \quad \hat{D}_{+}\left(\tilde{N},\tilde{\Gamma}\right) = \begin{pmatrix} P_{+}l_{\tilde{N},\tilde{\Gamma}}^{2}\left(\tilde{E}\right) \\ 0 \end{pmatrix}$$

are the prototypes of $D_{-}(N,\Gamma)$ and $D_{+}(\tilde{N},\tilde{\Gamma})$ from $\mathcal{H}_{N,\Gamma}$ (1.15) for the mapping $\mathcal{P}_{p,k}$ (2.17) (for all $p, k \in \mathbb{Z}_{+}$). P_{-} and P_{+} are the orthoprojectors onto the subspaces in $l^{2}_{N,\Gamma}(E)$ and in $l^{2}_{\tilde{N},\tilde{\Gamma}}(\tilde{E})$ formed by the solutions of the Cauchy problems (2.1) and (2.9) with the initial data on the semiaxes \mathbb{Z}_{-} and \mathbb{Z}_{+} , respectively. Therefore the initial space H is isomorphic to the space

$$\hat{H}_p = l^2 \left(W_{p,0} \right) \ominus \left(\begin{array}{c} P_+ l_{\tilde{N},\tilde{\Gamma}}^2 \left(\tilde{E} \right) \\ P_- l_{N,\Gamma}^2 (E) \end{array} \right).$$

$$(2.25)$$

Similar constructions for $l^2(W'_{p,0})$ (2.19') lead to another space realization of the Hilbert space H

$$\hat{H}'_{p} = l^{2} \left(W'_{p,0} \right) \ominus \left(\begin{array}{c} \tilde{V}^{*}(-1,-p)P_{+}l^{2}_{\tilde{N},\tilde{\Gamma}}\left(\tilde{E}\right) \\ V(1,p)P_{-}l^{2}_{N,\Gamma}(E) \end{array} \right)$$
(2.25')

in view of Observation 2.2. It is natural that the spaces \hat{H}_p (2.25) and \hat{H}'_p (2.25') are isomorphic one to another. As it is easy to see, the operator $R_p: \hat{H}_p \to \hat{H}'_p$

defining this isomorphism has the form

$$R_p = P_{\hat{H}'_p} \begin{bmatrix} \tilde{V}^*(1,p) & 0\\ 0 & V(-1,-p) \end{bmatrix} P_{\hat{H}_p},$$
(2.26)

where $P_{\hat{H}_p}$ and $P_{\hat{H}'_p}$ are orthoprojectors onto \hat{H}_p (2.25) and \hat{H}'_p (2.25') in corresponding spaces. It follows from (2.20) and (2.24) that the operators T_1 and $T(1,p) = T_1 T_2^p$, $p \in \mathbb{Z}_+$ have the form

$$(\hat{T}_1 f)_n = P_{\hat{H}_p} f_{n-(1,0)}; \quad (\hat{T}(1,p)f)_n = P_{\hat{H}_p} \hat{V}(1,p) (R_p f)_n$$
(2.27)

for all $f_n \in \hat{H}_p$ (2.25), where $P_{\hat{H}_p}$ is an orthoprojector onto \hat{H}_p (2.25) and the operator R_p has the form (2.26). It is typical that the operator \hat{T}_1 has the same form (2.27) in all the spaces \hat{H}_p (2.25) in view of Observation 2.1, and the operator $\hat{T}(1,p)$ has this form (2.27) only in one specific space \hat{H}_p (2.25).

Theorem 2.4. Consider the simple [8] commutative unitary expansion V_s , \dot{V}_s (2.1) corresponding to the commutative operator system $\{T_1, T_2\}$ from the class $C(T_1)$ (1.3), and let the suppositions of Lem. 1.1 take place, besides dim $E = dim \tilde{E} < \infty$. Then the isometric dilation U(1, p) (1.17), $p \in \mathbb{Z}_+$, acting in the Hilbert space $\mathcal{H}_{N,\Gamma}$ (1.15), is unitary equivalent to the operator $\hat{U}(1, 0)$ (2.20) for p = 0 in $l^2(W_{p,0})$ (2.19), and to the operator $\hat{U}(1, p)$ (2.24), for $p \in \mathbb{N}$, mapping the space $l^2(W'_{p,0})$ (2.19') into $l^2(W_{p,0})$ (2.19). Moreover, the operators T_1 and $T(1,p) = T_1 T_2^p$ (1.21) specified in H are unitary equivalent to the shift operator \hat{T}_1 (2.27) in \hat{H}_p (2.25) for all $p \in \mathbb{Z}_+$ and to the operator $\hat{T}(1,p)$ (2.27) acting in the specific space \hat{H}_p (2.25) for $p \in \mathbb{N}$.

IV. Let us now study a dual situation corresponding to the dilation $\stackrel{+}{U}(n)$ (1.25). Similarly to (2.1), continue every vector-function $v_k \in l_{\mathbb{Z}}^2(\tilde{E})$ into the domain \mathbb{Z}^2 using the Cauchy problem

$$\begin{cases} \partial_2 v_n = \left(\tilde{N}^* \partial_1 + \tilde{\Gamma}^*\right) v_n; & n = (n_1, n_2) \in \mathbb{Z}^2; \\ v_n|_{n_2=0} = v_{n_1} \in l_{\mathbb{Z}}^2 \left(\tilde{E}\right). \end{cases}$$

$$(2.28)$$

Besides, we have the recurrent way of the continuation $v(n_1, n_2) \to v(n_1, n_2 + 1)$ into the upper semiplane $(n_2 \in \mathbb{Z}+)$, and when $n_2 \in \mathbb{Z}_-$, the continuation $v(n_1, n_2) \to v(n_1, n_2 - 1)$ has the nonexplicit nature and may be carried out in the context of suppositions of Lem. 1.1 when dim $\tilde{E} < \infty$. Thus, we obtain the Hilbert space $l^2_{\tilde{N}^*,\tilde{\Gamma}^*}(\tilde{E})$ assuming that $||v_n|| = ||v_{n_1}||_{l^2_{\mathbb{Z}}(\tilde{E})}$. Define the shift operator $\tilde{V}_+(p)$ in the space $l^2_{\tilde{N}^*,\tilde{\Gamma}^*}(\tilde{E})$,

$$\tilde{V}_{+}(p)v_{n} = v_{n+p}$$
(2.29)

Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4

for all $p \in \mathbb{Z}^2$. It is obvious that the operator $\tilde{V}_+(q)$ (2.29) is isometric. Specify now the wave operator $\tilde{W}_+(p)$ mapping the space $l^2_{\tilde{N}^*,\tilde{\Gamma}^*}\left(\tilde{E}\right)$ into $\mathcal{H}_{N^*,\Gamma^*}$ (1.24) by the following formula:

$$\tilde{W}_{+}(p) = s - \lim_{n \to \infty} \overset{+}{U}(n, p) P_{D_{+}(\tilde{N}^{*}, \tilde{\Gamma}^{*})} \tilde{V}_{+}(-n, -p), \qquad (2.30)$$

where the number $p \in \mathbb{Z}_+$ is fixed and the operators $\stackrel{+}{U}(n)$ and $\tilde{V}_+(n)$ are specified by the formulas (1.25) and (2.29), respectively. It is obvious that $\tilde{W}_+(0) = W_+$, where the operator W_+ corresponds to the dilation U (1.5), and so the operator $\tilde{W}_+(p)$ (2.30) is a continuation of the wave operator W_+ onto the "-pth" horizontal line in \mathbb{Z}^2_- (1.7).

Consider now the polygon $L_{-\infty,p}^{-1}$ in \mathbb{Z}_{-}^{2} (1.7) formed by the vertical segment connecting points (-1,0) and (-1,-p) and by the horizontal semiline from the point (-1,-p) to $(-\infty,-p)$, where $p \in \mathbb{Z}_{+}$. And let $\tilde{L}_{0,k}^{\infty}$ be the similar polygon consisting of the rectilinear segments connecting the points (0,0), (0,k) and (∞,k) one-by-one in \mathbb{Z}_{+}^{2} . Similarly to (2.4), define the quadratic forms

$$\left\langle \tilde{f} \right\rangle_{\tau(p,k)}^{2} = \left\langle \tau \tilde{u}_{n} \right\rangle_{L_{-\infty,p}^{-1}}^{2} + \left\| \tilde{h} \right\|^{2} + \left\langle \tilde{\tau} \tilde{v}_{n} \right\rangle_{\tilde{L}_{0,k}^{\infty}}^{2};$$

$$\left\langle \tilde{f} \right\rangle_{\tilde{\tau}(k)}^{2} = \left\| \tilde{u}_{n} \right\|_{l^{2}}^{2} + \left\| \tilde{h} \right\|^{2} + \left\langle \tilde{\tau} v_{n} \right\rangle_{\tilde{L}_{0,k}^{\infty}}^{2};$$

$$\left\langle f \right\rangle_{\tau(p)}^{2} = \left\langle \tau \tilde{u}_{n} \right\rangle_{L_{-\infty,p}^{-1}}^{2} + \left\| \tilde{h} \right\|^{2} + \left\| v_{n} \right\|_{l^{2}}^{2}$$

$$(2.31)$$

in $\mathcal{H}_{N^*,\Gamma^*}$ (1.24), where $\tilde{f} = \left(\tilde{u}_n, \tilde{h}, \tilde{v}_n\right) \in \mathcal{H}_{N^*,\Gamma^*}$ and respective $\tilde{\tau}$ and τ forms are understood in the sense of (1.29) and (1.30). It is easy to see that $\left\langle \tilde{f} \right\rangle_{\tau(0,0)}^2 = \left\langle \tilde{f} \right\rangle_{\tilde{\tau}(0)}^2 = \left\| \tilde{f} \right\|_{\mathcal{H}_{N^*,\Gamma^*}}^2$ and $\left\langle \tilde{f} \right\rangle_{\tau(0,k)}^2 = \left\langle \tilde{f} \right\rangle_{\tilde{\tau}(k)}^2$, $\left\langle f \right\rangle_{\tau(p,0)}^2 = \left\langle f \right\rangle_{\tau(p)}^2$. As in (2.5), specify the quadratic τ -forms,

$$\langle v_n \rangle_{\tilde{\tau}(p,k)}^2 = \left\langle \tilde{\tau} v_n^- \right\rangle_{L_{-\infty,p}^{-1}}^2 + \left\langle \tilde{\tau} v_n^+ \right\rangle_{\tilde{L}_{0,k}^{\infty}}^2 ; \langle v_n \rangle_{\tilde{\tau}_{+}(k)}^2 = \left\| v_n^- \right\|_{l^2}^2 + \left\langle \tilde{\tau} v_n^+ \right\rangle_{\tilde{L}_{0,k}^{\infty}}^2 ; \langle v_n \rangle_{\tilde{\tau}_{-}(p)}^2 = \left\langle \tilde{\tau} v_n^- \right\rangle_{L_{-\infty,p}^{-1}}^2 + \left\| v_n^+ \right\|_{l^2}^2 ,$$

$$(2.33)$$

in the space $l_{\tilde{N}^*,\tilde{\Gamma}^*}^2\left(\tilde{E}\right)$, where v_n^{\pm} are the corresponding continuations in the second variable n_2 from the semiaxes \mathbb{Z}_{\pm} of the functions of $l_{\mathbb{Z}}^2\left(\tilde{E}\right)$ obtained by using the Cauchy problem (2.28).

The following statement, similar to Th. 2.1, is true.

1

Theorem 2.5. The wave operator $\tilde{W}_+(p)$ (2.30) acting from the space $l^2_{\tilde{N}^*,\tilde{\Gamma}^*}(\tilde{E})$ into the Hilbert space $\mathcal{H}_{N^*,\Gamma^*}$ (1.24) exists for all $p \in \mathbb{Z}_+$ and is an isometry

$$\left\langle \tilde{W}_{+}(p)v_{n}\right\rangle _{\tau(p,k)}^{2} = \left\langle v_{n}\right\rangle _{\tilde{\tau}(p,k)}^{2}$$

$$(2.34)$$

in respective metrics (2.32) and (2.33) for all $p \in \mathbb{Z}_+$. Moreover, for all $\hat{W}_+(p)$ (2.30) the relations

1)
$$\dot{U}(1,s)\tilde{W}_{+}(p) = \tilde{W}_{+}(p+s)\tilde{V}_{+}(1,s);$$

2) $\tilde{W}_{+}(p)P_{D_{+}(\tilde{N}^{*},\tilde{\Gamma}^{*})} = P_{D_{+}(\tilde{N}^{*},\tilde{\Gamma}^{*})}$
(2.35)

are true for all $p, s \in \mathbb{Z}_+$, where $P_{D_-(\tilde{N}^*, \tilde{\Gamma}^*)}$ is an orthoprojector onto the subspace $D_+(\tilde{N}^*, \tilde{\Gamma}^*)$.

Select two relations that are an immediate corollary of 1) (2.35) and are similar to (2.8),

1)
$$\overset{+}{U}(1,0)\tilde{W}_{+}(p) = \tilde{W}_{+}(p)\tilde{V}_{+}(1,0);$$

2) $\overset{+}{U}(1,p)\tilde{W}_{+}(0) = \tilde{W}_{+}(p)\tilde{V}_{+}(1,p)$
(2.36)

for all $p \in \mathbb{Z}_+$.

Continue now each vector-function u_{n_1} from the space $l^2_{\mathbb{Z}}(E)$ by the second variable n_2 into the domain \mathbb{Z}^2 using the Cauchy problem

$$\begin{cases} \partial_2 u_n = (N^* \partial_1 + \Gamma^*) u_n; & n = (n_1, n_2) \in \mathbb{Z}^2; \\ u_n|_{n_2 = 0} = u_{n_1} \in l_{\mathbb{Z}}^2(E). \end{cases}$$
(2.37)

As in the case of the Cauchy problem (2.28), the continuation $u(n_1, n_2) \rightarrow u(n_1, n_2 + 1)$ has the explicit recurrent nature, and the continuation into the lower semiplane $n_2 \in \mathbb{Z}_-$, $u(n_1, n_2) \rightarrow u(n_1, n_2 - 1)$ may be done under suppositions of Lem. 1.1 and dim $E < \infty$. The Hilbert space obtained in this way is denoted by $l_{N^*,\Gamma^*}^2(E)$, besides $||u_n|| \stackrel{\text{def}}{=} ||u_{n_1}||_{l_2^2(E)}^2$.

Similarly to the operator $\tilde{V}_+(p)$ (2.29), define the shift operator

$$V_{+}(p)u_{n} = u_{n+p} \tag{2.38}$$

in the space $l_{N^*,\Gamma^*}^2(E)$ for all $p \in \mathbb{Z}^2$ and for all $u_n \in l_{N^*,\Gamma^*}^2(E)$. Specify now the wave operator $\tilde{W}_{-}(k)$ from the space $\mathcal{H}_{N^*,\Gamma^*}$ (1.24) into $l_{N^*,\Gamma^*}^2(E)$

$$\tilde{W}_{-}(k) = s - \lim_{n \to \infty} V_{+}(-n, -k) P_{D_{-}(N^{*}, \Gamma^{*})} \overset{+}{U}(n, k)$$
(2.39)

Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4

for all fixed $k \in \mathbb{Z}_+$, where U(n) and $V_+(n)$ are specified by the formulas (1.25) and (2.38), respectively. It is easy to see that $\tilde{W}_-(0) = W_-^*$, besides W_- has the standard form [6].

Theorem 2.6. The wave operator $W_{-}(k)$ (2.39) mapping the space $\mathcal{H}_{N^*,\Gamma^*}$ (1.24) into $l^2_{N^*,\Gamma^*}(E)$ exists for all $k \in \mathbb{Z}_+$ and has the following properties:

1)
$$V_{+}(1,s)\tilde{W}_{-}(k+s) = \tilde{W}_{-}(k) \stackrel{\top}{U}(1,s);$$

2) $\tilde{W}_{-}(k)P_{D_{-}(N^{*},\Gamma^{*})} = P_{D_{-}(N^{*},\Gamma^{*})}$
(2.40)

for all $k, s \in \mathbb{Z}_+$, where $P_{D_-(N^*,\Gamma^*)}$ is an orthoprojector onto $D_-(N^*,\Gamma^*)$.

Select two relations following from equality 1) (2.40):

1)
$$V_{+}(1,0)\tilde{W}_{-}(k) = \tilde{W}_{-}(k) \stackrel{+}{U}(1,0);$$

2) $V_{+}(1,k)\tilde{W}_{-}(k) = \tilde{W}_{-}(0) \stackrel{+}{U}(1,k)$
(2.41)

for all $k \in \mathbb{Z}_+$.

Similarly to (2.13), define now the scattering operator $\tilde{S}(k, p)$ from $l_{\tilde{N}^*, \tilde{\Gamma}^*}(\tilde{E})$ into the space $l_{N^*, \Gamma^*}^2(E)$

$$\tilde{S}(k,p) = \tilde{W}_{-}(k)\tilde{W}_{+}(p) \tag{2.42}$$

for all $k, p \in \mathbb{Z}_+$, that obviously coincides with S^* when k = p = 0.

Theorem 2.7. The scattering operator $\tilde{S}(k,p)$ (2.42) is a bounded operator from $l^2_{\tilde{N}^*,\tilde{\Gamma}^*}(\tilde{E})$ into the space $l^2_{N^*,\Gamma^*}(E)$, besides the following relations

1)
$$\tilde{S}(k,p)\tilde{V}(1,s) = V_{+}(1,s)\tilde{S}(k+s,p-s);$$

2) $\tilde{S}(k,p)P_{+}l^{2}_{\tilde{N}^{*},\tilde{\Gamma}^{*}}\left(\tilde{E}\right) \subseteq P_{+}l^{2}_{N^{*},\Gamma^{*}}(E)$
(2.43)

take place for all k, p, $s \in \mathbb{Z}_+$, whereas $0 \le s \le p$ and P_+ is an orthoprojector onto the respective subspaces corresponding to the solutions of the Cauchy problems (2.28) and (2.37) with the initial data on the semiaxis \mathbb{Z}_+ $(n_2 = 0)$.

It is obvious that the invariant property of the operator $\hat{S}(k,p)$ with respect to the shift by the coordinate " n_1 "

$$S(k,p)V_{+}(1,0) = V_{+}(1,0)S(k,p)$$
(2.44)

follows from 1) (2.43) for all $p, k \in \mathbb{Z}_+$, and

1)
$$\tilde{S}(k,p)\tilde{V}_{+}(1,p) = V_{+}(1,p)\tilde{S}(k+p,0), \quad p = s;$$

2) $\tilde{S}(0,p)\tilde{V}_{+}(1,p) = V_{+}(1,p)\tilde{S}(p,0), \quad p = s, k = 0.$
(2.45)

This fact is similar to equalities (2.16).

V. Define now the mapping $\tilde{\mathcal{P}}_{p,k}$ from the direct sum of the Hilbert spaces $l^2_{\tilde{N}^*,\tilde{\Gamma}^*}\left(\tilde{E}\right) + l^2_{N^*,\Gamma^*}(E)$ into the Hilbert space $\mathcal{H}_{N^*,\Gamma^*}(1.24)$ in the following way:

$$\tilde{f}_{p,k} = \tilde{\mathcal{P}}_{p,k}\left(g_n\right) = \tilde{\mathcal{P}}_{p,k}\left(\begin{array}{c}v_n\\u_n\end{array}\right) = \tilde{W}_+(p)v_n + \tilde{W}_-^*(k)u_n, \qquad (2.46)$$

where $v_n \in l_{\tilde{N}^*,\tilde{\Gamma}^*}(\tilde{E})$, $u_n \in l_{N^*,\Gamma^*}^2(E)$ for all $p, k \in \mathbb{Z}_+$. As it was noted above (see Paragraph III), the vector-functions $\tilde{f}_{p,k}$ form the dense set in the space $\mathcal{H}_{N^*,\Gamma^*}$ (1.24) in the case of simplicity of expansion V_s, V_s^+ (1.1), for the fixed p, $k \in \mathbb{Z}_+$. Therefore every vector from the space $\mathcal{H}_{N^*,\Gamma^*}$ has different realizations $\tilde{f}_{p,k}$ (2.46) for different values of the parameters p and k. It is obvious that

$$\left\langle \tilde{f}_{p,k}, \tilde{f}_{p,k} \right\rangle_{\mathcal{H}_{N^*,\Gamma^*}} = \left\langle \tilde{W}_{p,k}g_n, g_n \right\rangle_{l^2},$$

where the weight operator $W_{p,k}$ is equal to

$$\tilde{W}_{p,k} = \begin{bmatrix} \tilde{W}_{+}^{*}(p)\tilde{W}_{+}(p) & \tilde{S}^{*}(k,p) \\ \tilde{S}(k,p) & \tilde{W}_{-}(k)\tilde{W}_{-}^{*}(k) \end{bmatrix},$$
(2.47)

besides S(k, p) has the form of (2.42). Similarly to Observation 2.1, it is obvious that all blocks of the operator $\tilde{W}_{p,k}$ are translational invariant with respect to the shift by the variable " n_1 ". Thus, the mapping $\tilde{\mathcal{P}}_{p,k}$ (2.46) defines the one-to-one unitary correspondence between the space $\mathcal{H}_{N^*,\Gamma^*}$ (1.24) and the space

$$l^{2}\left(\tilde{W}_{p,k}\right) = \left\{g_{n} = \left(\begin{array}{c}v_{n}\\u_{n}\end{array}\right) : \left\langle\tilde{W}_{p,k}g_{n}, g_{n}\right\rangle_{l^{2}} < \infty\right\},\qquad(2.48)$$

where $v_n \in l^2_{\tilde{N}^*,\tilde{\Gamma}^*}(\tilde{E})$, $u_n \in l^2_{N^*,\Gamma^*}(E)$. It is easy to see that the given space $l^2(\tilde{W}_{p,k})$ coincides with $l^2\begin{pmatrix} I & S \\ S^* & I \end{pmatrix}$, when p = k = 0, as in the case of the space $l^2(W_{p,k})$ (2.19). It follows from the relations 1) (2.36) and 1) (2.41) and from the unitarity of the $\overset{+}{U}(1,0)$ that the dilation $\overset{+}{U}(1,0)$ acts in every space $l^2(\tilde{W}_{p,k})$ (2.48) by the shift by the variable " n_1 "

$$\hat{U}_{+}(1,0)g_{n} = \begin{bmatrix} \tilde{V}_{+}(1,0) & 0\\ 0 & V_{+}(1,0) \end{bmatrix} g_{n}$$
(2.49)

for all $g_n \in l^2\left(\tilde{W}_{p,k}\right)$.

444

Further, study how the dilation $\stackrel{+}{U}(1,s)$ (1.25) acts on the vectors $\tilde{f}_{p,k} = \tilde{\mathcal{P}}_{p,k}(g_n)$ (2.46). As in the considerations above, study only the case when the dilation $\stackrel{+}{U}(1,p)$ (1.25) acts on the vectors of the type $\tilde{f}_{0,p} = \tilde{\mathcal{P}}_{0,p}(g_n)$ (2.46).

Similarly to (2.22), it is easy to prove that

$$\begin{pmatrix} I & \tilde{F}_{0,p}, \tilde{f}_{p,0} \\ \tilde{S}(0,p) & V_{+}(1,p)\tilde{W}_{-}(p)\tilde{W}_{-}^{*}(p)V_{+}^{*}(1,p) \\ \tilde{V}_{+}(1,p) & 0 \\ 0 & V_{+}^{*}(-1,-p) \end{bmatrix} g_{n}, g_{n}' \rangle_{\tilde{\tau}_{-}(p),\tau_{-}(p)},$$
(2.50)

besides, the bi-linear form in the right part is understood component-wisely in the sense of the metrics $\tilde{\tau}_{-}(p)$ and $\tau_{-}(p)$ (2.31). Let

$$\tilde{W}_{0,p}' = \begin{bmatrix} I & \tilde{S}^*(0,p) \\ \tilde{S}(0,p) & V_+(1,p)\tilde{W}_-(p)\tilde{W}_-^*(p)V_+^*(1,p) \end{bmatrix};$$

$$\hat{V}_+(1,p) = \begin{bmatrix} \tilde{V}_+(1,p) & 0 \\ 0 & V_+^*(-1,-p) \end{bmatrix}.$$
(2.51)

O b s e r v a t i o n 2.3. Consider the mapping $\tilde{\mathcal{P}}_{0,p}$ (2.46), denote by $\tilde{f}'_{0,p} = \tilde{\mathcal{P}}_{0,p}(g'_n) = \tilde{W}_+(0)\tilde{V}_+(-1,-p)v_n + \tilde{W}^*_-V^*_+(1,p)u_n$, where $u_n \in l^2_{N^*,\Gamma^*}(E)$, $v_n \in l^2_{\tilde{N},\tilde{\Gamma}}\left(\tilde{E}\right)$. Then

$$\left\langle \tilde{f}_{0,p}^{\prime}, \tilde{f}_{0,p}^{\prime} \right\rangle_{\mathcal{H}_{N^{*},\Gamma^{*}}} = \left\langle \tilde{W}_{0,p}^{\prime}g_{n}, g_{n} \right\rangle_{l^{2}}$$

follows from 2) (2.45), that is similar to Observation 2.2.

Therefore the dilation $\overset{+}{U}(1,p)$ (1.25) acts as a shift operator

$$\hat{U}_{+}(1,p) = \hat{V}(1,p)g_n \tag{2.52}$$

445

from the Hilbert space

$$l^{2}\left(\tilde{W}_{0,p}^{\prime}\right) = \left\{g_{n} = \left(\begin{array}{c}v_{n}\\u_{n}\end{array}\right) : \left\langle\tilde{W}_{0,p}^{\prime}g_{n}, g_{n}\right\rangle_{l^{2}} < \infty\right\}$$
(2.48')

 $(v_n \in l^2_{\tilde{N}^*, \tilde{\Gamma}^*}(\tilde{E}), u_n \in l^2_{N^*, \Gamma^*}(E))$ into the space $l^2(\tilde{W}_{0,p})$ (2.48). It is clear that the subspaces

$$\hat{D}_{-}(N^{*},\Gamma^{*}) = \begin{pmatrix} 0\\ P_{-}l_{N^{*},\Gamma^{*}}^{2}(E) \end{pmatrix}; \quad \hat{D}_{+}\left(\tilde{N}^{*},\tilde{\Gamma}^{*}\right) = \begin{pmatrix} P_{+}l_{\tilde{N}^{*},\tilde{\Gamma}^{*}}\left(\tilde{E}\right)\\ 0 \end{pmatrix},$$

where, as usual, P_{-} and P_{+} are orthoprojectors in $l_{N^*,\Gamma^*}^2(E)$ and in $l_{\tilde{N}^*,\tilde{\Gamma}^*}^2(\tilde{E})$ onto the subspaces of the solutions of the Cauchy problems (2.37) and (2.28) with the initial data on \mathbb{Z}_{-} and \mathbb{Z}_{+} , respectively, and are the prototypes of the subspaces $D_{-}(N^*,\Gamma^*)$ and $D_{+}(\tilde{N}^*,\tilde{\Gamma}^*)$ from $\mathcal{H}_{N^*,\Gamma^*}$ (1.24) for the mapping $\tilde{\mathcal{P}}_{p,k}$ (for all $p, k \in \mathbb{Z}_{+}$). Therefore the space H is isomorphic to

$$\hat{H}_{p,+} = l^2 \left(\tilde{W}_{0,p} \right) \ominus \left(\begin{array}{c} P_+ l_{\tilde{N}^*, \tilde{\Gamma}^*} \left(\tilde{E} \right) \\ P_- l_{N^*, \Gamma^*} (E) \end{array} \right).$$

$$(2.53)$$

Using similar considerations for $l^2\left(\tilde{W}'_{0,p}\right)$ (2.53), we obtain a different realization

$$\hat{H}'_{p,+} = l^2 \left(\tilde{W}'_{p,0} \right) \ominus \left(\begin{array}{c} \tilde{V}_+(1,p) P_+ l^2_{\tilde{N}^*,\tilde{\Gamma}^*} \left(\tilde{E} \right) \\ V^*_+(-1,-p) P_- l^2_{N^*,\Gamma^*}(E) \end{array} \right)$$
(2.53')

in view of Observation 2.3. The spaces $\hat{H}_{p,+}$ (2.53) and $\hat{H}'_{p,+}$ (2.53') are isomorphic, besides, the operator $R_{p,+}: \hat{H}_{p,+} \to \hat{H}'_{p,+}$ defining this isomorphism has the form

$$R_{p,+} = P_{\hat{H}'_{p,0}} \begin{bmatrix} V_{+}(-1,-p) & 0\\ 0 & V_{+}(1,p) \end{bmatrix} P_{\hat{H}_{p,+}},$$
(2.54)

where $P_{\hat{H}_{p,+}}$ and $P_{\hat{H}_{p,+}}$ are orthoprojectors onto $\hat{H}'_{p,+}$ (2.53') and onto $\hat{H}_{p,+}$ (2.53), respectively. It follows from (2.49) and (2.52) that the operators T_1^* and $T^*(1,p) = T_1^*T_2^{*p}$, $p \in \mathbb{Z}_+$, are

$$\left(\hat{T}_{1}^{*}f\right)_{n} = P_{\hat{H}_{p,+}}f_{n+(1,0)}; \quad \left(\hat{T}^{*}(1,p)f\right)_{n} = P_{\hat{H}_{p,+}}\hat{V}_{+}(1,p)\left(R_{p,+}f\right)_{n}$$
(2.54)

for all $f_n \in \hat{H}_{p,+}$ (2.53), $P_{\hat{H}_{p,+}}$ is an orthoprojector onto $\hat{H}_{p,+}$ and the operator $R_{p,+}$ is specified by formula (2.54). As in the previous case, the operator \hat{T}_1^* has the same form (2.54) in all spaces $\hat{H}_{p,+}$, and the operator $\hat{T}^*(1,p)$ has a given form (1.54) only in one space $\hat{H}_{p,+}$ (2.53).

Theorem 2.8. Let V_s , $\overset{+}{V_s}$ (1.1) be the simple [8] commutative unitary expansion of the operator system $\{T_1, T_2\}$ from the class $C(T_1)$ (1.3) and, moreover, the hypotheses of Lem. 1.1 be met, and dim $E = \dim \tilde{E} < \infty$. Then the isometric dilation $\overset{+}{U}(1,p)$ (1.25), $p \in \mathbb{Z}_+$, acting in the Hilbert space $\mathcal{H}_{N^*,\Gamma^*}$ (1.24), is unitary equivalent to the operator $\hat{U}_+(1,0)$ (2.49), for p = 0, in $l^2(\tilde{W}_{0,p})$ (1.24) and to the operator $\hat{U}_+(1,p)$ (2.52), for $p \in \mathbb{N}$, mapping the space $l^2(\tilde{W}'_{0,p})$ (2.48') into $l^2(\tilde{W}_{0,p})$ (2.48). Moreover, the operator \hat{T}_1^* and $T^*(1,p)$ (1.21) acting in H are unitary equivalent to the shift operator \hat{T}_1^* (2.54) in $\hat{H}_{p,+}$ (2.53) for all $p \in \mathbb{Z}_+$ and to the operator $\hat{T}(1,p)$ (2.54) acting in the fixed $\hat{H}_{p,+}$ (2.53) $(p \in \mathbb{N})$.

Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 4

References

- M.S. Livšic, N. Kravitsky, A. Markus, and V. Vinnikov, Theory of Commuting Nonselfadjoint Operators. — Math. Appl. 332 Kluver Acad. Publ. Groups, Dordrecht, 1995.
- [2] V.A. Zolotarev, Time Cones and Functional Model on the Riemann Surface. Mat. Sb. 181 (1990), No. 7, 965–995. (Russian)
- [3] B. Szekefalvi-Nagy and Ch. Foyaş, Harmony Analisys of Operators in the Hilbert Space. Mir, Moscow, 1970. (Russian)
- [4] V.A. Zolotarev, Model Representations of Commutative Systems of Linear Operators. - Funkts. Anal. i yego Prilozen. (1988), No. 22, 66-68. (Russian)
- [5] M.S. Brodskiy, Unitary Operator Colligations and their Characteristic Functions.
 Usp. Mat. Nauk 33 (1978), No. 4, 141–168. (Russian)
- [6] V.A. Zolotarev, Analitic Methods of Spectral Representations of Nonselfadjoint and Nonunitary Operators. MagPress, Kharkiv, 2003. (Russian)
- [7] V.A. Zolotarev, Isometric Expansions of Commutative Systems of Linear Operators.
 Mat. fiz., analiz, geom. 11 (2004), 282–301. (Russian)
- [8] V.A. Zolotarev, On Isometric Dilations of Commutative Systems of Linear Operators. - J. Math. Phys., Anal., Geom. 1 (2005), 1922-208.