Scattering Scheme with Many Parameters and Translational Models of Commutative Operator Systems

V.A. Zolotarev
Department of Mechanics and Mathematics, V.N. Karazin Kharkiv National University 4 Svobody Sq., Kharkiv, 61077, Ukraine
E-mail:Vladimir.A.Zolotarev@univer.kharkov.ua

Received February 27, 2006

The scattering scheme with many parameters for a commutative system of linear bounded operators $\left\{T_{1}, T_{2}\right\}$, when T_{1} is a contraction, is built. Using this construction of the scattering scheme, the translation model of the semigroup with two parameters $T(n)=T_{1}^{n_{1}} T_{2}^{n_{2}}, n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}_{+}^{2}$ is obtained. Description of characteristic properties of the dilation U of the contraction T_{1}, that follows from the commutative property of the operators T_{1} and T_{2}, in terms of external parameters lies in the basis of the method of the construction of the translational models for $T(n)$.

Key words: scattering scheme with many parameters, translational model, commutative operator system.

Mathematics Subject Classification 2000: 47A45.

The construction of the functional and translational models for a contracting operator $T(\|T\| \leq 1)$ and its unitary dilation $U[3,6]$ is based on the study of the basic properties of the wave operators $W_{ \pm}$and scattering operator S [6]. Immediate generalization of these constructions for the case of the commutative operator system $\left\{T_{1}, T_{2}\right\},\left[T_{1}, T_{2}\right]=0$ is not trivial and not always possible.

In this paper, a new method generalizing the scattering scheme on the case of many parameters by P. Lax and R. Fillips is presented. This method uses the isometric expansion $\left\{V_{s}, \stackrel{+}{V}_{s}\right\}_{1}^{2}[7]$ based on isometric dilation for the commutative operator system $\left\{T_{1}, T_{2}\right\}$ of the class $C\left(T_{1}\right)[7,8]$ constructed in [8]. Unlike in a one-variable situation, two scattering operators $S(p, k)$ and $\tilde{S}(p, k), p, k \in \mathbb{Z}_{+}$ appear here. These operators have the property $S^{*}(0,0)=\tilde{S}(0,0)$. Using the method presented in [6], the generalization of construction of translational models for one operator T_{1} for the commutative operator system $\left\{T_{1}, T_{2}\right\}$, when one of the operators, e. g., T_{1}, is a contraction, is presented in this paper.

1. Isometric Dilations of Commutative Operator System

I. Consider the commutative system of linear bounded operators $\left\{T_{1}, T_{2}\right\}$, $\left[T_{1}, T_{2}\right]=T_{1} T_{2}-T_{2} T_{1}=0$ in the separable Hilbert space H. Hereinafter, we will suppose that one of the operators of the system $\left\{T_{1}, T_{2}\right\}$, e.g., T_{1}, is a contraction, $\left\|T_{1}\right\| \leq 1$. Following $[4,7,8]$, define the commutative unitary expansion for the system $\left\{T_{1}, T_{2}\right\}$.

Definition 1. Let the commutative system of the linear bounded operators $\left\{T_{1}, T_{2}\right\}$ be given in the Hilbert space H, where T_{1} is a contraction, $\left\|T_{1}\right\| \leq 1$. The set of mappings

$$
\begin{array}{lll}
V_{1}=\left[\begin{array}{cc}
T_{1} & \Phi \\
\Psi & K
\end{array}\right] ; \quad V_{2}=\left[\begin{array}{cc}
T_{2} & \Phi N \\
\Psi & K
\end{array}\right]: & H \oplus E \rightarrow H \oplus \tilde{E} ; \\
\stackrel{V}{V}_{1}=\left[\begin{array}{cc}
T_{1}^{*} & \Psi^{*} \\
\Phi^{*} & K^{*}
\end{array}\right] ; \quad & V_{2}=\left[\begin{array}{cc}
T_{2}^{*} & \Psi^{*} \tilde{N}^{*} \\
\Phi^{*} & K^{*}
\end{array}\right]: & H \oplus \tilde{E} \rightarrow H \oplus E, \tag{1.1}
\end{array}
$$

where E and \tilde{E} are Hilbert spaces, is said to be the commutative unitary expansion of the commutative system of operators T_{1}, T_{2} in $H,\left[T_{1}, T_{2}\right]=0$, if there are such operators σ, τ, N, Γ and $\tilde{\sigma}, \tilde{\tau}, \tilde{N}, \tilde{\Gamma}$ in the Hilbert spaces E and \tilde{E}, where σ, τ, $\tilde{\sigma}, \tilde{\tau}$ are selfadjoint, that the following relations take place:

1) $\stackrel{+}{{ }^{V}} V_{1}=\left[\begin{array}{cc}I & 0 \\ 0 & I\end{array}\right] ; \quad V_{1} \stackrel{+}{V_{1}}=\left[\begin{array}{cc}I & 0 \\ 0 & I\end{array}\right]$;
2) $V_{2}^{*}\left[\begin{array}{cc}I & 0 \\ 0 & \tilde{\sigma}\end{array}\right] V_{2}=\left[\begin{array}{cc}I & 0 \\ 0 & \sigma\end{array}\right] ; \quad \stackrel{+}{V_{2}^{*}}\left[\begin{array}{cc}I & 0 \\ 0 & \tau\end{array}\right] \stackrel{+}{V_{2}}=\left[\begin{array}{cc}I & 0 \\ 0 & \tilde{\tau}\end{array}\right]$;
3) $T_{2} \Phi-T_{1} \Phi N=\Phi \Gamma ; \quad \Psi T_{2}-\tilde{N} \Psi T_{1}=\tilde{\Gamma} \Psi$;
4) $\tilde{N} \Psi \Phi-\Psi \Phi N=K \Gamma-\tilde{\Gamma} K$;
5) $\tilde{N} K=K N$.

Consider the following class of commutative systems of linear operators $\left\{T_{1}, T_{2}\right\}$.
Definition 2. The commutative system of operators T_{1}, T_{2} belongs to the class $C\left(T_{1}\right)$ and is said to be the contracting operator system for T_{1} if:

1) T_{1} is a contraction, $\left\|T_{1}\right\| \leq 1$;
2) $E \stackrel{\text { def }}{=} \overline{\tilde{D}_{1} H} \supseteq \overline{\tilde{D}_{2} H} ; \quad \tilde{E} \stackrel{\text { def }}{=} \overline{D_{1} H} \supseteq \overline{D_{2} H}$;
3) $\operatorname{dim} \overline{T_{2} \tilde{D}_{1} H}=\operatorname{dim} E ; \quad \operatorname{dim} \overline{D_{1} T_{2} H}=\operatorname{dim} \tilde{E}$;
4) operators $\left.\quad D_{1}\right|_{\tilde{E}},\left.\quad \tilde{D}_{1}\right|_{E},\left.\quad \tilde{D}_{1} T_{2}^{*}\right|_{\overline{T_{2} \tilde{D}_{1} H}},\left.\quad \tilde{D}_{1}\right|_{E},\left.\quad T_{2}^{*} D_{1}\right|_{\overline{D_{1} T_{2} H}}$
are boundedly invertible, where $D_{s}=T_{s}^{*} T_{s}-I, \tilde{D}_{s}=T_{s} T_{s}^{*}-I, s=1,2$.

It is easy to see that if $\left\{T_{1}, T_{2}\right\} \in C\left(T_{1}\right)$, then the unitary expansion (1) always exists.

Let E and \tilde{E} be Hilbert spaces defined in 2) (1.3). Choose the unitary operators V and $\tilde{V}, V: \overline{T_{2} \tilde{D}_{1} H} \rightarrow \overline{\tilde{D}_{1} H} ; \tilde{V}: \overline{T_{2}^{*} D_{1} H} \rightarrow \overline{D_{1} H}$, what is always possible in view of 3) (1.3). Define now the invertible operators $N_{1}=\tilde{D}_{1} T_{2}^{*} V^{*}$ and $\tilde{N}_{1}=\tilde{V} T_{2}^{*} D_{1}$ in E and \tilde{E} (see 4) (1.3)). It is easy to see that the operators $\sigma_{1}=-N_{1}^{*-1} \tilde{D}_{1}^{-1} N_{1}$ in E and $\tilde{\sigma}_{1}=-D_{1}$ in \tilde{E} are invertible, selfadjoint and nonnegative in view of 1), 4) (1.3). Consider the following set of operators

$$
\begin{gathered}
N=\sqrt{\sigma_{1}} N_{1}^{-1} \tilde{D}_{2} T_{1}^{*} \sqrt{\sigma_{1}^{-1}} ; \quad \tilde{N}=\sqrt{\tilde{\sigma}_{1}} \tilde{N}_{1}^{-1} T_{1}^{*} D_{2} \sqrt{\tilde{\sigma}_{1}^{-1}} \\
\Gamma=\sqrt{\sigma_{1}} N_{1}^{-1}\left(\tilde{D}_{1}-\tilde{D}_{2}\right) \sqrt{\sigma_{1}^{-1}} ; \quad \tilde{\Gamma}=\sqrt{\tilde{\sigma}_{1}} \tilde{N}_{1}^{-1}\left(D_{1}-D_{2}\right) \sqrt{\tilde{\sigma}_{1}^{-1}} ; \\
\sigma=-\sqrt{\sigma_{1}^{-1}} T_{1} \tilde{D}_{2} T_{1}^{*} \sqrt{\sigma_{1}^{-1}} ; \quad \tilde{\sigma}=-\sqrt{\tilde{\sigma}_{1}^{-1}} D_{2} \sqrt{\tilde{\sigma}_{1}^{-1}} \\
\tau=-\sqrt{\sigma_{1}} N_{1}^{-1} D_{2} N_{1}^{*-1} \sqrt{\sigma_{1}} ; \quad \tilde{\tau}=-\sqrt{\sigma_{1}} \tilde{N}_{1}^{-1} T_{1}^{*} D_{2} T_{1} \tilde{N}_{1}^{*-1} \sqrt{\tilde{\sigma}_{1}} ; \\
\varphi=P_{E} N_{1} \sqrt{\sigma_{1}^{-1}} ; \quad \psi=\sqrt{\tilde{\sigma}_{1}} P_{\tilde{E}} ; \quad K=\sqrt{\tilde{\sigma}_{1}} T_{1}^{*} T_{2}^{*} \sqrt{\sigma_{1}^{-1}}
\end{gathered}
$$

where P_{E} and $P_{\tilde{E}}$ are orthoprojectors on E and \tilde{E}, respectively. It is easy to prove that in this case relations 1.2 are true for $\left\{V_{s}, \stackrel{+}{V}_{s}\right\}_{1}^{2}$ (1.1). Thus for the commutative operator system $\left\{T_{1}, T_{2}\right\}$ of the class $\left.C\right)\left(T_{1}\right)$ there always exists the unitary isometric expansion (1.1), (1.2).

Note that the conditions 1) and 2) (1.2) for the expansions $\left\{V_{s} \stackrel{+}{V_{s}}\right\}_{1}^{2}$ have a standard nature and play an important role in the construction of isometric (unitary) dilations $[3,6,7]$. One should consider relations 3)-5) (1.2) as the conditions of concordance of these expansions which follow from the commutative property of the operator system $\left\{T_{1}, T_{2}\right\}$.
II. Remind the construction of the unitary dilation $[3,6]$ for a contraction T_{1}. As usually $[6,7]$, we will denote by $l_{M}^{2}(G)$ the Hilbert space of G-valued functions u_{k} which assume a value in the Hilbert space $G, u_{k} \in G$, where $k \in M$ and $M \subseteq \mathbb{Z}$ are such that $\sum_{k \in M}\left\|u_{k}\right\|^{2}<\infty$. Let \mathcal{H} be the Hilbert space of the following type

$$
\begin{equation*}
\mathcal{H}=D_{-} \oplus H \oplus D_{+} \tag{1.4}
\end{equation*}
$$

where $D_{-}=l_{\mathbb{Z}_{-}}^{2}(E)$ and $D_{+}=l_{\mathbb{Z}_{+}}^{2}(\tilde{E})$. Specify the dilation U on the vectorfunctions $f=\left(u_{k}, h, v_{k}\right)$ from \mathcal{H} (1.4) in the following way:

$$
\begin{equation*}
U f=\left(P_{D_{-} u_{k-1}}, \tilde{h}, \tilde{v}_{k}\right) \tag{1.5}
\end{equation*}
$$

where $\tilde{h}=T_{1} h+\Phi u_{-1}, \tilde{v}_{0}=\Psi h+K u_{-1}, \tilde{v}_{k}=v_{k-1}(k=1,2, \ldots)$, and $P_{D_{-}}$is the operator of contraction on D_{-}. The unitary property of $U(1.5)$ in \mathcal{H} follows from 1) (1.2).

To construct the isometric dilation [8] of a commutative operator system $\left\{T_{1}, T_{2}\right\} \in C\left(T_{1}\right)$, continue the incoming D_{-}and outgoing D_{+}subspaces

$$
\begin{equation*}
D_{-}=l_{\mathbb{Z}_{-}}^{2}(E) ; \quad D_{+}=l_{\mathbb{Z}_{+}}^{2}(\tilde{E}) \tag{1.6}
\end{equation*}
$$

by the second variable " n_{2} ". At first, continue functions $u_{n_{1}} \in l_{\mathbb{Z}_{-}}^{2}(E)$ from the semiaxis \mathbb{Z}_{-}into the domain

$$
\begin{equation*}
\tilde{\mathbb{Z}}_{-}^{2}=\mathbb{Z}_{-} \times\left(\mathbb{Z}_{-} \cup\{0\}\right)=\left\{n=\left(n_{1} ; n_{2}\right) \in \mathbb{Z}^{2}: n_{1}<0 ; n_{2} \leq 0\right\} \tag{1.7}
\end{equation*}
$$

using the following Cauchy problem [7, 8]:

$$
\left\{\begin{array}{l}
\tilde{\partial}_{2} u_{n}=\left(N \tilde{\partial}_{1}+\Gamma\right) u_{n} ; \quad n=\left(n_{1}, n_{2}\right) \in \tilde{\mathbb{Z}}_{-}^{2} \tag{1.8}\\
\left.u_{n}\right|_{n_{2}=0}=u_{n_{1}} \in l_{\mathbb{Z}_{-}}^{2}(E)
\end{array}\right.
$$

where $\tilde{\partial}_{1} u_{n}=u_{\left(n_{1}-1, n_{2}\right)}, \tilde{\partial}_{2} u_{n}=u_{\left(n_{1}, n_{2}-1\right)}$. As a result, we obtain the Hilbert space $D_{-}(N, \Gamma)$ which is formed by u_{n}, the solutions of (1.8), at the same time the norm in $D_{-}(N, \Gamma)$ is induced by the norm of initial data $\left\|u_{n}\right\|=\left\|u_{n_{1}}\right\|_{L_{\mathbb{Z}_{-}}(E)}$.

Similarly, continue functions $v_{n_{1}} \in l_{\mathbb{Z}_{+}}^{2}(\tilde{E})$ from the semiaxis \mathbb{Z}_{+}into the domain $\mathbb{Z}_{+}^{2}=\mathbb{Z}_{+} \times \mathbb{Z}_{+}$using the Cauchy problem

$$
\left\{\begin{array}{l}
\tilde{\partial}_{2} v_{n}=\left(\tilde{N} \tilde{\partial}_{1}+\tilde{\Gamma}\right) v_{n} ; \quad n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}_{+}^{2} \tag{1.9}\\
\left.v_{n}\right|_{n_{2}=0}=v_{n_{1}} \in l_{\mathbb{Z}_{+}}^{2}(E)
\end{array}\right.
$$

Thus we obtain the Hilbert space $D_{+}(\tilde{N}, \tilde{\Gamma})$ that is made of solutions v_{n} (1.9), besides $\left\|v_{n}\right\|=\left\|v_{n_{1}}\right\|_{l_{\mathbb{Z}_{+}}^{2}(\tilde{E})}$. Unlike the evident recurrent scheme (1.8) of the layer-to-layer calculation of $n_{2} \rightarrow n_{2}-1$ for u_{n}, in this case, while constructing v_{n} in \mathbb{Z}_{+}^{2}, we are dealing with the implicit linear system of equations for layer-to-layer calculation of $n_{2} \rightarrow n_{2}+1$ for the function v_{n}.

Hereinafter, the following lemma plays an important role. The proof of the lemma is given in [8].

Lemma 1.1. Suppose the commutative unitary expansion $V_{s}, \stackrel{+}{V}_{s}(1.1)$ is such that

$$
\begin{equation*}
\operatorname{Ker} \Phi=\operatorname{Ker} \Psi^{*}=\{0\} \tag{1.10}
\end{equation*}
$$

Then $\operatorname{Ker} N \cap \operatorname{Ker} \Gamma=\{0\}$ given $\operatorname{Ker} K^{*}=\{0\}$, and respectively $\operatorname{Ker} \tilde{N}^{*} \cap$ $\operatorname{Ker} \tilde{\Gamma}^{*}=0$ given Ker $K=\{0\}$.

The solvability of the Cauchy problem (1.9) easily follows [8] from the given lemma.

Statement 1.1. Let $\operatorname{dim} \tilde{E}<\infty$ and the assumptions of Lem. 1.1 be true, then the solution v_{n} of the Cauchy problem (1.9) exists and is unique in the domain \mathbb{Z}_{+}^{2} for all initial data $v_{n_{1}}$ from $l_{\mathbb{Z}_{+}}^{2}(\tilde{E})$.

Consider now the operator-function of discrete argument

$$
\tilde{\sigma}_{\Delta}= \begin{cases}I: & \Delta=(1 ; 0) ; \tag{1.11}\\ \tilde{\sigma} ; & \Delta=(0,1) .\end{cases}
$$

Let L_{0}^{n} be the nonincreasing polygon that connects points $O=(0,0)$ and $n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}_{+}^{2}$ and linear segments of which are parallel to the axes $O X$ $\left(n_{2}=0\right)$ and $O Y\left(n_{1}=0\right)$. Denote by $\left\{P_{k}\right\}_{0}^{N}$ all integer-valued points from $\mathbb{Z}_{+}^{2}, P_{k} \in \mathbb{Z}_{+}^{2}\left(N=n_{1}+n_{2}\right)$ that lie on L_{0}^{n}, beginning with (0,0) and finishing with the point $\left(n_{1}, n_{2}\right)$, that are numbered in nondescending order (of one of the coordinates of P_{k}). Assuming that $P_{-1}=(-1,0)$, define the quadratic form

$$
\begin{equation*}
\left\langle\tilde{\sigma} v_{k}\right\rangle_{L_{0}^{n}}^{2}=\sum_{k=0}^{N}\left\langle\tilde{\sigma}_{P_{k}-P_{k-1}} v_{P_{k}}, v_{P_{k}}\right\rangle \tag{1.12}
\end{equation*}
$$

on the vector-functions $v_{k} \in D_{+}(\tilde{N}, \tilde{\Gamma})$.
Similarly, consider the nondecreasing polygon L_{m}^{-1} in $\tilde{\mathbb{Z}}_{-}^{2}(1.7)$ that connects points $m=\left(m_{1}, m_{2}\right) \in \tilde{\mathbb{Z}}_{-}^{2}$ and $(-1,0)$, the straight segments of which are parallel to $O X$ and $O Y$. Let $\left\{Q_{s}\right\}_{M}^{-1}\left(M=m_{1}+m_{2}\right)$ be all integer-valued points on L_{m}^{-1}, beginning with $m=\left(m_{1}, m_{2}\right)$ and finishing with $(-1,0)$, that are numbered in nondescending order (of one of the coordinates of Q_{s}). Define the metric in $D_{-}(N, \Gamma)$,

$$
\begin{equation*}
\left\langle\sigma u_{k}\right\rangle_{L_{m}^{-1}}^{2}=\sum_{s=M}^{-1}\left\langle\sigma_{Q_{s}-Q_{s-1}} u_{Q_{s}}, u_{Q_{s}}\right\rangle, \tag{1.13}
\end{equation*}
$$

besides $Q_{M}-Q_{M-1}=(1,0)$, and the operator-function σ_{Δ} is defined similarly to $\tilde{\sigma}_{\Delta}(1.11)$. Denote by \tilde{L}_{-n}^{-1} the polygon in $\tilde{\mathbb{Z}}_{-}^{2}$ that is obtained from the curve L_{0}^{n} in $\mathbb{Z}_{+}^{2}\left(n \in \mathbb{Z}_{+}^{2}\right)$ using the shift by " n "

$$
\begin{equation*}
\tilde{L}_{-n}^{-1}=\left\{Q_{s}=\left(l_{1}, l_{2}\right) \in \tilde{\mathbb{Z}}_{-}^{2}:\left(l_{1}+n_{1}+1, l_{2}+n_{2}\right)=P_{k} \in L_{0}^{n}\right\} . \tag{1.14}
\end{equation*}
$$

III. Having now the Hilbert space $D_{-}(N, \Gamma)$, that is formed by the solutions of the Cauchy problem (1.8) and the space $D_{+}(\tilde{N}, \tilde{\Gamma})$, that is formed by the solutions of (1.9), we can define the Hilbert space

$$
\begin{equation*}
\mathcal{H}_{N, \Gamma}=D_{-}(N, \Gamma) \oplus H \oplus D_{+}(\tilde{N}, \tilde{\Gamma}), \tag{1.15}
\end{equation*}
$$

the norm in which is defined by the norm of the initial space $\mathcal{H}=D_{-} \oplus H \oplus D_{+}$ (1.4). Denote by $\hat{\mathbb{Z}}_{+}^{2}$ the subset in \mathbb{Z}_{+}^{2},

$$
\begin{equation*}
\hat{\mathbb{Z}}_{+}^{2}=\mathbb{Z}_{+}^{2} \backslash(\{0\} \times \mathbb{N})=\{(0,0)\} \cup\left(\mathbb{N} \times \mathbb{Z}_{+}\right) \tag{1.16}
\end{equation*}
$$

that is obviously an additional semigroup.
For every $n \in \hat{\mathbb{Z}}_{+}^{2}(1.16)$, define an operator-function $U(n)$ that acts on the vectors $f=\left(u_{k}, h, v_{k}\right) \in \mathcal{H}_{n, \Gamma}(1.15)$ in the following way:

$$
\begin{equation*}
U(n) f=f(n)=\left(u_{k}(n), h(n), v_{k}(n)\right) \tag{1.17}
\end{equation*}
$$

where $u_{k}(n)=P_{D_{-}(N, \Gamma)} u_{k-n}\left(P_{D_{-}(N, \Gamma)}\right.$ is an orthoprojector that corresponds to the restriction on $\left.D_{-}(N, \Gamma)\right) ; h(n)=y_{0}$, besides $y_{k} \in H\left(k \in \mathbb{Z}_{+}^{2}\right)$ is a solution of the Cauchy problem

$$
\left\{\begin{array}{l}
\tilde{\partial}_{1} y_{k}=T_{1} y_{k}+\Phi u_{\tilde{k}} ; \tag{1.18}\\
\tilde{\partial}_{2} y_{k}=T_{2} y_{k}+\Phi N u_{\tilde{\tilde{F}}} ; \\
y_{n}=h ; \quad k=\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2} \quad\left(0 \leq k_{1} \leq n_{1}-1, \quad 0 \leq k_{2} \leq n_{2}\right) ;
\end{array}\right.
$$

at the same time $\tilde{k}=k-n$ when $0 \leq k_{1} \leq n_{1}-1,0 \leq k_{2} \leq n_{2}$, and finally

$$
\begin{equation*}
v_{k}(n)=\hat{v}_{k}+v_{k-n} \tag{1.19}
\end{equation*}
$$

and $\hat{v}_{k}=K u_{\tilde{k}}+\Psi y_{k}$, where y_{k} is a solution of the Cauchy problem (1.18).
It is easy to see that the operator-function $U(n)$ (1.17) maps the space $\mathcal{H}_{N, \Gamma}(1.15)$ into itself for all $n \in \hat{\mathbb{Z}}_{+}^{2}$ (1.16), moreover, the following theorem takes place [8].

Theorem 1.1. Suppose $\operatorname{dim} \tilde{E}<\infty$ and the suppositions of Lem. 1.1 take place, then the following conservation law is true for the vector-function $f(n)=$ $U(n) f$ (1.17):

$$
\begin{equation*}
\|h(n)\|^{2}+\left\langle\tilde{\sigma} v_{k}(n)\right\rangle_{L_{0}^{\hat{n}}}^{2}=\|h\|^{2}+\left\langle\sigma u_{k}\right\rangle_{\tilde{L}_{-n}^{-1}}^{2} \tag{1.20}
\end{equation*}
$$

for all $n \in \hat{\mathbb{Z}}_{+}^{2}$ (1.16) and for all nondecreasing polygons $\hat{L}_{0}^{\hat{n}}$ that connect points $O=(0,0)$ and $\hat{n}=\left(n_{1}-1, n_{2}\right) \in \mathbb{Z}_{+}^{2}$, where $\tilde{L}_{-\hat{n}}^{-1}$ is a polygon obtained from L_{0}^{n} by the shift (1.14) by " n ", at the same time the corresponding σ-forms in (1.20) have the form of (1.12) and (1.13). The operator-function $U(n)$ (1.17) is a semigroup, $U(n) \cdot U(m)=U(n+m)$, for all $n, m \in \hat{\mathbb{Z}}_{+}^{2}$ (1.16).

It follows from [8] and from this theorem that the operator-function $U(n)$ (1.17) is an isometric dilation of the semigroup

$$
\begin{equation*}
T(n)=T_{1}^{n_{1}} T_{2}^{n_{2}}, \quad n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}_{+}^{2} \tag{1.21}
\end{equation*}
$$

IV. Make the similar continuation of the subspaces D_{+}and D_{-}(1.6) from the semiaxes \mathbb{Z}_{+}and \mathbb{Z}_{-}by the second variable " n_{2} ", corresponding to the dual
situation. Denote by $D_{+}\left(\tilde{N}^{*}, \tilde{\Gamma}^{*}\right)$ the Hilbert space generated by solutions \tilde{v}_{n} of the Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{2} \tilde{v}_{n}=\left(\tilde{N}^{*} \partial_{1}+\tilde{\Gamma}^{*}\right) \tilde{v}_{n} ; \quad n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}_{+}^{2} ; \tag{1.22}\\
\left.\tilde{v}_{n}\right|_{n_{2}=0}=v_{n_{1}} \in l_{\mathbb{Z}_{+}}^{2}(\tilde{E}),
\end{array}\right.
$$

in which the norm is induced by the norm of the initial data $\left\|\tilde{v}_{n}\right\|=\left\|v_{n_{1}}\right\|_{l_{\mathbb{Z}_{+}}^{2}(E)}$, besides $\partial_{1} \tilde{v}_{n}=\tilde{v}_{\left(n_{1}+1, n_{2}\right)}, \partial_{2} \tilde{v}_{n}=\tilde{v}_{\left(n_{1}, n_{2}+1\right)}$.

Continue now every function $u_{n_{1}} \in l_{\mathbb{Z}_{-}}^{2}(E)$ into the domain $\tilde{\mathbb{Z}}_{-}^{2}$ (1.7) using the Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{2} \tilde{u}_{n}=\left(N^{*} \partial_{1}+\Gamma^{*}\right) \tilde{u}_{n} ; \quad n=\left(n_{1}, n_{2}\right) \in \tilde{\mathbb{Z}}_{-}^{2} ; \tag{1.23}\\
\left.\tilde{u}_{n}\right|_{n_{2}=0}=u_{n_{1}} \in l_{\mathbb{Z}_{-}}^{2}(E) .
\end{array}\right.
$$

As a result, we obtain the Hilbert space $D_{-}\left(N^{*}, \Gamma^{*}\right)$ generated by \tilde{u}_{n}, solutions of (1.23), besides $\left\|\tilde{u}_{n}\right\|=\left\|u_{n_{1}}\right\|_{l_{\mathbb{Z}_{-}}^{2}(E)}$. Using now Lem. 1.1, we can formulate an analogue of St. 1 [8].

Statement 1.2. Let $\operatorname{dim} E<\infty$ and the suppositions of Lem. 1.1 be true, then the solution \tilde{u}_{n} of the Cauchy problem (1.23) exists and is unique in the domain $\tilde{\mathbb{Z}}_{-}^{2}(1.7)$ for all initial data $u_{n_{1}} \in l_{\mathbb{Z}}^{2}(E)$.

O b s e r vat i o n 1.1. The sufficient condition for the simultaneous existence of solutions of the Cauchy problems (1.9) and (1.23), in view of the reversibility of operators K and K^{*}, according to Lem. 1.1, is the following: all hypotheses of Lem. 1.1 are met and $\operatorname{dim} E=\operatorname{dim} \tilde{E}<\infty$.

Hence we come to the Hilbert space

$$
\begin{equation*}
\mathcal{H}_{N^{*}, \Gamma^{*}}=D_{-}\left(N^{*}, \Gamma^{*}\right) \oplus H \oplus D_{+}\left(\tilde{N}^{*}, \tilde{\Gamma}^{*}\right) \tag{1.24}
\end{equation*}
$$

where the metric is induced by the norm of the initial space $\mathcal{H}=D_{-} \oplus H \oplus D_{+}$ (1.4). Note that the dual feature of the spaces $\mathcal{H}_{N, \Gamma}(1.15)$ and $\mathcal{H}_{N^{*}, \Gamma^{*}}(1.24)$ is that differential operators of the Cauchy problems (18) and (1.23) and operators (1.9) and (1.22) also are adjoint with each other respectively in the metric l^{2}.

Define now the operator-function $\stackrel{+}{U}(n)$ for $n \in \hat{\mathbb{Z}}_{+}^{2}(1.16)$ in the space $\mathcal{H}_{N^{*}, \Gamma^{*}}$ (1.24), which acts on $\tilde{f}=\left(\tilde{u}_{k}, \tilde{h}, \tilde{v}_{k}\right) \in \mathcal{H}_{N^{*}, \Gamma^{*}}$ in the following way:

$$
\begin{equation*}
\stackrel{+}{U}(n) \tilde{f}=\tilde{f}(n)=\left(\tilde{u}_{k}(n), \tilde{h}(n), \tilde{v}(n)\right) \tag{1.25}
\end{equation*}
$$

where $\tilde{v}_{k}(n)=P_{D_{+}\left(\tilde{N}^{*}, \tilde{\Gamma}^{*}\right)} \tilde{v}_{k+n}\left(P_{D_{+}\left(\tilde{N}^{*}, \tilde{\Gamma}^{*}\right)}\right.$ is an orthoprojector onto $\left.D_{+}\left(\tilde{N}^{*}, \tilde{\Gamma}^{*}\right)\right)$;
$\tilde{h}(n)=\tilde{y}_{(-1 ; 0)}$, besides $\tilde{y}_{k}\left(k \in \tilde{\mathbb{Z}}_{-}^{2}\right)$ satisfies the Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{1} \tilde{y}_{k}=T_{1}^{*} \tilde{y}_{k}+\Psi^{*} \tilde{v}_{\hat{k}} ; \tag{1.26}\\
\partial_{2} \tilde{y}_{k}=T_{2}^{*} \tilde{y}_{k}+\Psi^{*} \tilde{N}^{*} \tilde{v}_{\tilde{k}} ; \\
\tilde{y}_{\left(-n_{1} ;-n_{2}\right)}=h ; k=\left(k_{1} ; k_{2}\right) \in \tilde{\mathbb{Z}}_{-}^{2}\left(-n_{1} \leq k_{1} \leq-1 ;-n_{2} \leq k_{2} \leq 0\right)
\end{array}\right.
$$

besides $\tilde{k}=k+n$ шII $\left(-n_{1} \leq k_{1} \leq-1 ;-n_{2} \leq k_{2} \leq 0\right)$; and finally

$$
\begin{equation*}
\tilde{u}_{k}(n)=\hat{u}_{k}+\tilde{u}_{k+n}, \tag{1.27}
\end{equation*}
$$

and $\hat{u}_{k}=K^{*} \tilde{v}_{\hat{k}}+\Phi^{*} \tilde{y}_{k}$, where \tilde{y}_{k} is a solution of the system (1.26).
Similarly to (1.11), define the operator-function

$$
\tau_{\Delta}= \begin{cases}I ; & \Delta=(-1,0) \tag{1.28}\\ \tau ; & \Delta=(0,-1)\end{cases}
$$

Denote by L_{m}^{-1} a nondecreasing polygon in $\tilde{\mathbb{Z}}_{-}^{2}(1.7)$ with the linear segments that are parallel to the axes $O X$ and $O Y$ which connects the points $m=\left(m_{1}, m_{2}\right) \in \tilde{\mathbb{Z}}_{-}^{2}$ and $(-1,0)$. Choose now all the points $\left\{Q_{s}\right\}_{M}^{-1}\left(M=m_{1}+m_{2}\right)$ on L_{m}^{-1} that are numerated in nonascending order (of one of the coordinates Q_{s}) beginning with the point $(-1,0)$ and finishing with $m=\left(m_{1}, m_{2}\right) \in \tilde{\mathbb{Z}}_{-}^{2}$. Define the quadratic form

$$
\begin{equation*}
\left\langle\tau \tilde{u}_{k}\right\rangle_{L_{m}^{-1}}^{2}=\sum_{s=M}^{-1}\left\langle\tau_{Q_{s}-Q_{s+1}} \tilde{u}_{Q_{s}}, \tilde{u}_{Q_{s}}\right\rangle \tag{1.29}
\end{equation*}
$$

in the space $D_{-}\left(N^{*}, \Gamma^{*}\right)$, where $Q_{0}=(0,0)$. For the polygon L_{0}^{n} in $\mathbb{Z}_{+}^{2}, n=$ $\left(n_{1}, n_{2}\right) \in \mathbb{Z}_{+}^{2}$, of the similar type with points $\left\{P_{k}\right\}_{0}^{N}\left(N=n_{1}+n_{2}\right)$ on L_{0}^{n} which are also chosen in nonascending order, define the quadratic form for the functions $\tilde{v}_{k} \in D_{+}\left(\tilde{N}^{*}, \tilde{\Gamma}^{*}\right)$

$$
\begin{equation*}
\left\langle\tilde{\tau}_{k}\right\rangle_{L_{0}^{n}}^{2}=\sum_{k=0}^{N}\left\langle\tilde{\tau}_{P_{k}-P_{k+1}} \tilde{v}_{P_{k}}, \tilde{v}_{P_{k}}\right\rangle, \tag{1.30}
\end{equation*}
$$

where $P_{N}-P_{N+1}=(-1,0)$ and $\tilde{\tau}_{\Delta}$ is defined similarly to $\tau_{\Delta}(1.28)$. Denote by \tilde{L}_{0}^{m} the polygon in \mathbb{Z}_{+}^{2} obtained from the curve L_{m}^{-1} from $\tilde{\mathbb{Z}}_{-}^{2}$ using the shift by " m "

$$
\begin{equation*}
\tilde{L}_{0}^{m}=\left\{P_{k}=\left(l_{1}, l_{2}\right) \in \mathbb{Z}_{+}^{2}:\left(l_{1}+m_{1}, l_{2}+m_{2}\right)=Q_{s} \in L_{m}^{-1}\right\} \tag{1.31}
\end{equation*}
$$

where $m=\left(m_{1}, m_{2}\right) \in \tilde{\mathbb{Z}}_{-}^{2}$. Similarly to Th. 1.1, the following statement [8] takes place.

Theorem 1.2. Suppose that $\operatorname{dim} E<\infty$ and that the hypotheses of Lem. 1.1 take place, then for the vector-function $\tilde{f}(n)=\stackrel{+}{U}(n) \tilde{f}$ (1.25) the equality

$$
\begin{equation*}
\|\tilde{h}(n)\|^{2}+\left\langle\tau \tilde{u}_{k}(n)\right\rangle_{L_{-n}^{-1}}^{2}=\|h\|^{2}+\left\langle\tilde{\tau} \tilde{v}_{k}\right\rangle_{\tilde{L}_{0}^{-n}} \tag{1.32}
\end{equation*}
$$

takes place for all $n \in \hat{\mathbb{Z}}_{+}^{2}$ (1.16) and for all polygons L_{-n}^{-1} connecting points $-n=\left(-n_{1},-n_{2}\right) \in \tilde{\mathbb{Z}}_{-}^{2}$ and $(-1,0)$, where \tilde{L}_{0}^{-n} is a curve in \mathbb{Z}_{+}^{2} obtained from L_{-n}^{-1} using the shift (1.31) by "-n", and corresponding τ-forms in (1.32) have the form of (1.29) and (1.30). The operator-function $\stackrel{+}{U}(n)$ (1.25) has the semigroup property, $\stackrel{+}{U}(n) \stackrel{+}{U}(m)=\stackrel{+}{U}(n+m)$ for all n, $m \in \hat{\mathbb{Z}}_{+}^{2}$ (1.16).

The fact that the semigroup $\stackrel{+}{U}(n)(1.25)$ is the isometric dilation of the semigroup $T^{*}(n)$, where $T(n)$ has the form of (1.21), is proved in [8].

In the conclusion of this paragraph, note that the dilations $U(n)(1.17)$ and $\stackrel{+}{U}(n)(1.25)$ are unitary linked, i.e., $U^{*}\left(n_{1}, 0\right) f=\stackrel{+}{U}\left(n_{1}, 0\right) f$ for all $f \in \mathcal{H}(1.4)$ and for all $n_{1} \in \mathbb{Z}_{+}$, and the narrowing $U\left(n_{1}, 0\right)$ onto \mathcal{H} is a unitary semigroup.

2. Scattering Scheme with Many Parameters and Translational Models

I. As it is known [3, 6], a translational (as well as a functional) model of the contraction T and its dilation $U(1.5)$ is based on the study of the main properties of the wave operators $W_{ \pm}$and scattering operator S.

In order to construct the wave operators $W_{ \pm}$in the case of many parameters, it is necessary also to continue the vector-functions from $l_{\mathbb{Z}}^{2}(\tilde{E})$ and $l_{\mathbb{Z}}^{2}(E)$ from the axis \mathbb{Z} into the domain \mathbb{Z}^{2}. Continue every function $u_{n_{1}} \in l_{\mathbb{Z}}^{2}(E)$ to the function u_{n}, where $n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$, using the Cauchy problem

$$
\left\{\begin{array}{l}
\tilde{\partial}_{2} u_{n}=\left(N \tilde{\partial}_{1}+\Gamma\right) u_{n} ; \quad n \in \mathbb{Z}^{2} \tag{2.1}\\
\left.u_{n}\right|_{n_{2}=0}=u_{n_{1}} \in l_{\mathbb{Z}}^{2}(E)
\end{array}\right.
$$

besides $\left\|u_{n}\right\|=\left\|u_{n_{1}}\right\|_{l_{\mathbb{Z}}^{2}(E)}$. Note that this continuation into the lower semiplane $\left(n_{2} \in \mathbb{Z}_{-}\right), u\left(n_{1}, n_{2}\right) \rightarrow u\left(n_{1}, n_{2}-1\right)$, has a recurrent nature and continuation into the upper semiplane $u\left(n_{1}, n_{2}\right) \rightarrow u\left(n_{1}, n_{2}+1\right)$ may be carried out in a nonexplicit way, certainly, in the context of suppositions of Lem. 1.1 and $\operatorname{dim} E<\infty$. As a result, we obtain the Hilbert space $l_{N, \Gamma}^{2}(E)$ the norm of which is induced by the norm of the initial data.

Define now the shift operator $V(p)$

$$
\begin{equation*}
V(p) u_{n}=u_{n-p} \tag{2.2}
\end{equation*}
$$

where $u_{n} \in l_{N, \Gamma}^{2}(E)$ for all $p \in \mathbb{Z}^{2}$. Obviously, this operator $V(p)$ (2.2) is an isometric one.

Knowing the perturbed $U(n)$ (1.17) and the free $V(n)(2.2)$ operator semigroups, it is natural to define the wave operator $W_{-}(n)$,

$$
\begin{equation*}
W_{-}(k)=s-\lim _{n \rightarrow \infty} U(n, k) P_{D_{-}(N, \Gamma)} V(-n,-k) \tag{2.3}
\end{equation*}
$$

for every fixed $k \in \mathbb{Z}_{+}$, where $P_{D_{-}(N, \Gamma)}$ is the orthoprojector of the narrowing onto the component u_{n}^{-}from $l_{N, \Gamma}^{2}(E)$ obtained as a result of continuation into $\tilde{\mathbb{Z}}_{-}^{2}$ (1.7) from the semiaxis $\mathbb{Z}_{\text {- }}$ using the Cauchy problem (2.1). It is obvious that $W_{-}(0)=W_{-}$, where the wave operator W_{-}corresponds with the dilation U (1.5) and the shift operator V in $l_{\mathbb{Z}}^{2}(E)[6]$. Thus, $W_{-}(k)(2.3)$ is a natural continuation of the wave operator W_{-}onto the " k-th" horizontal line in \mathbb{Z}^{2} for $k \in \mathbb{Z}_{+}$.

Denote by $L_{0, k}^{\infty}$ the polygon in \mathbb{Z}_{+}^{2} consisting of two linear segments: the first one is a vertical segment connecting points $O=(0,0)$ and $(0, k)$, where $k \in \mathbb{Z}_{+}$, and the second segment is a horizontal semiline from the point $(0, k)$ to (∞, k). Similarly, choose the polygon $\tilde{L}_{-\infty, p}^{-1}$ in $\tilde{\mathbb{Z}}_{-}^{2}(1.7)$ that consists also of two linear segments, the first of which is a semiline from $(-\infty,-p)$ to the point $(-1,-p)$, where $p \in \mathbb{Z}_{+}$, and the second one is a vertical segment from the point $(-1,-p)$ to $(-1,0)$. In the space $\mathcal{H}_{N, \Gamma}(1.15)$, specify the following quadratic forms:

$$
\begin{align*}
& \langle f\rangle_{\sigma(p, k)}^{2}=\left\langle\sigma u_{n}\right\rangle_{\tilde{L}_{-\infty, p}^{-1}}^{2}+\|h\|^{2}+\left\langle\tilde{\sigma} v_{n}\right\rangle_{L_{0, k}^{\infty}}^{2} ; \\
& \langle f\rangle_{\tilde{\sigma}(k)}^{2}=\left\|u_{n}\right\|_{l^{2}}^{2}+\|h\|^{2}+\left\langle\tilde{\sigma} v_{n}\right\rangle_{L_{0, k}^{\infty}}^{2} ; \tag{2.4}\\
& \langle f\rangle_{\sigma(p)}^{2}=\left\langle\sigma u_{n}\right\rangle_{\tilde{L}_{-\infty, p}^{-1}}^{2}+\|h\|^{2}+\left\|v_{n}\right\|_{l^{2}}^{2},
\end{align*}
$$

where corresponding σ and $\tilde{\sigma}$ forms in (2.4) are understood in the sense of (1.12) and (1.13). It is easy to see that $\langle f\rangle_{\sigma(0,0)}^{2}=\langle f\rangle_{\tilde{\sigma}(0)}^{2}=\langle f\rangle_{\sigma(0)}^{2}=\|f\|_{\mathcal{H}_{N, \Gamma}}^{2}$ and $\langle f\rangle_{\sigma(0, k)}^{2}=\langle f\rangle_{\tilde{\sigma}(k)}^{2},\langle f\rangle_{\sigma(p, 0)}^{2}=\langle f\rangle_{\sigma(p)}^{2}$.

Similarly to (2.4), specify in $l_{N, \Gamma}^{2}(E)$ the following σ-forms:

$$
\begin{align*}
& \left\langle u_{n}\right\rangle_{\sigma(p, k)}^{2}=\left\langle\sigma u_{n}^{-}\right\rangle_{\tilde{L}_{-\infty, p}^{-1}}^{2}+\left\langle\sigma u_{n}^{+}\right\rangle_{L_{0, k}^{\infty}} ; \\
& \left\langle u_{n}\right\rangle_{\sigma_{+}(k)}^{2}=\left\|u_{n}^{-}\right\|_{l^{2}}^{2}+\left\langle\sigma u_{n}^{+}\right\rangle_{L_{0, k}^{\infty}} ; \tag{2.5}\\
& \left\langle u_{n}\right\rangle_{\sigma_{-}(p)}^{2}=\left\langle\sigma u_{n}^{-}\right\rangle_{\tilde{L}_{-\infty,-p}^{-1}}^{2}+\left\|u_{n}^{+}\right\|_{l^{2}}^{2},
\end{align*}
$$

where $u_{n}^{ \pm}$are the continuations of $l_{\mathbb{Z}_{ \pm}}^{2}(E)$ from the semiaxes using the Cauchy problem (2.1). Note that $\left\langle u_{n}\right\rangle_{\sigma(0, k)}^{2}=\left\langle u_{n}\right\rangle_{\sigma_{+}(k)}^{2} ;\left\langle u_{n}\right\rangle_{\sigma(p, 0)}^{2}=\left\langle u_{n}\right\rangle_{\sigma_{-}(p)}^{2}$ and finally $\left\langle u_{n}\right\rangle_{\sigma(0,0)}^{2}=\left\langle u_{n}\right\rangle_{\sigma_{+}(0)}^{2}=\left\langle u_{n}\right\rangle_{\sigma_{-}(0)}^{2}=\left\|u_{n}\right\|_{l^{2}}^{2}$.

Theorem 2.1. The wave operator $W_{-}(k)$ (2.3) mapping $l_{N, \Gamma}^{2}(E)$ into the space $\mathcal{H}_{N, \Gamma}$ (1.15) exists for all $k \in \mathbb{Z}_{+}$, and it is an isometry

$$
\begin{equation*}
\left\langle W_{-}(k) u_{n}\right\rangle_{\sigma(p, k)}^{2}=\left\langle u_{n}\right\rangle_{\sigma(p, k)}^{2} \tag{2.6}
\end{equation*}
$$

in metrics (2.4), (2.5) for all $p \in \mathbb{Z}_{+}$. Moreover, the wave operator $W_{-}(k)$ (2.3) meets the conditions

$$
\begin{array}{ll}
\text { 1) } & U(1, s) W_{-}(k)=W_{-}(k+s) V(1, s) ; \tag{2.7}\\
\text { 2) } & W_{-}(k) P_{D_{-}(N, \Gamma)}=P_{D_{-}(N, \Gamma)}
\end{array}
$$

for all $k, s \in \mathbb{Z}_{+}$, where $P_{D_{-}(N, \Gamma)}$ is an orthoprojector onto $D_{-}(N, \Gamma)$.
Proof. Relation 2) (2.7) is proved exactly in the same way as for $W_{-}[6]$. The isometric property (2.6) for $W_{-}(k)(2.3)$ follows from Th. 1.1. In order to prove 1) (2.7), consider the identity

$$
\begin{gathered}
U(1, s) U(n, k) P_{D_{-}(N, \Gamma)} V(-n,-k) \\
=U(n+1, k+s) P_{D_{-}(N, \Gamma)} V(-n-1,-k-s) V(1, s),
\end{gathered}
$$

where the limit process leads us to equality 1) when $n \rightarrow \infty$. And since

$$
W_{-}(s) V(1, s)=U(1, s) W_{-}(0)
$$

then $W_{-}(s)$ existence follows from the existence of $W_{-}(0)=W_{-}[6]$ for all $s \in \mathbb{Z}_{+}$.

Note that the equalities

$$
\begin{array}{ll}
\text { 1) } & U(1,0) W_{-}(k)=W_{-}(k) V(1,0) ; \tag{2.8}\\
\text { 2) } & U(1, k) W_{-}(0)=W_{-}(k) V(1, k)
\end{array}
$$

for all $k \in \mathbb{Z}_{+}$follow from 1) (2.7).
II. Consider now the continuation of the vector-functions $v_{n_{1}}$ from $l_{\mathbb{Z}}^{2}(\tilde{E})$ into the domain \mathbb{Z}^{2} using the Cauchy problem

$$
\left\{\begin{array}{l}
\tilde{\partial}_{2} v_{n}=\left(\tilde{N} \tilde{\partial}_{1}+\tilde{\Gamma}\right) v_{n} ; \quad n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2} ; \tag{2.9}\\
\left.v_{n}\right|_{n_{2}=0}=v_{n_{1}} \in l_{\mathbb{Z}}^{2}(\tilde{E}) .
\end{array}\right.
$$

As in the case of problem (2.1), in the semiplane $n_{2} \in \mathbb{Z}_{-}$we have a recurrent way of the continuation from the axis $n_{2}=0, n_{2} \rightarrow n_{2}-1$ and, when $n_{2} \in \mathbb{Z}_{+}$, this continuation may be carried out in the context of Supposition 1.1. The Hilbert space obtained in this way may be denoted by $l_{\tilde{N}, \tilde{\Gamma}}(\tilde{E})$, besides $\left\|v_{n}\right\|=\left\|v_{n_{1}}\right\|_{l_{\tilde{Z}}^{2}(\tilde{E})}$.

Similarly to $V(p)(2.2)$, introduce the shift operator

$$
\begin{equation*}
\tilde{V}(p) v_{n}=v_{n-p} \tag{2.10}
\end{equation*}
$$

for all $p \in \mathbb{Z}^{2}$ and all $v_{n} \in l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E})$. Define the wave operator $W_{+}(p)$ from $\mathcal{H}_{N, \Gamma}$ into the space $l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E})$,

$$
\begin{equation*}
W_{+}(p)=s-\lim _{n \rightarrow \infty} \tilde{V}(-n,-p) P_{D_{+}(\tilde{N}, \tilde{\Gamma})} U(n, p) \tag{2.11}
\end{equation*}
$$

for all $p \in \mathbb{Z}_{+}$, where $U(n)$ has the form of (1.17). It is obvious that $W_{+}(0)=W_{+}^{*}$, where W_{+}is a traditional wave operator [6] corresponding to $U(1.5)$ and to the shift \tilde{V} in $l_{\mathbb{Z}}^{2}(\tilde{E})$. Similarly to Th. 2.1, the following statement is true.

Theorem 2.2. For all $p \in \mathbb{Z}_{+}$, the wave operator $W_{+}(p)$ (2.11) acting from the space $\mathcal{H}_{N, \Gamma}$ into $l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E})$ exists and satisfies the relations

$$
\begin{array}{ll}
\text { 1) } & W_{+}(p) U(1, s)=\tilde{V}(1, s) W_{+}(p+s) \\
2) & W_{+}(p) P_{D_{+}(\tilde{N}, \tilde{\Gamma})}=P_{D_{+}(\tilde{N}, \tilde{\Gamma})} \tag{2.11}
\end{array}
$$

for all $p, s \in \mathbb{Z}_{+}$, where $P_{D_{+}(\tilde{N}, \tilde{\Gamma})}$ is an orthoprojector onto $D_{+}(\tilde{N}, \tilde{\Gamma})$.
The proof of this statement is similar to the proof of Th. 2.1.
The equalities

$$
\begin{array}{ll}
\text { 1) } & W_{+}(p) U(1,0)=\tilde{V}(1,0) W_{+}(p) \tag{2.12}\\
\text { 2) } & W_{+}(0) U(1, p)=\tilde{V}(1, p) W_{+}(p)
\end{array}
$$

for all $p \in \mathbb{Z}_{+}$easily follow from 1) (2.11).
Knowing the wave operators $W_{-}(k)(2.3)$ and $W_{+}(p)(2.11)$, define the scattering operator in a traditional way [6]:

$$
\begin{equation*}
S(p, k)=W_{+}(p) W_{-}(k) \tag{2.13}
\end{equation*}
$$

for all $p, k \in \mathbb{Z}_{+}$. It is obvious that, when $p=k=0$, we have $S(0,0)=S$, where S is a standard scattering operator $S=W_{+}^{*} W_{-}$for the dilation U (1.5) [6]. The following statement results from Ths. 2.1 and 2.2.

Theorem 2.3. The scattering operator $S(p, k)$ (2.13) represents the bounded operator from $l_{N, \Gamma}^{2}(E)$ into $l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E})$ satisfying the following relations:

$$
\begin{array}{ll}
\text { 1) } & S(p, k) V(1, q)=\tilde{V}(1, q) S(p+q, k-q) \\
2) & S(p, k) P_{-} l_{N, \Gamma}^{2}(E) \subseteq P_{-} l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E}) \tag{2.14}
\end{array}
$$

for all $p, k, q \in \mathbb{Z}_{+}, 0 \leq q \leq k$, where P_{-}is the narrowing orthoprojector onto the solutions of the Cauchy problems (2.1) and (2.9) with the initial data on the semiaxis \mathbb{Z}_{-}when $n_{2}=0$.

Note that the translational invariability of $S(p, k)$ (2.13) with respect to the shift by the first variable " n_{1} "

$$
\begin{equation*}
S(p, k) V(1,0)=\tilde{V}(1,0) S(p, q) \tag{2.15}
\end{equation*}
$$

for all $p, k \in \mathbb{Z}_{+}$follows from the equality 1) (2.14). Moreover, from 1) it follows that

$$
\begin{equation*}
\text { 1) } \quad S(p, k) V(1, k)=\tilde{V}(1, k) S(p+k, 0) \quad(k=q) \tag{2.16}
\end{equation*}
$$

2) $\quad S(0, k) V(1, k)=\tilde{V}(1 . k) S(k, 0) \quad(k=q, p=0)$;
and thus the scattering operator $S(p, k)(2.13)$ is the function of sum (up to the multiplication of $V(1, k)$ and $\tilde{V}(1, k))$ for all p and k from \mathbb{Z}_{+}, and it may be obtained from the operator $S(k, 0)$ (or from $S(0, k)$) using the "bordering" by the shift operators $V(1, k)$ and $\tilde{V}(1, k)$.
III. Specify now the mapping $\mathcal{P}_{p, k}$ from $l_{N, \Gamma}^{2}(E)+l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E})$ into the Hilbert space $\mathcal{H}_{N, \Gamma}(1.15)$

$$
\begin{equation*}
f_{p, k}=\mathcal{P}_{p, k}\left(g_{n}\right)=\mathcal{P}_{p, k}\binom{v_{n}}{u_{n}}=W_{+}^{*}(p) v_{n}+W_{-}(k) u_{n} \tag{2.17}
\end{equation*}
$$

where $v_{n} \in l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E}), u_{n} \in l_{N, \Gamma}^{2}(E)$, besides $p, k \in \mathbb{Z}_{+}$and $W_{+}^{*}(p)$ adjoined to the operator $W_{+}(p)$ is understood in the sense of Hilbert metric l^{2}.

For the commutative operator systems $\left\{T_{1}, T_{2}\right\} \in C\left(T_{1}\right)$ (1.3), the simplicity of the expansion $V_{s}, \stackrel{+}{V}_{s}(1.1)$ is guaranteed by the operator $T_{1}[4,8]$. Therefore in the case of simplicity of the expansion $V_{s}, \stackrel{+}{V}_{s}(1.1)$, the functions $f_{p, k}=\mathcal{P}_{p, k}\left(g_{k}\right)$ (2.17) form the everywhere dense set in the space $\mathcal{H}_{N, \Gamma}$ when $g_{n} \in l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E})+$ $l_{n, \Gamma}^{2}(E)$ for all fixed p and k from \mathbb{Z}_{+}. And thus "every" function f from the functions of the space $\mathcal{H}_{N, \Gamma}$ (e.g., every finite one) may have various forms $f=f_{p, k}$ or $f=f_{p^{\prime}, k^{\prime}}\left(p \neq p^{\prime}, k \neq k^{\prime}\right)$ when one takes different mappings $\mathcal{P}_{p, k}(2.17)$. It is easy to see that

$$
\left\langle f_{p, k}, f_{p, k}\right\rangle_{\mathcal{H}_{N, \Gamma}}=\left\langle W_{p, k} g_{n}, g_{n}\right\rangle_{l^{2}}
$$

when the weight operator-function $W_{p, k}$ has the form

$$
W_{p, k}=\left[\begin{array}{cc}
W_{+}(p) W_{+}^{*}(p) & S(p, k) \tag{2.18}\\
S^{*}(p, k) & W_{-}^{*}(k) W_{-}(k)
\end{array}\right]
$$

and the scattering operator $S(p, k)$ is defined by formula (2.13).

Observation 2.1. All the elements of the weight operator-function $W_{p, k}$ (2.18) have the translational invariance with respect to the shift by the variable " n_{1} " in view of 1$\left.)(2.8), 1\right)(2.12)$ and (2.15), and also the unitarity of the operator $U(1,0)$.

So, the mapping $\mathcal{P}_{k, s}$ (2.17) defines the isomorphism between the spaces $\mathcal{H}_{N, \Gamma}$ (1.15) and

$$
\begin{equation*}
l^{2}\left(W_{p, k}\right)=\left\{g_{n}=\binom{v_{n}}{u_{n}}:\left\langle W_{p, k} g_{n}, g_{n}\right\rangle_{l^{2}}<\infty\right\} \tag{2.19}
\end{equation*}
$$

where $u_{n} \in l_{N, \Gamma}^{2}(E), v_{n} \in l_{N, \Gamma}^{2}(\tilde{E})$ and the operator $W_{p, k}$ has the form of (2.18). It is obvious that the space $l^{2}\left(W_{p, k}\right)(2.19)$ coincides with the well-known space $l^{2}\left(\begin{array}{cc}I & S \\ S & I\end{array}\right)[6]$ when $p=k=0$. From the relations 1) $\left.(2.8), 1\right)$ (2.12) and from the unitarity of $U(1,0)$, it follows that the dilation $U(1,0)$ in every space $l^{2}\left(W_{p, k}\right)(2.19)$ is carried out by the shift operator

$$
\hat{U}(1,0) g_{n}=\left[\begin{array}{cc}
\tilde{V}(1,0) & 0 \tag{2.20}\\
0 & V(1,0)
\end{array}\right] g_{n}
$$

for all $g_{n} \in l^{2}\left(W_{p, k}\right)$.
Study now how the dilation $U(1, s)(1.17)$ acts on the vector-functions $f_{p, k}=$ $\mathcal{P}_{p, k}\left(g_{n}\right)(2.17)$ when $s \neq 0$. First of all, note that it follows from 1) (2.7) that an application of $U(1, s)$ to the wave operator $W_{-}(k)(2.3)$ from the left increases the index $k \in \mathbb{Z}_{+}$by s, i.e. $k \rightarrow k+s$, and it follows from the equality 1) (2.11) that an application of the dilation $U(1, s)$ to the wave operator $W_{+}(p)(2.11)$ from the right also changes the parameter $p \in \mathbb{Z}_{+}$, namely, $p \rightarrow p+s$. Therefore the dilation $U(1, s)$ maps the element $f_{p, k}$ from $\mathcal{H}_{N, \Gamma}$ to the representative $f_{p-s, k+s}$ in the space $\mathcal{H}_{N, \Gamma}$ (1.15), where $0 \leq s \leq p$. Consider only the case when the dilation $U(1, p)(1.17)$ acts on the vectors of the form $f_{p, 0}=\mathcal{P}_{p, 0}\left(g_{n}\right)(2.17)$.

So, in view of above, consider the scalar product

$$
\begin{gather*}
\left\langle U(1, p) f_{p, 0}, \hat{f}_{0, p}\right\rangle_{\tilde{\sigma}(p)}=\left\langle U(1, p) W_{+}^{*}(p) v_{n}, W_{+}^{*}(0) \hat{v}_{n}\right\rangle_{\tilde{\sigma}(p)} \\
+\left\langle U(1, p) W_{+}^{*}(p) v_{n}, W_{-}(p) \hat{u}_{n}\right\rangle_{\tilde{\sigma}(p)}+\left\langle U(1, p) W_{-}(0) u_{n}, W_{+}^{*}(0) \hat{v}_{n}\right\rangle_{\tilde{\sigma}(p)} \tag{2.21}\\
+\left\langle U(1, p) W_{-}(0) u_{n}, W_{-}(p) \hat{u}_{n}\right\rangle_{\tilde{\sigma}(p)}
\end{gather*}
$$

where $f_{p, 0}=\mathcal{P}_{p, 0}\left(g_{n}\right), \hat{f}_{0, p}=\mathcal{P}_{0, p}\left(\hat{g}_{n}\right)$ (2.17). Simplify every element from the right part in (2.21). It is easy to see that the third and the fourth elements have the form

$$
\left\langle U(1, p) W_{-}(0) u_{n}, W_{+}^{*}(0) \hat{v}_{n}\right\rangle_{\tilde{\sigma}(p)}=\left\langle S(0, p) V(1, p) u_{n}, \hat{v}_{n}\right\rangle_{\tilde{\sigma}_{+}(p)} ;
$$

$$
\left\langle U(1, p) W_{-}(0) u_{n}, W_{-}(p) \hat{u}_{n}\right\rangle_{\tilde{\sigma}(p)}=\left\langle V(1, p) u_{n}, \hat{u}_{n}\right\rangle_{\sigma_{+}(p)}
$$

taking into account property 2$)(2.8)$, the form of the operator $S(0, p)(2.13)$, and the σ-isometric condition of the wave operator $W_{-}(p)(2.3)$ by Th. 2.1 and 2) (2.11) used in the first relation. In order to simplify the first elements in (2.21), use relations 2) (2.11) and 2) (2.12) for the wave operator $W_{+}(p)$ to obtain

$$
\left\langle U(1, p) W_{+}^{*}(p) v_{n}, W_{+}^{*}(0) \hat{v}_{n}\right\rangle_{\tilde{\sigma}(p)}=\left\langle\tilde{V}(1, p) W_{+}(p) W_{+}^{*}(p) v_{n}, \hat{v}_{n}\right\rangle_{\tilde{\sigma}_{+}(p)}
$$

Finally, taking into account σ-isometric property of the dilation $U(1, p)$ (Th. 1.1), for the second element we have

$$
\begin{gathered}
\left\langle U(1, p) W_{+}^{*}(p) v_{n}, W_{-}(p) \hat{u}_{n}\right\rangle_{\tilde{\sigma}(p)} \\
=\left\langle U(1, p) W_{+}^{*}(p) v_{n}, U(1, p) W_{-}(0) V(-1,-p) \hat{u}_{n}\right\rangle_{\tilde{\sigma}(p)} \\
=\left\langle W_{+}^{*}(p) v_{n}, W_{-}(0) V(-1, p) \hat{u}_{n}\right\rangle_{\sigma(p)}=\left\langle S^{*}(p, 0) v_{n}, V(-1,-p) \hat{u}_{n}\right\rangle_{\sigma_{-}(p)}
\end{gathered}
$$

in view of 2) (2.7). Using now relation 2) (2.16), we obtain that

$$
\begin{gathered}
\left\langle U(1, p) W_{+}^{*}(p) v_{n}, W_{-}(p) \hat{u}_{n}\right\rangle_{\tilde{\sigma}(p)}=\left\langle V^{*}(-1,-p) S^{*}(p, 0) v_{n}, \hat{u}_{n}\right\rangle_{\sigma_{+}(p)} \\
=\left\langle S^{*}(0, p) \tilde{V}^{*}(-1,-p) v_{n}, \hat{u}_{n}\right\rangle_{\sigma_{+}(p)}
\end{gathered}
$$

Thus, we can write formula (2.21) in the following way:

$$
\begin{gather*}
\left\langle U(1, p) f_{p, 0} \hat{f}_{0, p}\right\rangle_{\tilde{\sigma}(p)} \\
=\left\langle\left[\begin{array}{cc}
\tilde{V}(1, p) W_{+}(p) W_{+}^{*}(p) \tilde{V}^{*}(1, p) & S(0, p) \\
S^{*}(0, p) & I
\end{array}\right]\right. \\
\left.\times\left[\begin{array}{cc}
\tilde{V}^{*}(-1,-p) & 0 \\
0 & V(1, p)
\end{array}\right] g_{n}, \hat{g}_{n}\right\rangle_{\tilde{\sigma}_{+}(p), \sigma_{+}(p)} \tag{2.22}
\end{gather*}
$$

where the bi-linear form in the right part is understood component-wisely in the sense of $\tilde{\sigma}_{+}(p)$ and $\sigma_{+}(p)(2.5)$. Let

$$
\begin{align*}
& W_{p, 0}^{\prime}=\left[\begin{array}{cc}
\tilde{V}(1, p) W_{+}(p) W_{+}^{*}(p) \tilde{V}^{*}(1, p) & S(0, p) \\
S^{*}(0, p) & I
\end{array}\right] \tag{2.23}\\
& \hat{V}(1, p)=\left[\begin{array}{cc}
\tilde{V}^{*}(-1,-p) & 0 \\
0 & V(1, p)
\end{array}\right]
\end{align*}
$$

O b servation 2.2. Consider the mapping $\mathcal{P}_{p, 0}(2.17)$ and let $f_{p, 0}^{\prime}=$ $\mathcal{P}_{p, 0}\left(g_{n}^{\prime}\right)=W_{+}^{*}(p) \tilde{V}^{*}(1, p) v_{n}+W_{-}(0) V(-1,-p) u_{n}$, where $u_{n} \in l_{N, \Gamma}^{2}(E)$ and $v_{n} \in$ $l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E})$. Then it is easy to find that

$$
\left\langle f_{p, 0}^{\prime}, f_{p, 0}^{\prime}\right\rangle_{\mathcal{H}_{N, \Gamma}}=\left\langle W_{p, 0}^{\prime} g_{n}, g_{n}\right\rangle_{l^{2}}
$$

in view of 2) (2.16). Thus the difference between the weight $W_{p, 0}(2.18)$ and $W_{p, 0}^{\prime}$ (2.23) is that the components v_{n} and u_{n} are shifted by $\tilde{V}^{*}(1, p)$ and $V(-1,-p)$ respectively after the mapping $\mathcal{P}_{p, 0}(2.17)$.

Hence, the dilation $U(1, p)(1.7)$ acts by the shift

$$
\begin{equation*}
\hat{U}(1, p) g_{n}=\hat{V}(1, p) g_{n} \tag{2.24}
\end{equation*}
$$

($\hat{V}(1, p)$ has the form of $(2.23))$ from the Hilbert space

$$
l^{2}\left(W_{p, 0}^{\prime}\right)=\left\{g_{n}=\binom{v_{n}}{u_{n}}:\left\langle W_{p, 0}^{\prime} g_{n}, g_{n}\right\rangle_{l^{2}}<\infty\right\}
$$

into the space $l^{2}\left(W_{p, 0}\right)(2.19)$.
It is obvious that the following subspaces

$$
\hat{D}_{-}(N, \Gamma)=\binom{0}{P_{-} l_{N, \Gamma}^{2}(E)} ; \quad \hat{D}_{+}(\tilde{N}, \tilde{\Gamma})=\binom{P_{+} l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E})}{0}
$$

are the prototypes of $D_{-}(N, \Gamma)$ and $D_{+}(\tilde{N}, \tilde{\Gamma})$ from $\mathcal{H}_{N, \Gamma}(1.15)$ for the mapping $\mathcal{P}_{p, k}(2.17)$ (for all $p, k \in \mathbb{Z}_{+}$). P_{-}and P_{+}are the orthoprojectors onto the subspaces in $l_{N, \Gamma}^{2}(E)$ and in $l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E})$ formed by the solutions of the Cauchy problems (2.1) and (2.9) with the initial data on the semiaxes \mathbb{Z}_{-}and \mathbb{Z}_{+}, respectively. Therefore the initial space H is isomorphic to the space

$$
\begin{equation*}
\hat{H}_{p}=l^{2}\left(W_{p, 0}\right) \ominus\binom{P_{+} l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E})}{P_{-} l_{N, \Gamma}^{2}(E)} \tag{2.25}
\end{equation*}
$$

Similar constructions for $l^{2}\left(W_{p, 0}^{\prime}\right)\left(2.19^{\prime}\right)$ lead to another space realization of the Hilbert space H

$$
\hat{H}_{p}^{\prime}=l^{2}\left(W_{p, 0}^{\prime}\right) \ominus\binom{\tilde{V}^{*}(-1,-p) P_{+} l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E})}{V(1, p) P_{-} l_{N, \Gamma}^{2}(E)}
$$

in view of Observation 2.2. It is natural that the spaces $\hat{H}_{p}(2.25)$ and $\hat{H}_{p}^{\prime}\left(2.25^{\prime}\right)$ are isomorphic one to another. As it is easy to see, the operator $R_{p}: \hat{H}_{p} \rightarrow \hat{H}_{p}^{\prime}$
defining this isomorphism has the form

$$
R_{p}=P_{\hat{H}_{p}^{\prime}}\left[\begin{array}{cc}
\tilde{V}^{*}(1, p) & 0 \tag{2.26}\\
0 & V(-1,-p)
\end{array}\right] P_{\hat{H}_{p}}
$$

where $P_{\hat{H}_{p}}$ and $P_{\hat{H}_{p}^{\prime}}$ are orthoprojectors onto $\hat{H}_{p}(2.25)$ and $\hat{H}_{p}^{\prime}\left(2.25^{\prime}\right)$ in corresponding spaces. It follows from (2.20) and (2.24) that the operators T_{1} and $T(1, p)=T_{1} T_{2}^{p}, p \in \mathbb{Z}_{+}$have the form

$$
\begin{equation*}
\left(\hat{T}_{1} f\right)_{n}=P_{\hat{H}_{p}} f_{n-(1,0)} ; \quad(\hat{T}(1, p) f)_{n}=P_{\hat{H}_{p}} \hat{V}(1, p)\left(R_{p} f\right)_{n} \tag{2.27}
\end{equation*}
$$

for all $f_{n} \in \hat{H}_{p}(2.25)$, where $P_{\hat{H}_{p}}$ is an orthoprojector onto \hat{H}_{p} (2.25) and the operator R_{p} has the form (2.26). It is typical that the operator \hat{T}_{1} has the same form (2.27) in all the spaces \hat{H}_{p} (2.25) in view of Observation 2.1, and the operator $\hat{T}(1, p)$ has this form (2.27) only in one specific space $\hat{H}_{p}(2.25)$.

Theorem 2.4. Consider the simple [8] commutative unitary expansion $V_{s}, \stackrel{+}{V}$ (2.1) corresponding to the commutative operator system $\left\{T_{1}, T_{2}\right\}$ from the class $C\left(T_{1}\right)$ (1.3), and let the suppositions of Lem. 1.1 take place, besides $\operatorname{dim} E=$ $\operatorname{dim} \tilde{E}<\infty$. Then the isometric dilation $U(1, p)(1.17), p \in \mathbb{Z}_{+}$, acting in the Hilbert space $\mathcal{H}_{N, \Gamma}$ (1.15), is unitary equivalent to the operator $\hat{U}(1,0)$ (2.20) for $p=0$ in $l^{2}\left(W_{p, 0}\right)$ (2.19), and to the operator $\hat{U}(1, p)$ (2.24), for $p \in \mathbb{N}$, mapping the space $l^{2}\left(W_{p, 0}^{\prime}\right)\left(2.19^{\prime}\right)$ into $l^{2}\left(W_{p, 0}\right)$ (2.19). Moreover, the operators T_{1} and $T(1, p)=T_{1} T_{2}^{p}$ (1.21) specified in H are unitary equivalent to the shift operator \hat{T}_{1} (2.27) in \hat{H}_{p} (2.25) for all $p \in \mathbb{Z}_{+}$and to the operator $\hat{T}(1, p)$ (2.27) acting in the specific space \hat{H}_{p} (2.25) for $p \in \mathbb{N}$.
IV. Let us now study a dual situation corresponding to the dilation $\stackrel{+}{U}(n)$ (1.25). Similarly to (2.1), continue every vector-function $v_{k} \in l_{\mathbb{Z}}^{2}(\tilde{E})$ into the domain \mathbb{Z}^{2} using the Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{2} v_{n}=\left(\tilde{N}^{*} \partial_{1}+\tilde{\Gamma}^{*}\right) v_{n} ; \quad n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2} ; \tag{2.28}\\
\left.v_{n}\right|_{n_{2}=0}=v_{n_{1}} \in l_{\mathbb{Z}}^{2}(\tilde{E}) .
\end{array}\right.
$$

Besides, we have the recurrent way of the continuation $v\left(n_{1}, n_{2}\right) \rightarrow v\left(n_{1}, n_{2}+1\right)$ into the upper semiplane ($n_{2} \in \mathbb{Z}+$), and when $n_{2} \in \mathbb{Z}_{-}$, the continuation $v\left(n_{1}, n_{2}\right) \rightarrow v\left(n_{1}, n_{2}-1\right)$ has the nonexplicit nature and may be carried out in the context of suppositions of Lem. 1.1 when $\operatorname{dim} \tilde{E}<\infty$. Thus, we obtain the Hilbert space $l_{\tilde{N}^{*}, \tilde{\Gamma}^{*}}^{2}(\tilde{E})$ assuming that $\left\|v_{n}\right\|=\left\|v_{n_{1}}\right\|_{l_{Z}^{2}(\tilde{E})}$. Define the shift operator $\tilde{V}_{+}(p)$ in the space $l_{\tilde{N}^{*}, \tilde{\Gamma}^{*}}^{2}(\tilde{E})$,

$$
\begin{equation*}
\tilde{V}_{+}(p) v_{n}=v_{n+p} \tag{2.29}
\end{equation*}
$$

for all $p \in \mathbb{Z}^{2}$. It is obvious that the operator $\tilde{V}_{+}(q)(2.29)$ is isometric. Specify now the wave operator $\tilde{W}_{+}(p)$ mapping the space $l_{\tilde{N}^{*}, \tilde{\Gamma}^{*}}^{2}(\tilde{E})$ into $\mathcal{H}_{N^{*}, \Gamma^{*}}(1.24)$ by the following formula:

$$
\begin{equation*}
\left.\tilde{W}_{+}(p)=s-\lim _{n \rightarrow \infty} \stackrel{+}{U}(n, p) P_{D_{+}\left(\tilde{N}^{*}, \tilde{\Gamma}^{*}\right.}\right) \tilde{V}_{+}(-n,-p), \tag{2.30}
\end{equation*}
$$

where the number $p \in \mathbb{Z}_{+}$is fixed and the operators $\stackrel{+}{U}(n)$ and $\tilde{V}_{+}(n)$ are specified by the formulas (1.25) and (2.29), respectively. It is obvious that $\tilde{W}_{+}(0)=W+$, where the operator W_{+}corresponds to the dilation $U(1.5)$, and so the operator $\tilde{W}_{+}(p)(2.30)$ is a continuation of the wave operator W_{+}onto the " $-p \mathrm{th}$ " horizontal line in $\tilde{\mathbb{Z}}_{-}^{2}(1.7)$.

Consider now the polygon $L_{-\infty, p}^{-1}$ in $\tilde{\mathbb{Z}}_{-}^{2}(1.7)$ formed by the vertical segment connecting points $(-1,0)$ and $(-1,-p)$ and by the horizontal semiline from the point $(-1,-p)$ to $(-\infty,-p)$, where $p \in \mathbb{Z}_{+}$. And let $\tilde{L}_{0, k}^{\infty}$ be the similar polygon consisting of the rectilinear segments connecting the points $(0,0),(0, k)$ and (∞, k) one-by-one in \mathbb{Z}_{+}^{2}. Similarly to (2.4), define the quadratic forms

$$
\begin{gather*}
\langle\tilde{f}\rangle_{\tau(p, k)}^{2}=\left\langle\tau \tilde{u}_{n}\right\rangle_{L_{-\infty, p}^{-1}}^{2}+\|\tilde{h}\|^{2}+\left\langle\tilde{\tau} \tilde{v}_{n}\right\rangle_{\tilde{L}_{0, k}^{\infty}}^{2} ; \\
\langle\tilde{f}\rangle_{\tilde{\tau}(k)}^{2}=\left\|\tilde{u}_{n}\right\|_{l^{2}}^{2}+\|\tilde{h}\|^{2}+\left\langle\tilde{\tau} v_{n}\right\rangle_{\tilde{L}_{0, k}^{\infty}}^{2} ; \tag{2.31}\\
\langle f\rangle_{\tau(p)}^{2}=\left\langle\tau \tilde{u}_{n}\right\rangle_{L_{-\infty, p}^{-1}}^{2}+\|\tilde{h}\|^{2}+\left\|v_{n}\right\|_{l^{2}}^{2}
\end{gather*}
$$

in $\mathcal{H}_{N^{*}, \Gamma^{*}}(1.24)$, where $\tilde{f}=\left(\tilde{u}_{n}, \tilde{h}, \tilde{v}_{n}\right) \in \mathcal{H}_{N^{*}, \Gamma^{*}}$ and respective $\tilde{\tau}$ and τ forms are understood in the sense of (1.29) and (1.30). It is easy to see that $\langle\tilde{f}\rangle_{\tau(0,0)}^{2}=$ $\langle\tilde{f}\rangle_{\tilde{\tau}(0)}^{2}=\langle\tilde{f}\rangle_{\tau(0)}^{2}=\|\tilde{f}\|_{\mathcal{H}_{N^{*}, \Gamma^{*}}^{2}}^{2}$ and $\langle\tilde{f}\rangle_{\tau(0, k)}^{2}=\langle\tilde{f}\rangle_{\tilde{\tau}(k)}^{2},\langle f\rangle_{\tau(p, 0)}^{2}=\langle f\rangle_{\tau(p)}^{2}$. As in (2.5), specify the quadratic τ-forms,

$$
\begin{gather*}
\left\langle v_{n}\right\rangle_{\tilde{\tau}(p, k)}^{2}=\left\langle\tilde{\tau} v_{n}^{-}\right\rangle_{L_{-\infty, p}^{-1}}^{2}+\left\langle\tilde{\tau} v_{n}^{+}\right\rangle_{\tilde{L}_{0, k}^{\infty}}^{2} ; \\
\left\langle v_{n}\right\rangle_{\tilde{\tau}_{+}(k)}^{2}=\left\|v_{n}^{-}\right\|_{l^{2}}^{2}+\left\langle\tilde{\tau} v_{n}^{+}\right\rangle_{\tilde{L}_{0, k}^{\infty}}^{2} ; \tag{2.33}\\
\left\langle v_{n}\right\rangle_{\tilde{\tau}_{-}(p)}^{2}=\left\langle\tilde{\tau} v_{n}^{-}\right\rangle_{L_{-\infty, p}^{-1}}^{2}+\left\|v_{n}^{+}\right\|_{l^{2}}^{2},
\end{gather*}
$$

in the space $l_{\tilde{N}^{*}, \tilde{\Gamma}^{*}}^{2}(\tilde{E})$, where $v_{n}^{ \pm}$are the corresponding continuations in the second variable n_{2} from the semiaxes $\mathbb{Z}_{ \pm}$of the functions of $l_{\mathbb{Z}}^{2}(\tilde{E})$ obtained by using the Cauchy problem (2.28).

The following statement, similar to Th. 2.1, is true.
Theorem 2.5. The wave operator $\tilde{W}_{+}(p)$ (2.30) acting from the space $l_{\tilde{N}^{*}, \tilde{\Gamma}^{*}}^{2}(\tilde{E})$ into the Hilbert space $\mathcal{H}_{N^{*}, \Gamma^{*}}$ (1.24) exists for all $p \in \mathbb{Z}_{+}$and is an isometry

$$
\begin{equation*}
\left\langle\tilde{W}_{+}(p) v_{n}\right\rangle_{\tau(p, k)}^{2}=\left\langle v_{n}\right\rangle_{\tilde{\tau}(p, k)}^{2} \tag{2.34}
\end{equation*}
$$

in respective metrics (2.32) and (2.33) for all $p \in \mathbb{Z}_{+}$. Moreover, for all $\tilde{W}_{+}(p)$ (2.30) the relations

$$
\begin{align*}
& \text { 1) } \quad \stackrel{+}{U}(1, s) \tilde{W}_{+}(p)=\tilde{W}_{+}(p+s) \tilde{V}_{+}(1, s) ; \tag{2.35}\\
& \text { 2) } \tilde{W}_{+}(p) P_{D_{+}\left(\tilde{N}^{*}, \tilde{\Gamma}^{*}\right)}=P_{D_{+}\left(\tilde{N}^{*}, \tilde{\Gamma}^{*}\right)}
\end{align*}
$$

are true for all $p, s \in \mathbb{Z}_{+}$, where $P_{D_{-}\left(\tilde{N}^{*}, \tilde{\Gamma}^{*}\right)}$ is an orthoprojector onto the subspace $D_{+}\left(\tilde{N}^{*}, \tilde{\Gamma}^{*}\right)$.

Select two relations that are an immediate corollary of 1) (2.35) and are similar to (2.8),

$$
\begin{align*}
& \text { 1) } \quad \stackrel{+}{U}(1,0) \tilde{W}_{+}(p)=\tilde{W}_{+}(p) \tilde{V}_{+}(1,0) ; \tag{2.36}\\
& \text { 2) } \quad \stackrel{+}{U}(1, p) \tilde{W}_{+}(0)=\tilde{W}_{+}(p) \tilde{V}_{+}(1, p)
\end{align*}
$$

for all $p \in \mathbb{Z}_{+}$.
Continue now each vector-function $u_{n_{1}}$ from the space $l_{\mathbb{Z}}^{2}(E)$ by the second variable n_{2} into the domain \mathbb{Z}^{2} using the Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{2} u_{n}=\left(N^{*} \partial_{1}+\Gamma^{*}\right) u_{n} ; \quad n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2} ; \tag{2.37}\\
\left.u_{n}\right|_{n_{2}=0}=u_{n_{1}} \in l_{\mathbb{Z}}^{2}(E) .
\end{array}\right.
$$

As in the case of the Cauchy problem (2.28), the continuation $u\left(n_{1}, n_{2}\right) \rightarrow$ $u\left(n_{1}, n_{2}+1\right)$ has the explicit recurrent nature, and the continuation into the lower semiplane $n_{2} \in \mathbb{Z}_{-}, u\left(n_{1}, n_{2}\right) \rightarrow u\left(n_{1}, n_{2}-1\right)$ may be done under suppositions of Lem. 1.1 and $\operatorname{dim} E<\infty$. The Hilbert space obtained in this way is denoted by $l_{N^{*}, \Gamma^{*}}^{2}(E)$, besides $\left\|u_{n}\right\| \xlongequal{\text { def }}\left\|u_{n_{1}}\right\|_{l_{Z}^{2}(E)}$.

Similarly to the operator $\tilde{V}_{+}(p)(2.29)$, define the shift operator

$$
\begin{equation*}
V_{+}(p) u_{n}=u_{n+p} \tag{2.38}
\end{equation*}
$$

in the space $l_{N^{*}, \Gamma^{*}}^{2}(E)$ for all $p \in \mathbb{Z}^{2}$ and for all $u_{n} \in l_{N^{*}, \Gamma^{*}}^{2}(E)$. Specify now the wave operator $\tilde{W}_{-}(k)$ from the space $\mathcal{H}_{N^{*}, \Gamma^{*}}(1.24)$ into $l_{N^{*}, \Gamma^{*}}^{2}(E)$

$$
\begin{equation*}
\tilde{W}_{-}(k)=s-\lim _{n \rightarrow \infty} V_{+}(-n,-k) P_{D_{-}\left(N^{*}, \Gamma^{*}\right)} \stackrel{+}{U}(n, k) \tag{2.39}
\end{equation*}
$$

for all fixed $k \in \mathbb{Z}_{+}$, where $\stackrel{+}{U}(n)$ and $V_{+}(n)$ are specified by the formulas (1.25) and (2.38), respectively. It is easy to see that $\tilde{W}_{-}(0)=W_{-}^{*}$, besides W_{-}has the standard form [6].

Theorem 2.6. The wave operator $\tilde{W}_{-}(k)$ (2.39) mapping the space $\mathcal{H}_{N^{*}, \Gamma^{*}}$ (1.24) into $l_{N^{*}, \Gamma^{*}}^{2}(E)$ exists for all $k \in \mathbb{Z}_{+}$and has the following properties:

$$
\begin{array}{ll}
\text { 1) } & V_{+}(1, s) \tilde{W}_{-}(k+s)=\tilde{W}_{-}(k) \stackrel{+}{U}(1, s) \tag{2.40}\\
\text { 2) } & \tilde{W}_{-}(k) P_{D_{-}\left(N^{*}, \Gamma^{*}\right)}=P_{D_{-}\left(N^{*}, \Gamma^{*}\right)}
\end{array}
$$

for all $k, s \in \mathbb{Z}_{+}$, where $P_{D_{-}\left(N^{*}, \Gamma^{*}\right)}$ is an orthoprojector onto $D_{-}\left(N^{*}, \Gamma^{*}\right)$.
Select two relations following from equality 1) (2.40):

$$
\begin{array}{ll}
\text { 1) } & V_{+}(1,0) \tilde{W}_{-}(k)=\tilde{W}_{-}(k) \stackrel{+}{U}(1,0) \tag{2.41}\\
2) & V_{+}(1, k) \tilde{W}_{-}(k)=\tilde{W}_{-}(0) \stackrel{+}{U}(1, k)
\end{array}
$$

for all $k \in \mathbb{Z}_{+}$.
Similarly to (2.13), define now the scattering operator $\tilde{S}(k, p)$ from $l_{\tilde{N}^{*}, \tilde{\Gamma}^{*}}(\tilde{E})$ into the space $l_{N^{*}, \Gamma^{*}}^{2}(E)$

$$
\begin{equation*}
\tilde{S}(k, p)=\tilde{W}_{-}(k) \tilde{W}_{+}(p) \tag{2.42}
\end{equation*}
$$

for all $k, p \in \mathbb{Z}_{+}$, that obviously coincides with S^{*} when $k=p=0$.
Theorem 2.7. The scattering operator $\tilde{S}(k, p)$ (2.42) is a bounded operator from $l_{\tilde{N}^{*}, \tilde{\Gamma}^{*}}^{2}(\tilde{E})$ into the space $l_{N^{*}, \Gamma^{*}}^{2}(E)$, besides the following relations

$$
\begin{array}{ll}
\text { 1) } & \tilde{S}(k, p) \tilde{V}(1, s)=V_{+}(1, s) \tilde{S}(k+s, p-s) \\
\text { 2) } & \tilde{S}(k, p) P_{+} l_{\tilde{N}^{*}, \tilde{\Gamma}^{*}}^{2}(\tilde{E}) \subseteq P_{+} l_{N^{*}, \Gamma^{*}}^{2}(E) \tag{2.43}
\end{array}
$$

take place for all $k, p, s \in \mathbb{Z}_{+}$, whereas $0 \leq s \leq p$ and P_{+}is an orthoprojector onto the respective subspaces corresponding to the solutions of the Cauchy problems (2.28) and (2.37) with the initial data on the semiaxis $\mathbb{Z}_{+}\left(n_{2}=0\right)$.

It is obvious that the invariant property of the operator $\tilde{S}(k, p)$ with respect to the shift by the coordinate " n_{1} "

$$
\begin{equation*}
\tilde{S}(k, p) \tilde{V}_{+}(1,0)=V_{+}(1,0) \tilde{S}(k, p) \tag{2.44}
\end{equation*}
$$

follows from 1) (2.43) for all $p, k \in \mathbb{Z}_{+}$, and

1) $\quad \tilde{S}(k, p) \tilde{V}_{+}(1, p)=V_{+}(1, p) \tilde{S}(k+p, 0)$,

$$
\begin{equation*}
p=s \tag{2.45}
\end{equation*}
$$

2) $\quad \tilde{S}(0, p) \tilde{V}_{+}(1, p)=V_{+}(1, p) \tilde{S}(p, 0), \quad p=s, k=0$.

This fact is similar to equalities (2.16).
V. Define now the mapping $\tilde{\mathcal{P}}_{p, k}$ from the direct sum of the Hilbert spaces $l_{\tilde{N}^{*}, \tilde{\Gamma}^{*}}^{2}(\tilde{E})+l_{N^{*}, \Gamma^{*}}^{2}(E)$ into the Hilbert space $\mathcal{H}_{N^{*}, \Gamma^{*}}(1.24)$ in the following way:

$$
\begin{equation*}
\tilde{f}_{p, k}=\tilde{\mathcal{P}}_{p, k}\left(g_{n}\right)=\tilde{\mathcal{P}}_{p, k}\binom{v_{n}}{u_{n}}=\tilde{W}_{+}(p) v_{n}+\tilde{W}_{-}^{*}(k) u_{n} \tag{2.46}
\end{equation*}
$$

where $v_{n} \in l_{\tilde{N}^{*}, \tilde{\Gamma}^{*}}(\tilde{E}), u_{n} \in l_{N^{*}, \Gamma^{*}}^{2}(E)$ for all $p, k \in \mathbb{Z}_{+}$. As it was noted above (see Paragraph III), the vector-functions $\tilde{f}_{p, k}$ form the dense set in the space $\mathcal{H}_{N^{*}, \Gamma^{*}}(1.24)$ in the case of simplicity of expansion $V_{s}, \stackrel{+}{V}_{s}(1.1)$, for the fixed p, $k \in \mathbb{Z}_{+}$. Therefore every vector from the space $\mathcal{H}_{N^{*}, \Gamma^{*}}$ has different realizations $\tilde{f}_{p, k}(2.46)$ for different values of the parameters p and k. It is obvious that

$$
\left\langle\tilde{f}_{p, k}, \tilde{f}_{p, k}\right\rangle_{\mathcal{H}_{N^{*}, \Gamma^{*}}}=\left\langle\tilde{W}_{p, k} g_{n}, g_{n}\right\rangle_{l^{2}}
$$

where the weight operator $\tilde{W}_{p, k}$ is equal to

$$
\tilde{W}_{p, k}=\left[\begin{array}{cc}
\tilde{W}_{+}^{*}(p) \tilde{W}_{+}(p) & \tilde{S}^{*}(k, p) \tag{2.47}\\
\tilde{S}(k, p) & \tilde{W}_{-}(k) \tilde{W}_{-}^{*}(k)
\end{array}\right]
$$

besides $\tilde{S}(k, p)$ has the form of (2.42). Similarly to Observation 2.1 , it is obvious that all blocks of the operator $\tilde{W}_{p, k}$ are translational invariant with respect to the shift by the variable " n_{1} ". Thus, the mapping $\tilde{\mathcal{P}}_{p, k}(2.46)$ defines the one-to-one unitary correspondence between the space $\mathcal{H}_{N^{*}, \Gamma^{*}}(1.24)$ and the space

$$
\begin{equation*}
l^{2}\left(\tilde{W}_{p, k}\right)=\left\{g_{n}=\binom{v_{n}}{u_{n}}:\left\langle\tilde{W}_{p, k} g_{n}, g_{n}\right\rangle_{l^{2}}<\infty\right\} \tag{2.48}
\end{equation*}
$$

where $v_{n} \in l_{\tilde{N}^{*}, \tilde{\Gamma}^{*}}^{2}(\tilde{E}), u_{n} \in l_{N^{*}, \Gamma^{*}}^{2}(E)$. It is easy to see that the given space $l^{2}\left(\tilde{W}_{p, k}\right)$ coincides with $l^{2}\left(\begin{array}{cc}I & S \\ S^{*} & I\end{array}\right)$, when $p=k=0$, as in the case of the space $l^{2}\left(W_{p, k}\right)(2.19)$. It follows from the relations 1$)(2.36)$ and 1$)(2.41)$ and from the unitarity of the $\stackrel{+}{U}(1,0)$ that the dilation $\stackrel{+}{U}(1,0)$ acts in every space $l^{2}\left(\tilde{W}_{p, k}\right)(2.48)$ by the shift by the variable " n_{1} "

$$
\hat{U}_{+}(1,0) g_{n}=\left[\begin{array}{cc}
\tilde{V}_{+}(1,0) & 0 \tag{2.49}\\
0 & V_{+}(1,0)
\end{array}\right] g_{n}
$$

for all $g_{n} \in l^{2}\left(\tilde{W}_{p, k}\right)$.

Further, study how the dilation $\stackrel{+}{U}(1, s)(1.25)$ acts on the vectors $\tilde{f}_{p, k}=$ $\tilde{\mathcal{P}}_{p, k}\left(g_{n}\right)(2.46)$. As in the considerations above, study only the case when the dilation $\stackrel{+}{U}(1, p)(1.25)$ acts on the vectors of the type $\tilde{f}_{0, p}=\tilde{\mathcal{P}}_{0, p}\left(g_{n}\right)(2.46)$.

Similarly to (2.22), it is easy to prove that

$$
\begin{gather*}
\left\langle\stackrel{+}{U}(1, p) \tilde{f}_{0, p}, \tilde{f}_{p, 0}^{\prime}\right\rangle_{\tau(p)} \\
=\left\langle\left[\begin{array}{cc}
I & \tilde{S}^{*}(0, p) \\
\tilde{S}(0, p) & V_{+}(1, p) \tilde{W}_{-}(p) \tilde{W}_{-}^{*}(p) V_{+}^{*}(1, p)
\end{array}\right]\right. \\
\left.\times\left[\begin{array}{cc}
\tilde{V}_{+}(1, p) & 0 \\
0 & V_{+}^{*}(-1,-p)
\end{array}\right] g_{n}, g_{n}^{\prime}\right\rangle_{\tilde{\tau}_{-}(p), \tau_{-}(p)} \tag{2.50}
\end{gather*}
$$

besides, the bi-linear form in the right part is understood component-wisely in the sense of the metrics $\tilde{\tau}_{-}(p)$ and $\tau_{-}(p)(2.31)$. Let

$$
\begin{align*}
& \tilde{W}_{0, p}^{\prime}=\left[\begin{array}{cc}
I & \tilde{S}^{*}(0, p) \\
\tilde{S}(0, p) & V_{+}(1, p) \tilde{W}_{-}(p) \tilde{W}_{-}^{*}(p) V_{+}^{*}(1, p)
\end{array}\right] \\
& \hat{V}_{+}(1, p)=\left[\begin{array}{cc}
\tilde{V}_{+}(1, p) & 0 \\
0 & V_{+}^{*}(-1,-p)
\end{array}\right] \tag{2.51}
\end{align*}
$$

O b servation 2.3. Consider the mapping $\tilde{\mathcal{P}}_{0, p}$ (2.46), denote by $\tilde{f}_{0, p}^{\prime}=\tilde{\mathcal{P}}_{0, p}\left(g_{n}^{\prime}\right)=\tilde{W}_{+}(0) \tilde{V}_{+}(-1,-p) v_{n}+\tilde{W}_{-}^{*} V_{+}^{*}(1, p) u_{n}$, where $u_{n} \in l_{N^{*}, \Gamma^{*}}^{2}(E)$, $v_{n} \in l_{\tilde{N}, \tilde{\Gamma}}^{2}(\tilde{E})$. Then

$$
\left\langle\tilde{f}_{0, p}^{\prime}, \tilde{f}_{0, p}^{\prime}\right\rangle_{\mathcal{H}_{N^{*}, \Gamma^{*}}}=\left\langle\tilde{W}_{0, p}^{\prime} g_{n}, g_{n}\right\rangle_{l^{2}}
$$

follows from 2) (2.45), that is similar to Observation 2.2.
Therefore the dilation $\stackrel{+}{U}(1, p)(1.25)$ acts as a shift operator

$$
\begin{equation*}
\hat{U}_{+}(1, p)=\hat{V}(1, p) g_{n} \tag{2.52}
\end{equation*}
$$

from the Hilbert space

$$
l^{2}\left(\tilde{W}_{0, p}^{\prime}\right)=\left\{g_{n}=\binom{v_{n}}{u_{n}}:\left\langle\tilde{W}_{0, p}^{\prime} g_{n}, g_{n}\right\rangle_{l^{2}}<\infty\right\}
$$

$\left(v_{n} \in l_{\tilde{N}^{*}, \tilde{\Gamma}^{*}}^{2}(\tilde{E}), u_{n} \in l_{N^{*}, \Gamma^{*}}^{2}(E)\right)$ into the space $l^{2}\left(\tilde{W}_{0, p}\right)$ (2.48).
It is clear that the subspaces

$$
\hat{D}_{-}\left(N^{*}, \Gamma^{*}\right)=\binom{0}{P_{-} l_{N^{*}, \Gamma^{*}}^{2}(E)} ; \quad \hat{D}_{+}\left(\tilde{N}^{*}, \tilde{\Gamma}^{*}\right)=\binom{P_{+} l_{\tilde{N}^{*}, \tilde{\Gamma}^{*}}(\tilde{E})}{0}
$$

where, as usual, P_{-}and P_{+}are orthoprojectors in $l_{N^{*}, \Gamma^{*}}^{2}(E)$ and in $l_{\tilde{N}^{*}, \tilde{\Gamma}^{*}}^{2}(\tilde{E})$ onto the subspaces of the solutions of the Cauchy problems (2.37) and (2.28) with the initial data on \mathbb{Z}_{-}and \mathbb{Z}_{+}, respectively, and are the prototypes of the subspaces $D_{-}\left(N^{*}, \Gamma^{*}\right)$ and $D_{+}\left(\tilde{N}^{*}, \tilde{\Gamma}^{*}\right)$ from $\mathcal{H}_{N^{*}, \Gamma^{*}}(1.24)$ for the mapping $\tilde{\mathcal{P}}_{p, k}$ (for all $p, k \in \mathbb{Z}_{+}$). Therefore the space H is isomorphic to

$$
\begin{equation*}
\hat{H}_{p,+}=l^{2}\left(\tilde{W}_{0, p}\right) \ominus\binom{P_{+} l_{\tilde{N}^{*}, \tilde{\Gamma}^{*}}(\tilde{E})}{P_{-} l_{N^{*}, \Gamma^{*}}(E)} . \tag{2.53}
\end{equation*}
$$

Using similar considerations for $l^{2}\left(\tilde{W}_{0, p}^{\prime}\right)(2.53)$, we obtain a different realization

$$
\hat{H}_{p,+}^{\prime}=l^{2}\left(\tilde{W}_{p, 0}^{\prime}\right) \ominus\binom{\tilde{V}_{+}(1, p) P_{+} l_{\tilde{N}^{*}, \tilde{\Gamma}^{*}}^{2}(\tilde{E})}{V_{+}^{*}(-1,-p) P_{-} l_{N^{*}, \Gamma^{*}}^{2}(E)}
$$

in view of Observation 2.3. The spaces $\hat{H}_{p,+}(2.53)$ and $\hat{H}_{p,+}^{\prime}\left(2.53^{\prime}\right)$ are isomorphic, besides, the operator $R_{p,+}: \hat{H}_{p,+} \rightarrow \hat{H}_{p,+}^{\prime}$ defining this isomorphism has the form

$$
R_{p,+}=P_{\hat{H}_{p, 0}^{\prime}}\left[\begin{array}{cc}
\tilde{V}_{+}(-1,-p) & 0 \tag{2.54}\\
0 & V_{+}(1, p)
\end{array}\right] P_{\hat{H}_{p,+}},
$$

where $P_{\hat{H}_{p,+}}$ and $P_{\hat{H}_{p,+}}$ are orthoprojectors onto $\hat{H}_{p,+}^{\prime}\left(2.53^{\prime}\right)$ and onto $\hat{H}_{p,+}(2.53)$, respectively. It follows from (2.49) and (2.52) that the operators T_{1}^{*} and $T^{*}(1, p)=$ $T_{1}^{*} T_{2}^{* p}, p \in \mathbb{Z}_{+}$, are

$$
\begin{equation*}
\left(\hat{T}_{1}^{*} f\right)_{n}=P_{\hat{H}_{p,+}} f_{n+(1,0)} ; \quad\left(\hat{T}^{*}(1, p) f\right)_{n}=P_{\hat{H}_{p,+}} \hat{V}_{+}(1, p)\left(R_{p,+} f\right)_{n} \tag{2.54}
\end{equation*}
$$

for all $f_{n} \in \hat{H}_{p,+}(2.53), P_{\hat{H}_{p,+}}$ is an orthoprojector onto $\hat{H}_{p,+}$ and the operator $R_{p,+}$ is specified by formula (2.54). As in the previous case, the operator \hat{T}_{1}^{*} has the same form (2.54) in all spaces $\hat{H}_{p,+}$, and the operator $\hat{T}^{*}(1, p)$ has a given form (1.54) only in one space $\hat{H}_{p,+}(2.53)$.

Theorem 2.8. Let $V_{s}, \stackrel{+}{V}_{s}(1.1)$ be the simple [8] commutative unitary expansion of the operator system $\left\{T_{1}, T_{2}\right\}$ from the class $C\left(T_{1}\right)$ (1.3) and, moreover, the hypotheses of Lem. 1.1 be met, and $\operatorname{dim} E=\operatorname{dim} \tilde{E}<\infty$. Then the isometric dilation $\stackrel{+}{U}(1, p)$ (1.25), $p \in \mathbb{Z}_{+}$, acting in the Hilbert space $\mathcal{H}_{N^{*}, \Gamma^{*}}$ (1.24), is unitary equivalent to the operator $\hat{U}_{+}(1,0)$ (2.49), for $p=0$, in $l^{2}\left(\tilde{W}_{0, p}\right)$ (1.24) and to the operator $\hat{U}_{+}(1, p)$ (2.52), for $p \in \mathbb{N}$, mapping the space $l^{2}\left(\tilde{W}_{0, p}^{\prime}\right) \quad$ (2.48') into $l^{2}\left(\tilde{W}_{0, p}\right)$ (2.48). Moreover, the operators T_{1}^{*} and $T^{*}(1, p)$ (1.21) acting in H are unitary equivalent to the shift operator \hat{T}_{1}^{*} (2.54) in $\hat{H}_{p,+}$ (2.53) for all $p \in \mathbb{Z}_{+}$and to the operator $\hat{T}(1, p)$ (2.54) acting in the fixed $\hat{H}_{p,+}(2.53)(p \in \mathbb{N})$.

References

[1] M.S. Livs̆ic, N. Kravitsky, A. Markus, and V. Vinnikov, Theory of Commuting Nonselfadjoint Operators. - Math. Appl. 332 Kluver Acad. Publ. Groups, Dordrecht, 1995.
[2] V.A. Zolotarev, Time Cones and Functional Model on the Riemann Surface. - Mat. Sb. 181 (1990), No. 7, 965-995. (Russian)
[3] B. Szekefalvi-Nagy and Ch. Foyas, Harmony Analisys of Operators in the Hilbert Space. Mir, Moscow, 1970. (Russian)
[4] V.A. Zolotarev, Model Representations of Commutative Systems of Linear Operators. - Funkts. Anal. i yego Prilozen. (1988), No. 22, 66-68. (Russian)
[5] M.S. Brodskiy, Unitary Operator Colligations and their Characteristic Functions. - Usp. Mat. Nauk 33 (1978), No. 4, 141-168. (Russian)
[6] V.A. Zolotarev, Analitic Methods of Spectral Representations of Nonselfadjoint and Nonunitary Operators. MagPress, Kharkiv, 2003. (Russian)
[7] V.A. Zolotarev, Isometric Expansions of Commutative Systems of Linear Operators. - Mat. fiz., analiz, geom. 11 (2004), 282-301. (Russian)
[8] V.A. Zolotarev, On Isometric Dilations of Commutative Systems of Linear Operators. - J. Math. Phys., Anal., Geom. 1 (2005), 1922-208.

