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We study holomorphic almost periodic functions on a tube domain with

the spectrum in a cone. We extend to this case Levin's theorem on a con-

nection between the Jessen function, secular constant, and the Phragmen�

Lindel�of indicator. Then we obtain a multidimensional version of Picard's

theorem on exceptional values for our class.
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An almost periodic function with the bounded from below spectrum has some

speci�c properties. Namely, it extends to the upper half-plane as a holomorphic

almost periodic function f of exponential type (H. Bohr [2]), then log jf j and the

mean value of log jf j over a horizontal line (the so-called the Jessen function) are

of the same growth along the imaginary positive semi-axis (B. Jessen, H. Torne-

have [7] and B.Ja. Levin [9]). The last result (together with the discovered by

Ph. Hartman [6], and B. Jessen, H. Tornehave [7] connection between the Jessen

function, mean motions of argf(z), and a distribution of zeros for holomorphic

almost periodic functions on a strip) shows the regularity of functions of this

important class.

In the end of the last century, L.I. Ronkin created the theory of holomorphic

almost periodic functions and mappings de�ned on the tube domains of multidi-

mensional complex space [11, 12, 14]. The Jessen function of several variables,

introduced by him, plays the main role in the value distribution theory for almost

periodic holomorphic mappings.

Here we continue studying the class of almost periodic functions on a tube do-

main with the spectrum in a cone done in [4] and [5]. Namely, we �nd a connection

between the asymptotic behavior of the Jessen function and the polar indicator.
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Then we introduce a multidimensional analogue of the secular constant and study

its asymptotic behavior. Also, we obtain a multidimensional version of Picard's

theorem on exceptional values for our class.

Let us give a more detailed description of the subject.

Suppose f is a 2�-periodic function with the convergent Fourier series f(x) =P
n�n0

ane
inx; n0 � 0; an0 6= 0. Then f(z) =

P
n�n0

ane
inz, z = x + iy; is a natural

extension of f(x) to the upper half-plane C
+ . Clearly, f(z) is a holomorphic

function of exponential type jn0j without zeros in some half-plane y > y0 and

lim
y!+1

y�1 1

2�

�Z
��

log jf(x+ iy)jdx = lim
y!+1

y�1 log jf(iy)j = �n0:

In [2] and [7], these properties were generalized to almost periodic functions f

with bounded from below spectrum under the condition �0 = inf spf 2 spf . One

should only replace the mean value over the period by the Jessen function

Jf (y) = lim
S!1

(2S)�1

SZ
�S

log jf(x+ iy)jdx (1)

the number n0 by �0, and make use of the Phragmen�Lindel�of Principle (see

a footnote in the proof of Th. 1).

Note that the limit in (1) exists for every holomorphic almost periodic function

on a strip fz = x + iy : a < y < bg and the function Jf (y) is convex on (a; b).

Then for all y 2 (a; b), maybe except some countable set Ef , we have

J 0f (y) = �cf (y); (2)

where

cf (y) = lim
��!1

argf( + iy)� argf(� + iy)

 � �

is the mean motion, or secular number, of the function f ; here argf(x + iy) is

a continuous branch of the argument of f on the line y = const. By the way,

equality (2) and the Argument principle imply that the number N(�S; S; y1; y2)
of zeros of the function f in the rectangle fjxj < S; y1 < y < y2g� has a density

lim
S!1

(2S)�1N(�S; S; y1; y2) = J 0f (y2)� J 0f (y1) (3)

for all y1; y2 62 Ef . It can also be proved that f has no zeros on a substrip

f� < y < �g if and only if Jf (y) is a linear function on the interval (�; �). In

this case,

f(z) = eicf z+g(z);

�Zeros should be counted with multiplicities.
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where g(z) is almost periodic on the strip fz = x+ iy : x 2 R; � < y < �g.
Thus, an almost periodic function f with the property �1 < �0 = inf spf 2

spf is extended to C
+ as a holomorphic almost periodic function. Then we get

��0 = lim
y!+1

log jf(iy)j
y

= lim
y!+1

Jf (y)

y
= lim

y!+1
J 0
f
(y) = � lim

y!+1
cf (y) (4)

(see, for example, [7, 10]).

In the case �0 62 spf , the function is also extended to C + as a holomorphic

almost periodic function; the equalities (4) are also valid, but the proof of the

second equality is complicated, and this is the contents of Levin's Secular Constant

Theorem [9, 10].

Note that there exists a natural connection between the distribution of ze-

ros of an almost periodic holomorphic function on the upper half-plane and the

con�guration of its spectrum:

Theorem B ([1]). Suppose that the spectrum spf of an almost periodic func-

tion f on C
+ is bounded from below. Then:

1) if �0 = inf spf � 0, then f(z) tends to a �nite limit as y ! 1 on C
+

uniformly in x 2 R;

2) if �0 = inf spf < 0 and �0 2 spf , then f(z) ! 1 as y ! 1 on C +

uniformly in x 2 R;

3) if �0 = inf spf < 0 and �0 62 spf , then the function f(z) takes every

complex value on the half-plane y > q � 0 for each q <1.

To discuss the multidimensional case, we need the following de�nitions.

Let z = (z1; : : : ; zn) 2 C p , z = x + iy 2 C p , x 2 Rp ; y 2 Rp . By hx; yi or
hz; wi denote the scalar product (or the Hermitian scalar product for z; w 2 C p).

By j:j denote the Euclidean norm on Rp or C p . Also, for x = (x1; x2; : : : ; xp) put
0x = (x2; : : : ; xp). Further, by TK denote a tube set

TK = fz = x+ iy 2 C
p : x 2 R

p ; y 2 Kg;

where K � Rp is the base of the tube set.

A vector � 2 Rp is called an "-almost period of the function f(z) on TK if

sup
z2TK

jf(z + �)� f(z)j < ":

The function f is called almost periodic on TK if for every " > 0 there exists

L = L(") such that every p-dimensional cube in Rp with the side of length L

contains at least one "-almost period of f . In particular, when K = f0g, we get

the de�nition of an almost periodic function on Rp .
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A function f(z), z 2 T
, where 
 is a domain in R
p , is called almost periodic if

its restriction to TK is an almost periodic function for every compact set K � 
.

The spectrum spf of an almost periodic function f(z) on TK is the set of

vectors � 2 R
p such that the Fourier coe�cient

a�(y; f) = lim
S!1

1

(2S)p

Z
jxjj<S;j=1::p

f(x+ iy)e�ihx;�idmp(x) (5)

does not vanish on K; here mp is the Lebesgue measure on R
p . The spectrum of

every almost periodic function f is at most countable, therefore we have

f(x+ iy) �
X

an(y)e
ihx;�ni;

where f�ngn2N = spf and an(y) = a�n(y; f). Note that for any given countable

set f�ng the functionP
n2N n

�2eihx;�
ni is almost periodic on Rp with the spectrum

f�ng.
In [11] L.I. Ronkin introduced the notion of the Jessen function of an almost

periodic holomorphic function f on T
 by the formula

Jf (y) = lim
S!1

1

(2S)p

Z
[�S;S]p

log jf(x+ iy)jdmp(t):

Using the methods of the theory of distributions and peculiar properties of zero

sets for holomorphic functions, L.I. Ronkin con�rmed that the limit exists and

de�nes a convex function in y 2 
. He also established the multidimensional

analogue of equality (3)

lim
S!1

m2p�2fz = x+ iy : x 2 [�S; S]p; y 2 !; f(z) = 0g
(2S)p

= �p�J(!);

where �J is the Riesz measure of J(y), ! � ! � 
, �J(@!) = 0, and the area of

zero sets is taken counting the multiplicity.

Also, in [13] L.I. Ronkin proved that the products bn(y) = an(y)e
hy;�ni do

not depend on y for every holomorphic almost periodic function f(z) on T
; in

particular, the coe�cient b0 corresponding to the exponent � = 0 does not depend

on y. In the case, the Fourier series turns into the Dirichlet series

f(z) �
X
�n2Rp

bne
ihz;�ni; bn 2 C : (6)

In [12] L.I. Ronkin obtained the following results.
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Theorem R. Let f be a holomorphic almost periodic function on T
. Then

the function Jf (y) is linear on the domain 
0 � 
 if and only if the function f

has no zeros in T
0 . Moreover, in this case

f(z) = expfihcf ; zi+ g(z)g; z 2 T
0 ; (7)

where cf 2 Rp and g(z) is an almost periodic function on T
0 .

In conditions of Th. R, we have

Jf (y) = �hcf ; yi+Re b0; y 2 
0;

where b0 is the corresponding coe�cient of the Dirichlet-series expansion of the

function g. Therefore, the following de�nition seems to be natural.

De�nition. The function �gradJf (y); y 2 
; is the secular vector of the

almost periodic holomorphic function f on T
.

In order to formulate our results, we need some de�nitions and notations.

A cone � � R
p is the set with the property y 2 �; t > 0 ) ty 2 �: We will

consider the convex cones with nonempty interior and such that �
T
(��) = f0g.

By b� denote the conjugate cone to �, i.e., b� = fx 2 Rp : hx; yi � 0 8y 2 �g; note
that

bb� = �. As usual, IntA is the interior of the set A, and HE(x) = sup�2Ehx; �i
is the support function of the set E � Rp .

Let f be a holomorphic almost periodic function on a tube T� with an open

cone � in the base. By de�nition, put

hf (y) = sup
x2Rp

lim
r!1

ln jf(x+ iry)j
r

; y 2 �:

The function hf is called the P -indicator of f (see [14, p. 245]).

Theorem A ([5]). Let � be a closed cone in Rp , and f(x) be an almost

periodic function on Rp . Then f is extended holomorphically to T
Intb�

with the

estimates

9b <1 8�0 = �0 � Intb� [ f0g 9B(�0) 8z 2 T�0 jf(z)j � B(�0)ebjyj; (8)

if and only if spf � � + � for some � 2 Rp . If this is the case, then f(z) is

almost periodic on T
Intb�

and for all y 2 Intb�
hf (y) = Hspf (�y): (9)

For almost periodic functions with bounded spectrum, equality (9) was proved

in [4].

The following theorem is the main result of our paper.
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Theorem 1. Let � be a closed cone in R
p , and f(x) be an almost periodic

function on R
p such that f is extended holomorphically to T

Intb�
with estimates

(8). Then for all y 2 Intb�
lim
R!1

Jf (Ry)

R
= hf (y): (10)

Furthermore, the secular vector �gradJf (Ry) tends to gradHspf (�y) as R!1
in the sense of distributions.

R e m a r k. Since Jf (y) is a convex function, we see that the secular vector

is a locally integrable function on Intb�.
P r o o f. From the beginning assume that y0 = (1; 0; 0; : : : ; 0) 2 Intb�, and

we will prove (10) for y = y0.

Put F (z) = f(z)eihz; hf (y
0)y0i (supx2Rp jf(x)j)�1, u(z) = log jF (z)j. Note that

F (z) is an almost periodic holomorphic function on T
Intb�

and jF (x)j � 1 on

R
p . Applying the Phragmen�Lindel�of principle� on the complex one�dimensional

plane fx+ wy : w 2 C
+g, we get

u(x+ ity) � hF (y) t; 8 z = x+ iy 2 T
Intb�

; t > 0: (11)

Then

hF (y) = hf (y)� hy; hf (y0)y0i; hF (y
0) = 0: (12)

Take y = y0 in (11). We get

u(z1;
0 x) � 0 8 (x1;

0x) 2 R
p ; y1 � 0: (13)

Fix " > 0. Since supx2Rp limr!1 r�1u(x + iry0) = 0, we see that for some

x0 = x0(") 2 Rp , r = r(") > 0,

u(x0 + iry0) � �"r: (14)

Using the Poisson formula for the disc D(x01 + iR; R) = fz1 : jz1 � x01 �
iRj < Rg � C + with R > r, inequality (13), and Maximum principle for the

subharmonic function u(z1;
0 x0), we obtain

u(x01 + ir;0 x0)

� 1

2�

2�Z
0

u(x01 + iR+Rei ;0 x0)
R2 � (R� r)2

R2 � 2R(R � r)cos(�=2 +  ) + (R� r)2
d 

�Suppose g(z) is continuous on C+ , holomorphic on C
+ , and bounded on R function, which

satis�es the condition log+ jg(z)j = O(jzj) as jzj ! 1; then for z = x + iy 2 C
+ we have

jg(z)j � supx2Rjg(x)je
�+y, where �

+ = lim supy!+1 y
�1 log jg(iy)j (see [8, p. 28]).
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� r

4�R

3�=4Z
�=4

u(x01+ iR+Rei ;0 x0)d � r(8R)�1 sup
 2[�=4;3�=4]

u(x01+ iR+Rei ;0 x0):

Hence (14) implies that u(x01+iR+Rei 0 ;0 x0) � �8"R for some  0 2 [�=4; 3�=4].

The function u(z1;
0 x0) is subharmonic in z1 2 C

+ . Taking into account (13) and

the embeddings

D(x01 + 2iR; R) � D(x01 + iR+Rei 0 ; R+R =
p
2) � C

+ ;

we get

�8"R � 2

�R2(3 + 2
p
2)

Z
D(x0

1
+iR+Rei 0 ; R+R=

p
2)

u(z1;
0 x0)dm2(z1)

<
1

3�R2

Z
D(x0

1
+2iR;R)

u(z1;
0 x0)dm2(z1): (15)

Remind that this inequality is valid for all R > r.

Put uR(z) = R�1u(Rz). From (15) it follows thatZ
D(x0

1
=R+2i; 1)

uR(z1;
0 x0=R)dm2(z1) > �24�": (16)

Furthermore, Th. A implies that the function hf (y) is continuous. Since (12),

we get hF (y) < " for jy � y0j < pÆ with some Æ = Æ(") 2 (0; 1=(p + 2)). If we

replace in (11) y by y=jyj, x by Rx, and t by Rjyj, we obtain
uR(z) = R�1u(Rx+ iRy) � "jyj (17)

for all z from the tube domain

T Æ = fz = x+ iy : x 2 R
p ;
��y=jyj � y0

�� < pÆg:
By de�nition, put

A(x1) = D(x11 + 2i; 1)�D(x12; Æ) �D(x13; Æ) � � � � �D(x1p; Æ):

It can easily be checked that for all x1 = (x11;
0 x1) 2 Rp we have A(x1) � T Æ. Also,

we may assume that T Æ � T
Intb�

[ f0g. Then for all z1 2 D(x01=R + 2i; 1) the

function uR(z) is subharmonic in z2 2 D(x12; Æ); z3 2 D(x13; Æ); : : : ; zp 2 D(x1p; Æ).

Hence (16) implies Z
A(x0=R)

uR(z)dm2p(z) > �24Æ2p�2�p": (18)
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Suppose that for some � 2 R
p we have

jF (x0 + � + iry0)� F (x0 + iry0)j � e�"r � e�2"r:

Then jF (x0 + � + iry0)j � e�2"r and u(x0 + � + iry0) � �2"r. Using the latter

inequality instead of (14), we obtain the relationZ
A(x0=R+�=R)

uR(z)dm2p(z) > �48Æ2p�2�p": (19)

Put u+
R
(z) = maxfuR(z); 0g; u�R(z) = maxf�uR(z); 0g. From (17) it follows

that for all x1 2 R
p and all z 2 A(x1) we have

uR(z) <
p
10": (20)

Therefore, by (19),Z
A(x0=R+�=R)

u�
R
(z)dm2p(z) =

Z
A(x0=R+�=R)

u+
R
(z)dm2p(z)

�
Z

A(x0=R+�=R)

uR(z)dm2p(z) � 52Æ2p�2�p": (21)

In the sequel we need the following lemma.

Lemma 1. Let g(x) be an almost periodic function in x 2 Rp . Then for any

� > 0 there exist a real L = L(�) and a set E = E1 � � � � �Ep, Ej 2 R, such that

Ej \ [a; a+ L] 6= ; for every a 2 R, j = 1; : : : ; p, and each � 2 E is an �-almost

period of g.

P r o o f. By Bochner's criterium�, any sequence tn 2 R has a subsequence

tn0 such that the functions g(x+ (tn0 ;
0 0)) converge uniformly in x 2 R

p . In other

words, the functions g(x1+ tn0 ;
0 x) converge uniformly in x1 2 R and 0x 2 Rp . By

Bochner's criterium, the function g(x1;
0 x) is almost periodic in x1 2 R uniformly

in 0x 2 Rp�1 . Hence there exist E1 2 R and L = L(�) such that E1\[a; a+L] 6= ;
for all a 2 R and

jg(x1 + t;0 x)� g(x;0 x)j < �=p 8x1 2 R; 80x 2 R
p�1 ; 8t 2 E1;

i.e., each � = (t;0 0) for t 2 E1 is an �=p-almost period of g(x). In the same way,

we �nd E2; : : : ; Ep. It is clear that every point of E1 � � � � � Ep is an �-almost

period of g.

�For almost periodic functions on R see [10, Ch. VI, �1], or [3, p. 14�16]; the proof for the

multidimensional case is similar.
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Take S < 1, and let L = L("; r) be real from Lem. 1. It is not di�cult to

prove that if R > L
p
2, then there exist �11 ; : : : ; �

N1

1 2 E1, N1 � 2
p
2S + 2, such

that
N1[
m=1

�
x01 + �m1

R
�
p
2

2
;
x01 + �m1

R
+

p
2

2

�
� [�S; S]; (22)

and each point of [�S; S] is contained in at most two intervals. For the same

reasons, if R > L
p
2=Æ, then for j = 2; : : : ; p there exist �1

j
; : : : ; �

Nj

j
2 Ej ,

Nj � (2
p
2S + 2)=Æ, such that

Nj[
m=1

�
x0
j
+ �m

j

R
� Æ

p
2

2
;
x0
j
+ �m

j

R
+
Æ
p
2

2

�
� [�S; S]: (23)

Let F = f� = (�m1

1 ; : : : ; �
mp
p ) : 1 � m1 � N1; : : : ; 1 � mp � Npg. Note that

F contains at most (2
p
2S + 2)pÆ1�p elements. By de�nition, put

�(S; Æ) =

�
x+ iy : x 2 [�S; S]p; jy1 � 2j < 1p

2
; jyjj < Æp

2
; j = 2; : : : ; p

�

Combining (22) and (23), we get

[
�2F

A

�
x0 + �

R

�
� �(S; Æ): (24)

Applying Lem. 1 to the function F (x+ iry0) with � = e�"r�e�2"r and using (21)

for every � 2 F , we obtainZ
�(S; Æ)

u�
R
(z)dm2p(z) �

X
�2F

Z
A(x

0+�
R

)

u�
R
(z)dm2p(z) � 52(2

p
2S + 2)pÆp�1�p":

Therefore, we have

lim
S!1

1

(2S)p

Z
�(S; Æ)

uR(z)dm2p(z) � �52(
p
2�)pÆp�1": (25)

It follows from the de�nition of the Jessen function that

lim
S!1

1

(2S)p

Z
[�S;S]

uR(x+ iy)dmp(x) =
JF (Ry)

R
: (26)

The functions uR(z) are uniformly bounded from above for z 2 TÆ.
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Applying the Fatou lemma to inequality (25), we getZ
jy1�2j<

p
2

2
;jy2j< Æp

2
;:::jypj< Æp

2

JF (Ry)dy � �52(
p
2�)pÆp�1"R; (27)

for all R > R(L; Æ; r; ").

To �nish the proof, we need the following simple lemma.

Lemma 2. Let g(t) be a convex negative function on [��; �]. Then g(0) �
��1

R
�

�� g(t)dt:

P r o o f. The assertion of Lem. 2 follows immediately from the inequality

g(t) � g(0)minf1� t=�; 1 + t=�g:

Note that (20) and (26) imply

JF (Ry) �
p
10"R (28)

for all y = (y1; : : : ; yp); jy1 � 2j < 1; jyj j < Æ; j = 2; : : : ; p: Further, the Jessen

function JF (Ry) is convex in y ([11]). Therefore the function

g(0y) =
Z

jy1�2j< 1p
2

JF (Ry)dy1 � 2
p
5R"

satis�es the conditions of Lem. 2 in each variable y2; : : : ; yp with � = Æ=
p
2.

Applying the lemma p� 1 times and using inequality (27), we obtainZ
jy1�2j< 1p

2

JF (Ry1;
0 0)dy1 � �40(2�)pR":

Since (13), we see that the integrand is negative. Moreover, it is convex, therefore

JF (Ry1;
0 0) is a monotonically decreasing function in y1. Then we have

JF ((2� 1=
p
2)Ry0) � �30(2�)pR":

The inequality is valid for all R > R(") and " > 0. Thus we have

lim
R!1

JF (Ry
0)

R
= 0: (29)

Since JF (y) = Jf (y)� hy; hf (y0)y0i, we obtain (10) for y = y0.
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For an arbitrary y0 2 Intb� consider an orthogonal operator A : Rp ! R
p such

that A(y0) = y0. Put f1(z) = f(Az). Since hf1(y
0) = hf (y

0) and Jf1(y
0) = Jf (y

0),
we obtain (10) for y = y0.

Further, from (11) and Th. A it follows that the function Jf (Ry)=R is bounded

from above on every compact subset of Intb�. Then �x y1 2 Intb� and take s > 0

such that fy : jy � y1j � sg � Intb�. Whenever jy � y1j < s, we have

2Jf (Ry
1) � Jf (R(2y

1 � y)) + Jf (Ry)

and
Jf (Ry)

R
� 2 inf

R�1

����Jf (Ry1)R

����� sup
R�1

sup
jy�y1j�s

maxfJf (Ry); 0g
R

:

This means that the functions Jf (Ry)=R are uniformly bounded from below on

every compact subset of Intb�. Using (10) and the Lebesgue theorem, we obtainZ
Jf (Ry)

R
'(y)dmp(y)!

Z
hf (y)'(y)dmp(y) as R!1

for every test function ' on Intb�, i.e., (10) is valid in the sense of distributions as

well. Therefore,

gradJf (Ry)! gradhf (y) as R!1
in the sense of distributions and Th. A implies the last assertion of Th. 1.

Corollary 1. Suppose that all conditions of Th. 1 are ful�lled. If Hspf (y) is

nonlinear on (�b�), then f(z) has zeros on the set IntT
b�\fjyj>qg for each q <1.

P r o o f. Theorem A yields that the function hf (y) is nonlinear for y 2 Intb�.
Now Th. 1 implies that Jf (y) is nonlinear on the set fIntb� \ fjyj > qgg for each

q <1. Then Th. R implies that f(z) has zeros on IntT
b�\fjyj>qg.

Applications to distribution of values. Here we apply Th. 1 to prove the

multidimensional variant of Th. B:

Theorem 2. Let � � Rp be a closed convex cone and f(x) be an almost peri-

odic function on Rp that has a holomorphic extension f(z) to T
Intb�

with estimates

(8). Then:

1) if (spf n f0g) � �, then f(z) tends to a �nite limit as y ! 1; y 2 �0,
uniformly in x 2 Rp for all �0 = �

0 � Intb� [ f0g;
2) if (spf n f0g) � � + � with some � 2 spf \ (��) n f0g, then the function

f(z) tends to 1 as y ! 1; y 2 �0, uniformly in x 2 Rp for all �0 = �
0 �

Intb� [ f0g;
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3) if (spf n f0g) � � + � with some � 2 (spf n spf) \ (��) n f0g, then the

function f(z) takes every complex value on the set IntT
b�\fjyj>qg for each

q <1;

4) if (spf nf0g) � �+� with some � 2 spf n((��) [ �), then the function f(z)

takes every complex value, except for at most one, on the set IntT
b�\fjyj>qg

for each q <1;

5) if (spf n f0g) 6� � + � for all � 2 spf and spf 6� �, then the function f(z)

takes every complex value on the set IntT
b�\fjyj>qg for each q <1.

R e m a r k. It is clear that we can replace spf n f0g by spf in Cases 1�3.

Therefore Th. 2 gives, in a sense, a complete description of the value distributions

for our class of almost periodic functions.

P r o o f. Case 1 was proved in [4], Case 2 was proved in [5]. Reduce Case

3 to a one-dimensional one. Take y0 2 Intb� such that hy0; �ki 6= hy0; �mi for all
k 6= m, and put '(w) = f(wy0), w 2 C .

First, check that sp' = fhy0; �i : � 2 spfg. This is evident for �nite ex-

ponential sums. In the general case, take a sequence of Bochner�Feyer expo-

nential sums� Pn(x), which approximates f(x) on Rp. Since spPn � spf and

Pn(uy
0) ! '(u) uniformly on R, we see that sp' � fhy0; �i : � 2 spfg. On the

other hand, if � 2 spf , then

ahy0; �i(0; Pn(y
0u)) = a�(0; Pn)! a�(0; f) 6= 0 as n!1:

Therefore, ahy0; �i(0; ') 6= 0 and hy0; �i 2 sp'.

Note that hy0; �ni ! hy0; �i as �n ! �, �n 2 spf . Also, since y0 2 Intb� and

�� � 2 � for all � 2 spf , we get hy0; �i > hy0; �i. Therefore, inf sp' = hy0; �i
and hy0; �i 62 sp'. From Th. B, i. 3 it follows that f(z) takes every complex

value on the set fz = wy0 : Imw > qg for each q <1.

Let us consider Case 4. Let b0 be the coe�cient of series (6) corresponding

to the exponent � = 0. Then for any A 2 C n fb0g each function f(z) � A has

the spectrum spf [ f0g. Suppose that the support function Hspf[f0g(y) is linear
on (�b�). Then it is not di�cult to prove (for example, see [5, Lem. 2]) that

spf [ f0g � �0 + � with some �0 2 (��) \ (spf [ f0g). But this is impossible

in our case. Hence, the function Hspf[f0g(y) is nonlinear on (�b�): Now Cor. 1

yields that the function f(z)�A has zeros on IntT
b�\fjyj>qg for each q <1.

Let us consider Case 5. Let b0 be the same as in Case 4. The function

f(z)� b0 has the spectrum spf n f0g. Note that the support function Hspfnf0g(y)

�For almost periodic functions on R see [10, Ch.VI, �1], or [3, p. 38�45]; consideration in the

multidimensional case is similar.
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is nonlinear on (�b�). Hence Cor. 1 implies that the function f(z)� b0 has zeros

on IntT
b�\fjyj>qg for each q < 1. Further, for any A 2 C n fb0g the function

f(z)�A has the spectrum spf [f0g. If the support function Hspf[f0g(y) is linear
on (�b�), then spf [ f0g � �0 + � with some �0 2 (��) \ (spf [ f0g). The both

cases �0 = 0 and �0 6= 0 contradict to the conditions of Case 5. Therefore the

function f(z)�A has zeros on IntT
b�\fjyj>qg for each q <1.
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