УДК 621.039.76

МОДЕЛИРОВАНИЕ МАССОВЫХ И ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ СКОПЛЕНИЯ ТОПЛИВОСОДЕРЖАЩИХ МАТЕРИАЛОВ В ЮГО-ВОСТОЧНОЙ ЧАСТИ ПОМЕЩЕНИЯ 305/2 РАЗРУШЕННОГО 4-ГО БЛОКА ЧАЭС

В. А. Бабенко, Е. Д. Высотский, А. А. Ключников, А. С. Лагуненко, В. Н. Павлович, Э. М. Пазухин

Институт проблем безопасности АЭС НАН Украины, Чернобыль

Представлена версия материальной модели и результаты расчетов плотности потоков нейтронов для «сухого» скопления топливосодержащих материалов в подреакторной плите в юго-восточной части помещения 305/2. Расчеты сопоставлены с измеренными значениями плотности потоков нейтронов. Определены направления корректировки массовых и геометрических параметров модели.

Введение

Уровень ядерной безопасности объектов, содержащих ядерные материалы, в частности объекта «Укрытие», можно оценивать различными методами. Во-первых, можно попытаться рассчитать эффективный коэффициент размножения нейтронов на основе той или иной модели распределения топлива. Во-вторых, можно провести прямые измерения реактивности, используя, например, метод нейтронных шумов или метод импульсного нейтронного источника. Наконец, можно проводить непрерывный мониторинг плотности потока нейтронов (ППН) в различных точках объекта и на основании изменений ППН судить об изменении реактивности объекта. Каждый метод в отдельности по ряду причин, которые мы не будем здесь обсуждать, не дает требуемой точности оценки реактивности скоплений топливосодержащих материалов (TCM) в объекте «Укрытие». Поэтому наиболее информативным может стать сочетание измерительных и расчетных методов, причем расчетные методы также должны основываться на тщательном анализе измерений различных параметров TCM, проведенных в объекте «Укрытие», для создания адекватной модели распределения топлива и других материалов в скоплениях TCM.

При таком подходе изменение уровня подкритичности может оцениваться по результатам интерпретации относительных изменений ППН. В условиях отсутствия доступа в среду интерпретация может проводиться только на основании имеющихся распределений ППН, полученных в результате расчетного моделирования начального состояния подкритичности и развития подкритической аномалии в размножающей среде.

Ниже приводятся результаты расчетов распределений ППН и эффективного коэффициента размножения для материальной модели скопления, версия массовых и геометрических параметров которой представлена в работе [1].

Для расчетов была использована многофункциональная программа решения задач переноса нейтронов методом Монте-Карло в трехмерных материальных системах MCNP-4C.

Материальная модель критмассовой зоны

В работах [1, 2] было высказано и обосновано предположение о том, что в юговосточном квадранте помещения 305/2 находятся два «скрытых» скопления TCM, которые могут быть идентифицированы как зоны критмассового риска (КМЗ). Скопления локализованы в полостях, проплавленных топливом в бетоне подреакторной плиты в южной (КМЗ-1) и восточной (КМЗ-2) частях квадранта [2]. Эти предположения основаны на данных тепловых измерений, наблюдений в парораспределительном коридоре, результатах буровых работ, данных инструментальных измерений, анализе аномального события 1990 г. На рис. 1, на горизонтальном сечении массива лавообразных ТСМ (ЛТСМ) в юго-восточном квадранте помещения 305/2 выделена предполагаемая область расположения КМЗ-1. На рис. 2 представлен фрагмент подреакторной плиты (ПП), включающий эту зону.

Рис. 1. Помещение 305/2. ЛТСМ на отметке +9.700. Расположение ТСМ с высоким содержанием урана

Рис. 2. Фрагмент подреакторной плиты

Фрагмент подреакторной плиты (отметки +8.200 - +9.700) включает в себя полость со скоплением TCM, образовавшуюся в результате взаимодействия расплава топлива с бетоном плиты. Сверху (отметки +9.700 - +10.500) скопление прикрыто слоем ЛТСМ, над слоем ЛТСМ (отметки +10.500 - +11.000) находится слой бетона, залитого в 1986 г. при возведении объекта «Укрытие» («свежий» бетон), ниже скопления (отметки +8.000 - +8.200) - слой тяжелого бетона (плита перекрытия).

На рис. 3 и 4 представлены характерные вертикальные сечения фрагмента.

Рис. 4. Сечение выделенного фрагмента по ряду И₊₂₅₀₀ (у = 7)

Фрагмент (см. рис. 2) был разбит на ячейки размером $0.5 \times 0.5 \times 0.5$ м. Каждой ячейке присваивался номер х,у,z. Для каждой ячейки рассчитывался массовый состав и плотность среды. При расчетах были приняты следующие условия:

на отметках +8.700 - +9.700 в полости находятся TCM, массовое содержание урана в которых линейно возрастает по глубине от 5 до 30 %;

химический состав TCM идентичен среднему составу черной керамики помещения 304/3, за исключением содержания урана, расчетный состав и плотность композиций в зависимости от содержания урана приведены в табл. 1;

содержание урана в ячейке периферийной зоны вдвое меньше, чем в соседней по горизонтали ячейке (см. рис. 3 и 4);

нижняя часть полости до отметки +8.700 заполнена металлом, элементный состав которого был рассчитан на основании оценки количества и типов конструкционных сталей, вовлеченных в процесс лавообразования [3] (табл. 2);

нижний у основания полости слой тяжелого бетона, верхний слой ЛТСМ и слой «свежего» бетона, прикрывающие полость, однородны по составу и плотности, плотность тяжелого бетона принималась равной 2,4 г/см³ и деструктурированного - 2,0 г/см³.

на,		Расчетный химический состав ЛТСМ, % (мас.)									Плотность, г/см ³				
Содержание урал %	UO ₂	SiO ₂	CaO	TiO ₂	ZrO ₂	Na ₂ O	BaO	Al ₂ O ₃	MnO	Fe ₂ O ₃	FeO	MgO	Cr ₂ O ₃	расчетная	с учетом пористости
5	5,7	64,4	6,1	0,2	5,3	5,6	0,1	6,7	1,7	0,2	0,2	3,5	0,2	3,48	2,5
20	22,7	52,6	5,0	0,2	4,3	4,6	0,1	5,5	1,4	0,2	0,2	2,9	0,2	4,83	3,5
30	34,1	44,9	4,3	0,1	3,7	3,9	0,1	4,7	1,2	0,2	0,1	2,5	0,2	5,73	4,1
40	45,4	37,1	3,5	0,1	3,1	3,3	0,1	3,9	1,0	0,1	0,1	2,1	0,1	6,63	4,8
50	56,8	29,4	2,8	0,1	2,4	2,6	0,1	3,1	0,8	0,1	0,1	1,6	0,1	7,52	5,4

Таблица 1. Расчетный химический состав и плотность ЛТСМ

Таблица 2. Расчетный элементный состав «луж» металла

Элемент	титан	железо	хром	никель	молибден	углерод
Содержание, % (мас.)	0,5	82,92	12,25	4	0,25	0,08

Расчеты массового состава и плотности ТСМ были проведены для каждой из 468 ячеек фрагмента. Общее количество урана в КМЗ-1 составило более 10 т при максимальном массовом содержании топлива в композициях 30 %. В качестве примера в табл. 3 приведены данные по составу ячеек 2-го слоя фрагмента (отметки +8.700 - +9.200) в сечениях $И_{+2500}$ - $И_{+3000}$.

Таблица 3. Элементный состав и плотность композиций в ячейках, расположенных в рядах И₊₂₅₀₀ - И₊₃₀₀₀

Ячейка		1,7,2	2,7,2	3,7,2	4,7,2	5,7,2	6,7,2	7,7,2	8,7,2	9,7,2	10,7,2	11,7,2	12,7,2
% (мас.)	уран	0	6,4	14,9	22,2	23,8	23,8	23,8	23,8	14,9	6,4	0	0
	кремний	30,4	32,3	26,4	23,9	23,3	23,3	23,3	23,3	26,4	30,4	32,3	32,3
	титан	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
	марганец	0,7	0,04	1,1	1,0	1,0	1,0	1,0	1,0	1,1	0,7	0,04	0,04
	магний	1,2	0,4	1,9	1,7	1,7	1,7	1,7	1,7	1,9	1,2	0,4	0,4
	кальций	5,9	7,7	3,8	3,4	3,3	3,3	3,3	3,3	3,8	5,9	7,7	7,7
	натрий	3,7	2,0	4,5	4,0	3,9	3,9	3,9	3,9	4,5	3,7	2,0	2,0
т, 9	калий	0,7	1,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,7	1,3	1,3
ен	железо	0,7	1,2	0,3	0,3	0,2	0,2	0,2	0,2	0,3	0,7	1,2	1,2
Элем	алюминий	4,0	4,7	3,1	2,8	2,7	2,7	2,7	2,7	3,1	4,0	4,7	4,7
	хром	0,1	0,004	0,2	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,004	0,004
	цирконий	1,9	0	3,5	3,1	3,0	3,0	3,0	3,0	3,5	1,9	0	0
	барий	0,05	0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,05	0	0
	углерод	0	0,33	0	0	0	0	0	0	0	0	0,33	0,33
	водород	0	0,21	0	0	0	0	0	0	0	0	0,21	0,21
Плотность, г/см ³		2,4	2,4	3,0	3,6	3,7	3,7	3,7	3,7	3,0	2,4	2,4	2,4

Модельные расчеты

Расчет ППН в объеме «сухой» размножающей среды КМЗ-1 был осуществлен с применением программного продукта МСNP-4С. Пространственное распределение внешних

4,903

источников нейтронов при этом выбиралось равномерным по всему объему делящегося вещества (TCM), а их суммарная активность (А) была принята равной 5,5 н/(с · г урана) [4].

В энергетическом спектре внешних источников нейтронов учитывался равномерно распределенный вклад от спонтанного деления кюрия ²⁴⁴Cm и двух изотопов плутония ²⁴⁰Pu и ²⁴²Pu, а также от (α , n)-реакции на кислороде. При этом спектр (α , n)-реакции в первоначальных расчетах был принят монохроматическим с энергией E₀ = 5,5 МэВ, а энергетический спектр деления изотопов кюрия и плутония был выбран в виде спектра деления Уатта

$$p(E)=Cexp(-E/a)sh(bE)^{1/2}$$

где значения коэффициентов распределения для элементов ²⁴⁴Cm, ²⁴⁰Pu и ²⁴²Pu были взяты из [5] и приведены в табл. 4. В этой же таблице приведены принятые для расчетов значения активностей отдельных изотопов.

и их коэффициентов распределения спектра деления Уатта A, $H/(c \cdot \Gamma ypaha)$ а, МэВ b, МэВ⁻¹ Изотоп 244 Cm 2,8 0,906 3,848 ²⁴⁰Pu 0,799

Таблица 4. Значения активностей отдельных изотопов

Результаты расцетов показывают, ито максимальный ППН в рассматриваемої	і молели

наблюдается в ячейке 7,4,2 и составляет величину $\Phi_{\text{макс}}(7,4,2) = 1380,9$ н/(см² · с).

0,79

Средние потоки нейтронов в слоях подреакторной плиты и во всем ее объеме имеют при этом значения, $H/(cm^2 \cdot c)$: $\Phi_1 = 176.8$, $\Phi_2 = 586.5$, $\Phi_3 = 563.8$, $\overline{\Phi} = 442.3$.

Значения потоков отнесены к серединному сечению слоя (см. рис. 2). Т.е. для 1-го слоя – отметка +8.450, для 2-го слоя – отметка +8.950, для 3-го слоя – отметка +9.450.

Средний поток нейтронов в слое ЛТСМ, содержащем 5 % урана, имеет значение $\Phi_{\rm IITCM5\%II} = 279.9$ н/(см² · с), а средние потоки нейтронов в зонах, содержащих бетон 1986 г., деструктурированный бетон, содержащий 2,5 % урана, и тяжелый бетон, составляют $\Phi_{\text{бетон}1986} = 48,1 \text{ H/(cm}^2 \cdot \text{c}), \quad \Phi_{\text{дест.бетон}} = 191,9 \text{ H/(cm}^2 \cdot \text{c}), \quad \Phi_{\text{тяж.бетон}} = 19,6 \text{ H/(cm}^2 \cdot \text{c}) \text{ соответ$ ственно.

Рис. 5. Распределение ППН во втором слое рассматриваемой модели ТСМ (на высотной отметке +8.950).

На рис. 5 приведено трехмерное графическое изображение распределения ППН во 2-м слое рассматриваемой модели ТСМ, где потоки нейтронов максимальны.

При расчете эффективного коэффициента размножения k_{эф} для рассматриваемой модели КМЗ было получено значение 0,237.

Таким образом, система в данной модели является глубоко подкритичной.

Необходимо подчеркнуть, что расчеты выполнялись для сухой размножающей среды. Очевидно, что в случае присутствия воды в зоне значение k_{эф} будет существенно выше приведенного.

Экспериментальные данные

В период 1988 - 1990 г. был выполнен значительный объем нейтронных измерений на границах рассматриваемой зоны [6]. Тепловые измерения, выполненные в этот период, дают основание считать, что TCM, заключенные в зоне, представляли собой «сухую сборку» [2, 7].

Сравнение результатов модельных расчетов с данными реальных измерений проводилось для сечений рассматриваемого фрагмента, для которых имелись экспериментальные данные (рис. 6 - 10). Эти данные были получены датчиками, размещенными в скважинах, пробуренных в подреакторной плите в 1988 – 1990 гг. [8].

На рис. 6 - 10 приведены расчетные распределения ППН в отдельных сегментах фрагмента и измерения, полученные в скважинах, пробуренных в ПП. Данные на рисунках, требуют пояснений.

Рисунок 6. Результаты измерений ниже расчетных, так как датчики экранируются от ТСМ слоем деструктурированного бетона. Характер экспериментального распределения ППН показывает, что смоделированное распределение ТСМ в этой области близко к реальному расположению ТСМ вдоль разделительной стены между помещениями 305/2 и 304/3.

Рисунок 7. Скважина 3-9-Е пробурена в ПП на уровне верхней границы 2-го слоя до контакта с ТСМ. Расчетные данные на границе зоны хорошо коррелируют с результатами измерений.

Рис. 6. Распределение ППН в сечении фрагмента, ряды И.₅₀₀ – И. Измерения в скважине 3-9-Ф,

Рис. 8. Распределение ППН в сечении фрагмента, ряды К₋₂₅₀₀ – К₋₂₀₀₀. Измерения в скважине 3-9-К, отметка +9.100, ряд К₋₂₀₀₀

Рис. 7. Распределение ППН в сечении фрагмента, ряды И₊₂₅₀₀ - И₊₃₀₀₀. Измерения в скважине 3-9-Е, отметка +9.100, ряд И₊₃₀₀₀

Рис. 9. Распределение ППН в сечении фрагмента, ряды К.1500 – К.1000. Измерения в скважине 3-9-Ж, отметка +9.100, ряд К.1000

Рисунок 8. Скважина 3-9-К пробурена в ПП на уровне верхней границы 2-го слоя и вошла в скопление ТСМ. Расчетные данные в западной части зоны практически совпадут с результатами измерений в случае смещения границы модели КМЗ на 0,5 м к западу.

Рисунок 9. Скважина 3-9-Ж пробурена в ПП на уровне верхней границы 2-го слоя и резкое повышение ППН происходит в осях 47_{-1000} - 47_{+1000} (под железобетонным крестом). В соответствии с результатами анализа выбуренного керна на этом участке скважина проходит по нижней границе ЛТСМ с концентрацией урана, превышающей 5 %, а сам железобетонный крест в этом месте, очевидно, проплавлен на всю ширину. Необходимо отметить, что бурение скважины 3-9-Ж было прекращено именно по причине извлечения высокоактивного керна из забоя, бур вошел в слой ЛТСМ с высоким содержанием урана [8]. Отсутствие корреляции между расчетными и экспериментальными данными показывает, что граница зоны находится западнее проекции железобетонного креста, чем это предполагалось при постро-

Рис. 10. Распределение ППН в сечении фрагмента, ряды К₋₅₀₀ - К. Измерения в скважине 3-9-68, отметка +9.100, ряд К

ении модели, и концентрация топлива здесь значительно выше заданных в модели значений.

Рисунок 10. Забой скважины 3-9-68 вошел во 2-й слой фрагмента. Расчетные данные на границе фрагмента соответствуют результатам измерений и показывают отсутствие признаков значительного проплавления ПП.

Из приведенного анализа следует, что геометрия модели в рядах К.2000 – К требует корректировки. Кроме того, очевидна целесообразность проведения разработки новой версии представленной модели с более высокой максимальной концентрацией урана (более 30 %).

Заключение

1. На основе сравнения экспериментальных и расчетных значений ППН намечены пути корректировки версии массового состава материальной модели скопления TCM [1], расположенного в зоне проплавления ПП в юго-восточном квадранте помещения 305/2.

2. Получены результаты расчета уровня подкритичности и распределения ППН для «сухой» размножающей среды материальной модели. Результаты расчета сопоставлены с экспериментальными данными.

3. Показано присутствие скопления ТСМ в ПП с концентрацией топлива более 30 % и массой более 10 т по урану.

СПИСОК ЛИТЕРАТУРЫ

- 1. Высотский Е.Д., Краснов В.А., Лагуненко А.С., Пазухин Э.М. Топливо в помещении 305/2 4-го блока ЧАЭС. Критмассовые зоны. Уточнение сценария образования лавообразных топливосодержащих материалов // Проблеми безпеки атомних електростанцій і Чорнобиля. – 2007. -Вип. 8. - С. 77 - 86.
- 2. Высотский Е.Д., Ключников А.А., Краснов В.А.. Локализация ядерно-опасных скоплений топливосодержащих материалов // Там же. Вип. 7. С. 66 75.
- 3. *Bogatov S., Borovoi A., Gavrilov S. et al.* Half an hour after the beginning of the accident, OKPRINT, Moscow, 2005. 22 p.

- 4. *Радиационно-физические* характеристики топлива 4-го энергоблока ЧАЭС и оценка их погрешности: Справочник / А. А. Боровой, А. А. Довбенко, В. М. Маркушев и др. // КЭ при ИАЭ им. И. В. Курчатова.- Инв. № 11.07-06/172. Чернобыль, 1989.- 115 с.
- 5. Briesmeister J.F., Ed., MCNP A General Monte Carlo N-Particle Transport Code, Version 4C, LA-13709-M, April 2000.
- 6. *Арзуманов С.С., Беляев С.Е., Бондаренко Л.Н. и др.* Нейтронные исследования на объекте «Укрытие». Март 1988 г. август 1990 г. Москва, 1991. 50 с. (Препр. / ИАЭ им. И. В. Курча-това; № 5313/3).
- 7. *Результаты* тепловых и радиационных измерений на ОУ за период 1988 1989 гг.: (Отчет) / КЭ при ИАЭ им. И. В. Курчатова. Арх. № 1379 (архив МНТЦ «Укрытие» НАН Украины), 1989. 47 с.
- 8. *Скважины* объекта «Укрытие». Обобщенные данные (альбом): (Отчет) / МНТЦ «Укрытие» НАН Украины. Инв. № 09/05-66 от 09.06.98 г. Чернобыль, 1998.- 117 с.

Поступила в редакцию 10.12.07

9 МОДЕЛЮВАННЯ МАСОВИХ І ГЕОМЕТРИЧНИХ ПАРАМЕТРІВ СКУПЧЕННЯ ПАЛИВОВМІСНИХ МАТЕРІАЛІВ У ПІВДЕННО-СХІДНІЙ ЧАСТИНІ ПРИМІЩЕННЯ 305/2 ЗРУЙНОВАНОГО 4-ГО БЛОКА ЧАЕС

В. О. Бабенко, Є. Д. Висотській, О. О. Ключников, О. С. Лагуненко, В. М. Павлович, Е. М. Пазухін

Представлено версію матеріальної моделі та результати розрахунків щільності потоків нейтронів для «сухого» скупчення паливовмісних матеріалів у підреакторній плиті в південно-східній частині приміщення 305/2. Розрахунки зіставлені з виміряними значеннями щільності потоків нейтронів. Визначено напрями коректування масових і геометричних параметрів моделі.

9 MODELLING OF MASS AND GEOMETRICAL PARAMETERS OF A AGGREGATION OF FUEL-CONTAINING MATERIALS IN THE SOUTHEAST PART OF A PREMISE 305/2 DESTROYED 4-TH UNIT CHERNOBYL NPP

V. A. Babenko, E. D. Vysotskiy, A. A. Kluchnikov, A. S. Lagunenko, V. M. Pavlovich, E. M. Pazukhin

The version of material model and results of calculations of neutron flux density for a "dry" aggregation of fuel-containing materials in underreactor plate in a southeast part of a premise 305/2 is presented. Calculations are compared to the measured values of neutron flux density. Directions of updating of mass and geometrical parameters of model are certain.