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Large-scale structure formation in cosmology
with classical and tachyonic scalar fields

The evolution of scalar perturbations is studied for 2-component (non-
relativistic matter and dark energy) cosmological models at the linear and
non-linear stages. The dark energy is assumed to be the scalar field with either
classical or tachyonic Lagrangian and constant equation-of-state parameter w.
The fields and potentials were reconstructed for the set of cosmological
parameters derived from observations. The comparison of the calculated within
these models and observational large-scale structure characteristics is made.
It is shown that for w = const such analysis can’t remove the existing
degeneracy of the dark energy models.

@OPMYBAHHS BEJHKOMACIITAFEHOI CTPYKTYPH B KOCMOJIOITI
3 KIHACHYHHM I TAXIOHHHM CKAJSIPHHMH I[TOJSMH, Cepeicn-
ko O., Kyainiu FO., Hogocsionui b., Henux B. — [Jocridxeno saimiiny ma
HeiHIIHY cmadiro eGoNrOUll CKANIPHUX 30YyDeHb Y 2-KOMNOHeHmMHOMY (Hepes-
mugicmcbka mamepis i memna enepeis) cepedosuwii. Ipunyckanocs, wo mem-
Ha eHepezisi € CKAASAPHUM NOJIEM i3 KJIACUMHUM YU MAXIOHHUM JAZPAHXIAHOM |
nocminHum napamempom pieusnus cmany. Ilons ma nomenyianu pexoncm-
DYUOBAHO 025t BCMAHOGNCHOZ0 HA OCHOGL CNOCMeEPeXHUX OaHUX Habopy KocMmo-
noeiwnux napamempia. IIpogedeHo NOPIGHSIHHS OOMUCTEHUX 8 paMKaX OaHUX
MOOenell ma GU3HAUEHUX HA OCHOGL CROCMEPeXHUX O0aHuX Xapakmepucmuk
geaukomacumaonoi cmpykmypu Bcecaimy. Ilokazano, w0 y pozzasHymomy
6unadky maxuil anani3 He ycyeac @upoOdxenHst Molenel memHOl enepeil.

POPMHPOBAHHE KPYIIHOMACIITAFEHOH CTPYKTYPhI B KOCMO-
JOTrHH C KJACCHYECKHM H TAXHOHHBIM CKAJISAPHBIMHM ITOJS-
MH, Cepeuenxo O., Kyaunuu FO., Hosocaonwid b., Ilenvix B. — Hccnedoaarsl
AUHERHAS. U HeAUuHeuHas cmadul I6ONI0UUL CKANIPHBIX G03MYULeHUll 6 2-KoM-
nonenmHou (Hepersmusucmckas mamepust U memuas snepeust) cpede. Ilped-
noaazanoCb, YMO MEMHASL IHEPZUSL SIGASLEMCS CKANSIPHLIM NOJeM C Kaaccuie-
CKUM UM MAXUOHHBIM JNAZPAHXKUAHOM U NOCMOSIHHbIM HAPAMEMPOM YPAGHe-
Hus cocmosanus. Ionss u nomenyuanvt 6biiu PeKOHCMPYUPOBAHBL OJLst
onpedeneHH0z0 HA OCHOBAHUU HAOLIO0aAMeNbHbLX OAHHBbLX Habopa KOCMOA0ZUHE-
ckux napamempoad. IIpouzsedeno cpasHeHue GbIMUCAEHHbLX @ PAMKAX OAHHBIX

© 0. SERGUENKO, YU. KULINICH, B. NOVOSYADLYS, V. PELYKH, 2009

26



LARGE-SCALE STRUCTURE FORMATION IN COSMOLOGY

molenel u onpedenisvlX HA OCHOBAHUU HADBI00aMelbHblX OaHHbLX Xapakmepu-
cmuk kpynHomacuumabnou cmpykmypel Bcenenwnoil. ITokasano, wmo ¢ pac-
CMAMPUBACMOM CAYHae MaKOU aHAAU3 He CHumaem @ulpoxdenue modenell
meMHOU HepeuU.

INTRODUCTION

The observations of the last decade surely confirm the acceleration of the
cosmological expansion. The explanation of this fact needs the assumption that
the main part — approximately 70 % — of the energy density of the Universe
belongs to the mysterious repulsive component called «dark energy». The
simplest model describing satisfactory almost the whole set of the experimental
data is ACDM-one. Here dark energy is identified with the A-term in the
Einstein equations. However, in this case there are several interpretational
problems, which suggest that another solution should be found. The most
popular alternative approaches are quintessential scalar fields, i. e., scalar fields
with the equation-of-state (EoS) parameter -1 < w,, = pg / pg < -1/3. The
simplest physicaly-motivated Lagrangians are the classical and tachyonic ones.
The first of them is the simple generalization of the non-relativistic particle
Lagrangian to the field while the second (called also the Dirac-Born-Infeld one)
— of the relativistic particle one [3, 11, 27, 28, 31]. The Lagrangian of classical
field has the canonical kinetic term, the Lagrangian of tachyon field has the
non-canonical one.

As soon as the analysis of dynamics of expansion of the Universe [32]
doesn’t allow us to choose the most preferable by the observational data model
of scalar field dark energy, here we focus on study of the evolution of scalar
perturbations and the large-scale structure formation in the Universe filled only
with the non-relativistic matter and either classical or tachyonic field minimally
coupled to it. It should be noted that the behavior of perturbations has already
been studied for different classical scalar fields more widely [5, 6, 35] than for
tachyonic ones [1, 10]. The parametrizations of scalar fields, their impact on
the formation of the large-scale structure of the Universe as well as on cosmic
microwave background anisotropy are widely discussed in the literature (see,
for example, [9, 13, 14, 29, 30] and citing therein). In this paper we analyse
the models with reconstructed potentials of the classical and tachyonic scalar
fields, defined by the additional condition w, = const, and compare the
obtained results with the ACDM-ones.

COSMOLOGICAL BACKGROUND

We consider the homogeneous and isotropic flat Universe with metric of 4-space
ds’ = gdx'dx = a(n)(dn® - éaﬂdx“dxﬂ),

where the factor a(#) is the scale factor, normalized to 1 at the current epoch
7o, 7 is conformal time (cdt = a(n)dn). Here and below we put ¢ = 1, so the
time variable ¢t = x, has the dimension of a length, and the latin indices i, j, ...
run from 0 to 3, the greek ones — over the spatial part of the metric: ¢, 8, ... =
=1, 2, 3

If the Universe is filled with non-relativistic matter (cold dark matter and
baryons) and minimally coupled dark energy, the dynamics of its expansion is
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completely described by the Einstein equations

1 m
Ry — 7 &R =8nG(T{ + T, M
where R; is the Ricci tensor and T§”, T{ — energy-momentum tensors of

matter (m) and dark energy (de). If these components interact only gravi-
tationally then each of them satisfy differential energy-momentum conservation
law separately:

T =0 | @

[T

(here and below “;i” denotes the covariant derivative with respect to the
coordinate x). For the perfect fluid with density p, 4, and pressure pg, g,
related by the equation of state pu, zey = Wim.de)P(m.aeys It 8ives

. a
P(m.dey = -3 Ep(m.de)(l + W(m,de)) 6))

(here and below a dot over the variable denotes the derivative with respect to
the conformal time). The matter is considered to be non-relativistic, so w,, = 0
and p,, = pPa? (here and below “0” denotes the present values).

We assume the dark energy to be a scalar field with either classical
Lagrangian

1 i
Lclas = E ¢;i " - U(¢) 4
or Dirac-Born-Infeld (tachyonic) one
Ltach = _U(E) V1 - g;i ‘Su » &)

where @, £ are the classical and tachyonic fields respectively while U(¢), U()
are the field potentials defining the models.

We suppose also the background scalar fields to be homogeneous, so their
energy densities and pressures depend only on time:

1 - 1 -
Peclas = 2_a2 ¢2 + U(¢), DPclas = '2;2— ¢2 - U(¢), (6)
UG Puacn=— UV — E*/a”. ¢

Prach = \/1—_;;27 ’

Then the conservation law gives the scalar field evolution equations

. . 22&_

¢+2aH¢)+ad¢— , 8)
E - ani . ddU
fT(g/Ts)zﬁ-:‘}aH&'i'-aJ‘(‘Zg:O, ¢))

where H = a/d* is the Hubble parameter for any moment of the conformal
time 7.

We specify the model of each field using the EoS parameter w,;, = pa/Pae-
It is obvious that the scalar field evolution equation has the analytical solutions
for w = const (here and below we omit index de denoting both — classical and
tachyonic — scalar fields for w,). In this case another important thermo-
dynamical parameter — the adiabatic sound speed ¢z = p,./p4— is equal to w.

The analysis of the dynamics of the Universe expansion for the
reconstructed fields with w = const was presented in [32]. It doesn’t depend on
the scalar field Lagrangian and — as a result — doesn’t allow us to distinguish
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such models of scalar fields. So, in order to choose the most adequate to
observations type of dark energy we should study at least the linear stage of
the evolution of scalar perturbations.

EVOLUTION OF SCALAR LINEAR PERTURBATIONS

We derive the equations of evolution of scalar linear perturbations in dark
energy — matter dominant era by varying of the Lagrange-Euler and Einstein
equations in the conformal-Newtonian frame with space-time metric

ds’=a'(n)[(1 + 2¥(x, n))dn* — (1 + 20(x, 7))0 4 dx“dx'1, (10)

where W(x, ) and ®(x, #) are metric perturbations, which in the case of zero
proper anisotropy of medium (as for dust matter and scalar fields) satisfy the
condition W(x, n) = —®(x, n) exactly [4, 15]. In the theory of linear
perturbations all spatially-dependent variables are usualy Fourier-transformed,
so, all perturbations — of metric, fields, matter density and velocity — in
equations are presented by their Fourier amplitudes: Wk, #), d¢k, ),
Ok, ), 6™ (k, ), V™(k, n) etc., where k is the wave number. They are
gauge-invariant — as it is particularly discussed in the original papers [4, 15]
and numerous reviews (see, for example, [8, 9, 25] and citing therein). The
energy density and velocity perturbations of dark energy, 6 and V), are
connected with the perturbations of field variables d¢, 6§ in the following way:

‘ op a&o¢ dU
(clas) — Zr —_——
0 (1+w)[¢ ¥+ P d¢>)’ an
o) KO (12)
@
1+w (OF 1 dU .
(tachy _ = " W [Xs _ 1 Yy
o] ” (5 ‘P) + U di ok, (13)
yron L RE a9
3

Other non-vanishing gauge-invariant perturbations of scalar fields are isotropic
pressure perturbations

1+w(0p a*o¢ dU
clasy _ Zr _ — adadl
1+w (S 1 du
tachy = _'9_ _ — 2= AL
and intrinsic entropy
2
) = g{de) _ Ca 5o, an
w

The density perturbation of any component in the conformal-Newtonian
gauge D; = J, which is gauge-invariant variable, is related to the other

gauge-invariant variables of density perturbations D and D, as:
vV

- av)_ av
D=D, + 3(1 +w)(\11+a k) D +3(1+w_ - (18)
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where Dy, D, D, and V correspond to either m- or de-component.

Evolution equations. Evolution equations for scalar field perturbations
O0¢(k, ) and 6&(k, n) can be obtained either from Lagrange-Euler equation or
from differential momentum-energy conservation law 67, = 0:

3 - d*U]| du ‘o
2 2 — =
O0p + 2aHop + [k + a —d¢2}6¢+2a2 d¢lP 4¥p =0, 19
o A 24U 1 d*U 1 dU\’
3 _ 5) _£4Y £l5¢ 2 202 Y 12 4ayv
ot + [ZaH QQH(a) U 55}55+{k + a (U e (U dé) )] X
A wr £\* & dU (E\?
X [1 - [—&) }6? — W& - 3¥¢ [1 - (—a) ] +2¥ U dE +6aHYE [Z) =0. 20

The linearised Einstein equations for gauge-invariant perturbations of
metric and energy-momentum tensor components are

W+ gHY - 4n]((3a2 PmV™ + pa(l + w)VE@21=0, 2D
V™ 4 aHV™ — k9 =0, 22
bg"> + kV™ =0, 23

. ck wk
VO + aH(1 = 3V — k(1 + 3P ——— D — - T@=0, (24)
D + 3(c2 — w)aHD® + k(1 + W)V + 3aHwI® = 0, (25)

where

k
=(1 - &)D), (26)

(clas)
wr(clas)=(1 _ cﬁ) [Dg,"’”) + 3(1 + w)¥ + 3aH(1 + w) v } =

tach)
WIem = — (3 + 2) |iDgach) +3(1 + w)¥ + 3aH(1 + w) V(k ] =

= — (w+ cl) DM, @mn

In w = const-case 1 — c,f =1-w w+ c§ = 2w, hence the difference between
equations for classical and tachyonic fields isn’t big (for w close to =1 — as it
follows from the observable data [16]) and suggests the similarity of their
solutions.

So, in each case we have the system of 5 first-order ordinary differential
equations for 5 unknown functions Wk, @), D{"k, @), V™, a), D{k, a)
and V% (k, a) satisfying also the constraint equation:

— kY = 4nGd(p,,. D™ + pg D). (28)

Initial conditions. Now we are going to specify the adiabatic initial
conditions. The adiabaticity condition in two-component model gives Dg,'") =
=D/ (1 +w) [7,8, 15].

Since the density of the w = const-ficlds is negligible at the early epoch
(a < 1), both our models are initially matter-dominated. It is known that in
such case the growing mode corresponds to W = const. The field equations of
motion for the reconstructed potentials are following:
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12 i _ ﬂ Qdea—sw %
09" + (2 2 1-Q, + Qdea-SW) a
k? 9(1 — w) Qua o
* {Hﬁa(l Tt QL a ™ T g (2 tWrwT T v o) |
—3w -
_ 3 Q1 + w) 4a¥’ + 3(1 —w¥ _
a 871G 1 — Qg + Qua ™ & 0 29
for the classical field and
1 3W Qdea—.%w 65’
Err | = -_— =
o5 [2 +3w+ S 1 -Q + Qdea‘“’) a
K’ 9 Qqea™ E —
W{H?)a(l T Qp t Qe ™ T 28 (1 T O+ Q™) |

Vitw (1 — 3w)a¥’ — 6w¥ _

CHNVT - Qg + Qpa ™ Va

0 (30)

for the tachyonic one. Here and below a prime denotes the derivative with
respect to the scale factor a and Q,, = p./p., where p, = 3H:/ (87G).
The condition ¥ = const for a <1 gives:

_ 1 Qu(l +w) “3w/2
=Vt V 1-g, ¢ 31

a’”. (32)

Here I'“@ = 0,
Using these solutions and equations (11)—(14), (18), (28), one can find
the initial values of Dy (k, @), V™ &, @), D{k, a), V&%, a):

2 k W
(dey — £ % _____ it /.
Vtmt 3 HO ‘]1 . Qde amtt ? (33)
DYy = = 5(1 + W)W, (34
2 k W
(m) — 2 = ity
ngt 3 HO ‘}1 _ Qde amlt’ (35)
Dém)init =-J54 inity 36)

which specify the growing mode of the adiabatic perturbations.

Numerical analysis. We have integrated numerically the systems of
equations for dust matter and dark energy with w = const for the adiabatic
initial conditions using the publicly available code DVERK¥*.

We used the set of cosmological parameters from http://lambda.gsfc.
nasa.gov/product/map, assumed ¥, = -1, a,, = 10'° and integrated up to
a = 1. The evolution of perturbations is scale dependent, so we performed
calculations for £ = 0.0001, 0.001, 0.01 and 0.1 Mpc'. The models with the
classical scalar field are denoted as QCDM, with tachyon — as TCDM. For
comparison we also solve the evolution equations for the ACDM-model.

* Itwas created by T. E. Hull, W. H. Enright, K. R. Jackson in 1976 and is available at http://www.cs.
toronto.edu/NA/dverk.f.gz
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Fig. 1. The evolution of the density (top) and velocity (bottom) perturbations for the non-relativistic
matter (left) and dark energy (right). In the left column the scales are & = 0.1, 0.01, 0.001 and
0.0001 Mpc"l from top to bottom. In the right column they are also & = 0.1, 0.01, 0.001 and
0.0001 Mpc  from top to bottom for the density perturbations while for the velocity ones the curves
correspond to k£ = 0.001, 0.0001, 0.01 and 0.1 Mpc™ from top to bottom at @ = 1. The cosmological
parameters are: Qg, = 0.722, w = —0.972, Q,, = 0.278, 4 = 0.697. (QCDM — solid line, TCDM —
dotted)

As it can be seen from Fig. 1, the simple conclusion, that the behavior of
the scalar linear perturbations in the model with the tachyonic field with w =
const should be similar to that in the model with the corresponding classical
field, is valid. The curves for both fields almost overlap, so in this case it is not
possible to choose the Lagrangian prefered by observations (see also [34]).

In both models studied here the matter clusters while dark energy is
smoothed out on subhorizon scales. Generally, at present epoch the growth of
the matter density perturbations is supressed and — unlike ACDM-case — such
supression is scale dependent, however this dependence is very weak. The dark
energy perturbations grow approximately up to the moment of the entering of
particle horizon and start to decay after that (the density perturbation D“9 —
slowly).

Note that the perturbations in such scalar field models are insensitive to
the initial conditions. Really, if we assume the dark energy to be initially
homogeneous ¢ = 0¢’ = 0 and 0 = 6&' = 0), the results of numerical
integration will be the same as in adiabatic case (the similar conclusion was
made in [6, 19]).

The simplest test for identification of the source causing the accelerated
expansion of the Universe can be based on the action of the studied fields on
cosmic microwave background. Here the main attention should be paid to the
temporal variation of the gravitational potential which causes the late-time
integrated Sachs-Wolfe (ISW) effect. In Fig. 2 the evolution of ¥ is shown for
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Fig. 2. The evolution of the gravitational
potential for the scales £ = 0.0001, 0.001, 0.01
and 0.1 Mpc’[ (from top to bottom). The curves
for QCDM- (solid line) and TCDM-models
(dotted) with the dark energy perturbations
overlap (ACDM — dashed line)
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both scalar field models and for ACDM-one for the scales of perturbations
k = 0.0001, 0.001, 0.01 and 0.1 Mpc'. It can be easily seen that the scale
dependence is weak and there is no substantial difference between classical and
tachyonic dark energy. Such scalar fields are in many senses similar to the
cosmological constant and their behavior is closer to that of the A-term for EoS
parameter values closer to —1. The given dependence for ACDM-model doesn’t
allow us to exclude this model using the observational data, because the
difference between it and those in models with the scalar ficld dark energy is
not substantial.

It should be noted that neglect of the dark energy perturbations leads to
the “quasi-ACDM”-models, i. e., models in which the fields affect the growth
of the matter perturbations only through the background. In these models the
decay of the gravitational potential is scale independent and close to the
small-scale one in the models with perturbed dark energy (in agreement with
the results of [19]).

-Another possible test is based on the study of action of dark energy on the
clustering properties of dust matter. However, here we need the analysis of the
evolution of scalar perturbations at the non-linear stage.

SPHERICAL COLLAPSE IN THE MODELS WITH HOMOGENEOUS DARK ENERGY

The simplest and most popular approach used in the study of the non-linear
stage of the large-scale structure formation is the spherical collapse model.
Within this framework we analyse the formation of the virialised halos in the
ACDM- and in the w = const QCDM- and TCDM-models with reconstructed
potentials, discussed in the previous sections.

The magnitudes of density perturbations of the classical and tachyonic
scalar fields with scale less than the particle horizon are lower than correspon-
ding magnitudes of the matter density ones by few orders and practically do
not affect their growth. The amplitudes of matter density perturbations in the
QCDM- and TCDM-models grow almost equally in cosmologies with the same
parameters. They are also close to ones in the ACDM-models. So, in order to
simplify the discussion of the non-linear evolution of scalar perturbations we
assume the dark energy component to tend to homogeneity. Other reasons for
homogeneous distribution of dark energy in the regions of matter inhomo-
geneties see, for example, in [22, 23]. Hence, the temporal dependence of the
dark energy density is defined by the corresponding background equation.
(Structure formation in inhomogeneous dark energy models has been analysed
in [26].)
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The relative perturbation of mass of the dust component in the comoving
volume v = 47R*/3 and metric ds* = d¥¥ — M2(R)y(t, R)dR® - x'(,
R)R*(cos*0dp* + d6?%) is following [17]:

3
_(a@® ) 37
O = (x(t, R)) 1, 37
where x(¢, R) is the local scale factor derived from the Einstein equation
G| = «T; (here G] is the Einstein tensor and « is the Einstein constant) [18,
17]:

_ 3P _1¥ 1%

==2p, " 2% t%72 (38)
(in this section a dot over the variable denotes d/H,df).

For the A-term we should put p,/p. = — Q, while for the quintessential
dark energy the relation is p,./p. = wQg,. The local curvature parameter Q; gives
the amplitude of the initial perturbation: d,(f) = (3/5)(Qx — Q)R a(?) at
a < 1. Since in the A-case € = Q(R) for the dark energy we should put
Q= Qz, R) [18, 30]. It means that here we need an additional equation
defining the evolution of the local curvature. However, for the homogeneous

perturbations (aiR Q =0, x = x() = (?)) using the combination of the Einstein

equations G) + G| + 2G; = «(Ty + T} + 2T5) we obtain the motion equation
without time-dependent curvature [36]:

=R

1
= - ;C_ (3pde + Pae + pm)’ 39)

where the dust matter density is p,, = pOx3.

Combining the equation (39) and Friedmann equations for the homo-
geneous Universe allows us to find the evolution of the mass perturbation.

In the analysis of halo formation the moment of the reaching of the
dynamical equilibrium is important. According to the virial theorem at this
moment the kinetic energy becomes T, = — %— Upyir + Upyir- In the ACDM-
model the energy conservation law T + U,, + U, = E is obtained by integration

of the equation of motion (38), multiplied by xx. From this follows: T = %kz,

Up=— %me“, Uy =—- % Q,x* and E = % Q.. In models with the A-term the

total energy is constant in time and at the reaching of the dynamical equilibrium
is equal E = % U,.. +2U,,, Alternatively, at the turnaround moment, when

x =T =0, the total energy is E = U,,,, + U, ,. From these equations we obtain
finally: %U,,,_v,-r + 2Upvir = Upie + Upye This identity, valid for the A-case,

doesn’t hold for the dark energy, since the temporal variation of the curvature
in the perturbed region gives E(z,,) # E(Z,).

In other words, explicit temporal dependence of the dark energy density
pa(t) leads to the explicit dependence of the potential energy of this component
U4 (t, x) on time and — hence — to the explicit temporal dependence of the
total energy: E(f) = T(X) + U,(x) + Uu(¢, x). It means that at different times
we have different values of the total energy. For estimating the momemt of
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reaching of the dynamical equilibrium for the dark energy case we use the
equations (3.13)—(3.17) from [18]. These equations describe the evolution of
the spherically-symmetric perturbation with the arbitrary profile in the model
with dark energy. Assuming there 2, = Q(1), x = x(f) = W) and V = V(¢), we
obtain the equations for the homogeneous spherical cloud. The additional
condition of homogeneity of the dark energy (the equality of (3) and (3.17)
from [18]) gives the expression for V. Using it together with (3.15) from [18]
we obtain the equation describing the temporal variation of curvature:

S Q _ £ 2 .

=3 [a x) (1 + w)Qg.x". 40)
Combining this equation with (38) leads to the energy conservation equation
E(t) = T(x) + U,(x) + Ug(t, x) in the following form:

* 19, 1 2 1

—T-zx_zgdex—'zgf. (41)

Really, it can be easily seen that differentiating (41) with respect to time

and using (40), (3) we obtain (39). Combining it with (41) we get (38). Since

E-= % €2, the equation (40) describes the temporal variation of the total energy.
Using the virial theorem, for the moment of reaching of the dynamical
equilibrium we write: E(z,,) = %— Unpyir ¥ 2U g vir- At the turnaround moment we

have: E(t;) = Uy + Ugese. Taking into account that E(¢,,) # E(Z,), we obtain
finally:
%‘ Um,vir + 2Ude.vt’r= i((tt‘::)) (Um.ta + Ude,la)' (42)

This equality differs from one used in [20, 36 ] by the factor E(t,;,)/E(t,),
which, however, is close to unity.

The mentioned above density contrast A, is defined as the ratio of the
density of virialised halo to the critical one at the expected moment of collapse:
A, = Pud pelte) = Quxi (Ho/ H(t,,))*. So, using the energy conservation law we
find:

4Qde(tcol)x|3/ir + 2S‘2.1‘(tcol)xvir + Qm = 0 (43)

We choose the initial value of the curvature in the perturbed region Q(0)
by setting the moment of collapse 7., Unfortunately, in the scalar field plus
CDM-model the equation (41) isn’t symmetrical in time with respect to the
moment of turnaround as it was for the ACDM-model. Hence the relation
between the quantities 7., and Q(0) must be established by the numerical
integration of the equations (40), (41). It is interesting to see how the curvature
changes in the models with dark energy plus CDM, since in the ACDM-models
it remains constant. In Fig. 3 we show such dependences for 3 different initial
values of the local curvature parameter, which correspond to the redshifts of
halo collapse z.,; =0, 1, 5.

The calculations of A, at the collapse moment z.; in the ACDM-model
(Q, =0.721, @, = 0.279) and in scalar field plus CDM-model (Q, = 0.722,
w=-0.972, Q, = 0.278) are presented in Fig. 4. We see that the difference
between the values of A, in these models is insignificant for all z,, It means
that dynamics of cluster formation at all stages of their evolution — from linear
stage through collapse up to virialization — is similar in the models with both
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Fig. 3. The temporal dependences of the local curvature parameter change AQf/Qf(O) =
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Q1)) /QL0) for 3 different Q{0), which correspond to the redshifts of halo collapse z.y 1,5
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Fig. 4. The density contrast A, at the collapse
moment z., of spherical cloud in the QCDM-,
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reconstructed quintessential scalar fields if they are minimally coupled and have
the same density (Q,) and EoS (w) parameters. Practically, they are
indistinguishable also from the best-fit ACDM-model, so, we conclude that
these classes of dark energy models are degenerate with respect to their impact
on dynamics of expansion of the Universe as well as formation of its large-scale
structure. The other scalar field models (with special potentials, variable EoS
parameter, non-minimal coupling, spatial inhomogeneity etc.) show similar but
not so strongly degencrate impact on the linear and non-linear stages of
structure formation (see, for example, [23, 26]).

THEORETICAL PREDICTIONS AND OBSERVATIONS

In this section we compare predictions of the models with modern observational
data on large-scale structure of the Universe.

We have reconstructed the potentials of classical and tachyonic scalar fields
for the model with parameters Q, = 0.722, w = -0.972, Q, = 0.278,
Q, = 0.0467, h = 0.697, o5 = 0.799, n, = 0.962, taken from http://lambda.gsfc.
nasa.gov/product/map (see also [16]). For computation of the CMB tempe-
rature and matter density fluctuations power spectra for TCDM-model we have
modified the CMBFAST-4.5.1 code substituting the subroutines evaluating the
classical field perturbations by corresponding tachyonic ones. Here we used the
homogeneous initial conditions for dark energy.

The angular power spectra of CMB temperature fluctuations computed for
QCDM- and TCDM-models are presented in the left panel of Fig. 5. There are
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Fig. 5. The CMB temperature (left) and matter density (right) fluctuations power spectra for the
models of Universe with dark energy: ACDM — solid line, QCDM — dashed, TCDM — dotted. The
curves for perturbed and unperturbed dark energy (QCDM and TCDM) overlap with practically the
same best-fit bias parameter (b = 1.24). The observational CMB temperature and matter density
fluctuations power spectra were obtained in the WMAP [24] and SDSS [33] projects. The amplitudes
of the matter density fluctuations power spectra are normalized to WMAP 5-year data

overlaped curves for perturbed and unperturbed dark energy. For comparison
the angular power spectrum of CMB temperature fluctuations for ACDM-model
with parameters 2, = 0.721, Q, = 0.279, Q, = 0.0462, ~ = 0.701, g3 = 0.817,
ny,=0.96 [16]is computed and presented in the same figure. The corresponding
five-year WMAP observational data [12, 24] are shown there too. We have
renormalized the computed power spectra by fitting them to all experimental
points by x’-minimization procedure. The minimal y* in the ACDM-model
equals 45.7, in the perturbed QCDM- and TCDM-models it equals 44.1 and in
unperturbed ones 43.9. So, the difference between them for 43 experimental
points is statistically insignificant.

In the right panel of Fig. 5 the power spectra of matter density
perturbations P(k) = (D™-D™) for the same models are shown. They are
normalized to 5-year WMAP data in the way explained above. The power
spetrum obtained from the analysis of the clustering of the luminous red
galaxies in the Sloan Digital Sky Survey (SDSS LRG) [33] is shown by dots.
The model spectra we fitted to observational one using scale independent bias
parameter b (P°(k) = b P(k)) by the y*-minimization procedure. The diffe-
rences between yZ, of all § models are less than 1 %, the best-fit bias
parameter b equals 1.22 for ACDM-model and 1.24 for all scalar field plus
CDM-models analysed here.

Thus, the ACDM-model as well as the perturbed and unperturbed QCDM-
and TCDM-models can’t be distinguished by current cosmological observational
data.

CONCLUSION

The evolution of the scalar perturbations is studied for the 2-component (dust
matter and minimally coupled dark energy) cosmological models at the linear
and non-linear stages. The dark energy component is assumed to be either
classical or tachyonic scalar field with the potentials reconstruted for the
constant EoS parameter.
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The evolution of linear perturbations is similar for both types of Lag-
rangian. The small difference can be due to the generation of the intrinsic
entropy of the fields, but in w = const-case it is almost the same for both types
of dark energy as soon as the observational data prefer the values of the EoS
parameter close to —1.

The scalar fields studied here suppress the growth of matter density
perturbations and the magnitude of gravitational potential. In these models —
unlike ACDM ones — such suppression is weakly scale dependent and doesn’t
depend substantially on the Lagrangian.

Such features can be used for calculations of the matter density power
spectrum at different redshifts and of the power spectrum of CMB temperature
fluctuations in the range of scale of the late integrated Sachs-Wolfe effect and
— as a result — for interpretation of the observable data in order to identificate
the nature of dark energy. However, the higher precision of the planned
experiments could probably verify only whether the EoS parameter is -1
(ACDM-model) or not, but shouldn’t remove the degeneracy of the dark energy
models due to the type of Lagrangian for w = const.
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