К. т. н. В. Г. ВЕРБИЦКИЙ, к. т. н. В. И. ЗОЛОТАРЕВСКИЙ, к. т. н. Ю. Е. НИКОЛАЕНКО, Л. И. САМОТОВКА, Е. С. ТОВМАЧ

Украина, г. Киев, НИИ микроприборов E-mail:

Дата поступления в редакцию 30. 01 2001 г. Оппонент к. т. н. М. Д. КАРДАЩУК

ПРОЕКТИРОВАНИЕ ВЫСОКОВОЛЬТНЫХ КМОП ИС КЛЮЧЕЙ И КОММУТАТОРОВ НА ОСНОВЕ ОБЪЕМНОГО КРЕМНИЯ

Показаны возможность и особенности применения объемного кремния при проектировании и освоении в производстве КМОП ИС ключей, коммутаторов.

В условиях, когда зарубежные производители и поставщики предлагают широкий спектр КМОП интегральных схем, различных по функциональному назначению, с широким диапазоном допустимых электрических и температурных воздействий, интегральные схемы, проектируемые и изготовляемые в Киевском НИИ микроприборов, могут привлечь внимание и заинтересованность потребителей только при гарантиях высокого качества, своевременных поставок и существенно более низкой цены КМОП ИС в сравнении с зарубежными функциональными аналогами. В связи с этим был выполнен технико-экономический анализ факторов, ограничивающих применение ряда материалов в проектировании и производстве КМОП ИС ключей с управлением, коммутаторов и переключателей. Были рассмотрены такие материалы на основе монокристаллического кремния, как ДИКЭД-структуры, эпитаксиальные структуры, структуры на основе кремния на изоляторе и кремния с однородным распределением электрофизических параметров по всему объему пластины (объемный кремний).

В данной работе представлены некоторые конструкторско-технологические параметры, ограничивающие возможности проектирования на объемном кремнии КМОП ИС для средств связи, сбора, обработки информации и автоматизированного управления исполнительными устройствами.

Аналоговые ключи с управлением, коммутаторы, переключатели (**табл. 1**), освоенные в производстве, спроектированы в НИИ микроприборов на основе объемного кремния КДБ10(100) с *n*-карманной изоляцией *p*-канальных от *n*-канальных низкопороговых ($V_{\tau n}$ =0,8±0,2 В) МОП-транзисторов. Отдельный аналоговый ключ, у которого входом является соединенные сток *n*-канального с истоком *p*-канального МОП-транзистора, а выходом – соединенные исток *n*-канального со стоком *p*-канального МОП-транзистора, управляется разнополярными напряже-

Таблица 1

Обозначение	Сопро- тив- ление ключа, не более, Ом	Напряжение питания, В U _{cc1} U _{cc2} U _{cc3}		Коммути- руемое напряжение, В		Ком- мути- руемый ток, мА	Аналог	
Аналоговые ключи с управлением								
1834КН7 –2-канальный	15,0	16,5; 52,0	-16,5;0		15,0; 50,0	-15,0;0	50,0	К590КН9
1834КН5 – 4-канальный	50,0	16,5	-16,5	5,5	15.0	-15,0	30,0	К590КН5
1834КН8В – 8-канальный	50,0	16,5; 52,0	-16,5; 0		15,0; 50,0	-15,0;0	30,0	_
Коммутаторы								
1834КН3 – сдвоенный, 4-канальный	100,0	16,5	-16,5	_	15,0	-15,0	50,0	К590КНЗ
1834КН6 – 8-канальный	100,0	16,5	-16,5		15,0	-15,0	50,0	К590КН6
1834КН2 – сдвоенный, 8-канальный	100,0	16,5	-16,5		15,0	-15,0; 0	50,0	К591КН2
1834КН4 – 16-канальный	100,0	16,5; 52,0	-16,5; 0		15,0; 50,0	-15,0; 0	50,0	К591КНЗ
Переключатели								
1834КН10 – 4-канальный с попарным управлением	50,0	16,5	-16,5		15,0	15,0	20,0	К590КН4
1834КН11 – 4-канальный с общим управлением	50,0	16,5	-16,5		15,0	-15,0	20,0	К590КН7

Электрические характеристики КМОП ИС

Технология и конструирование в электронной аппаратуре, 2001, № 3

ниями, которые подаются на затворы с выходных инверторов устройства управления ключом (УУК).

Для коммутации ключом напряжения положительной полярности на подложку *p*-канального МОПтранзистора необходимо подать положительное напряжение $U_{\rm cc1}$ не менее коммутируемого напряжения U_{к1}, а для коммутации ключом напряжения отрицательной полярности необходимо на подложку *п*-канального МОП-транзистора подать отрицательное напряжение $U_{\rm cc2}$ не менее (по модулю) коммутируемого отрицательного напряжения $U_{\rm \kappa 2}$. Эти напряжения на подложках исключают возникновение не управляемых напряжениями на затворах электрических токопроводящих цепей через *p*-*n*-переходы "сток-подложка", "исток-подложка" в ключевых КМОП-транзисторах аналогового ключа. Подача отрицательного напряжения на подложку отдельного *п*-канального МОП-транзистора невозможна, т. к. при *п*-карманной изоляции *p*-канальных МОП-транзисторов *n*-канальные МОП-транзисторы могут быть созданы только на одной общей подложке объемного кремния *p*-типа проводимости. Поэтому отрицательное напряжение подается как на подложки *п*канальных транзисторов аналоговых ключей, так и на подложки всех *n*-канальных транзисторов, входящих в состав УУК, в том числе во входном инверторе УУК. Управление входным инвертором устройства управления ключом осуществляется напряжением логического нуля ($0 \le U_{\text{вх}} \le 0,8$ В) и логичес-кой единицы (3,0 В $\le U_{\text{вх}} \le 5$ В) от ТТЛ интегральной схемы.

Во входном инверторе устройства управления ключом отрицательное напряжение на общей подложке p-типа проводимости объемного кремния КМОП ИС увеличивает пороговое напряжение $V_{_{TN}}$ n-канального МОПТ [1, с. 114] на величину

$$\Delta V_{\text{T}n} = \frac{t_{0x}\sqrt{2N_a q \epsilon_0 \epsilon_n} (\sqrt{|2\Psi_F + U_{\Pi H n}|} - \sqrt{2|\Psi_F|})}{\epsilon_0 \epsilon_{\pi}}; \qquad (1)$$

$$V_n = V_{\mathrm{T}n} + \Delta V_{\mathrm{T}n},\tag{2}$$

где t_{0x} — толщина подзатворного диэлектрика; V_n — пороговое напряжение $n\text{-}{\rm MO\Pi T}$ с учетом вли-

 V_n^- пороговое напряжение *n*-моги с учетом вли яния напряжения $U_{nun} = U_{cc2};$

U_{пип} − отрицательное напряжение на подложке относительно истока *n*-канального МОПТ, равное U_{cc2} и максимальному (по модулю) отрицательному коммутируемому напряжению U_к; V_m − пороговое напряжение при U_{пип}=0.

Так, для коммутации ключом отрицательного напряжения $U_{\rm K}$ =-16,5 В подают такое же напряжение $U_{\rm cc2}$ на общую подложку КМОП ИС и, при концентрации акцепторов в подложке объемного кремния, равной 10¹⁵ см⁻³, это напряжение увеличивает пороговое напряжение (2) *п*-канального МОП-транзистора во входном инверторе устройства управления ключом от $V_{\rm Tn}$ =1,0 В до $V_{\rm n}$ =3,0 В. И тогда во входном инверторе для переключения *n*-МОПТ из закрытого в открытое состояние на его затвор необходимо подать напряжение логической единицы не менее 5 В. Для КМОП ИС, представленных в табл.1,

управляющее напряжение 5 В подают на затвор *n*-МОПТ путем подключения резистора между выводом питания ТТЛ ИС и ее выходом. Такое подключение резистора рекомендуется и для КМОП ИС при отрицательных напряжениях питания U_{cc2} в диапазоне от минус 16,5 В до минус 5 В и напряжениях коммутации (по модулю) менее 16,5 В.

На **рис. 1** представлены предельные значения коммутируемых напряжений ключом на нагрузку 1000 Ом в зависимости от величины отрицательного напряжения питания U_{cc2} КМОП ИС УР1834КН7, УР1834КН8 и УР1834КН4В. Заштрихованная область между линиями 1 и 2 представляет возможный диапазон коммутируемых напряжений при условии $U_{\kappa 1} \le U_{cc1}$ и $|U_{\kappa 2}| \le |U_{cc2}|$. Ключи с управлением, коммутаторы, переключатели коммутируют также напряжения в пределах $|-U_{cc2}| \le U_{cc1}$ и в диапазоне низких напряжений питания вплоть до $U_{cc1} \ge 4$ В, – 16,5 В $\le U_{cc2} \le 0$ В.

Рис. 1. Зависимость максимально возможного положительного коммутируемого напряжения ($U_{\rm K} \leq U_{\rm cc1}$) от величины отрицательного напряжения питания $U_{\rm cc2}$ КМОП ИС (отрицательное напряжение коммутации $U_{\rm K} = U_{\rm cc2}$): $1 - U_{\rm K1} = U_{\rm cc1}; 2 - U_{\rm K2} = -U_{\rm cc2}$

Как видно из рис. 1, конструкция КМОП ИС на основе *n*-карманной изоляции *p*-канальных комплементарных МОП-транзисторов при условии $U_{cc1} \ge U_{\kappa}$, $U_{cc2}=0$ обеспечивает коммутацию положительного однополярного напряжения U_{κ} до 50 В, а также [2] обладает более высокой устойчивостью к возникновению тиристорного эффекта и радиационному воздействию α -частиц в сравнении с *p*-карманной изоляцией *n*-канальных комплементарных транзисторов. Однако *n*-карманная изоляция комплементарных *p*-МОП-транзисторов не обеспечивает управление входного инвертора уровнем напряжения логической единицы от ТТЛ ИС при коммутации ключом двухполярного напряжения в диапазоне более чем

 ± 20 В из-за увеличения порогового напряжения $V_{\rm TR}$ в *n*-МОП-транзисторах до уровня выше предельно допустимого.

Вопросы проектирования высоковольтных КМОП ИС коммутаторов, ключей с управлением, переключателей, преобразователей уровней напряжений в диапазоне не более ±50 В требуют нахождения компромиссных конструкторско-технологических решений по обеспечению:

– пробивных напряжений выше 100 В p–n-переходов "сток — подложка", "исток — подложка" и предотвращения смыкания сток-истоковых p–n-переходов при минимально допустимом расстоянии L между ними для получения низкого, менее 100 Ом, сопротивления открытого ключа на основе комплементарных МОП-транзисторов;

– оптимального соотношения размеров W_n , L_n и W_p , L_p – соответственно, ширины и длины каналов n- и p-канальных МОП-транзисторов во входном инверторе устройства управления ключом, зависящего от величины положительного напряжения питания КМОП ИС;

– высоких, более 100 В, пробивных напряжений подзатворного диэлектрика с одновременным получением низких пороговых напряжений *n*- и *p*-канальных МОП-транзисторов в пределах (0,8 ±0,2) В для эффективного управления входным инвертором устройства управления ключом уровнями напряжений логической единицы и нуля от ТТЛ ИС.

Проектирование высоковольтных аналоговых ключей для коммутации предельных напряжений ± 50 В проводится, с учетом обеспечения пробивных напряжений *p*-*n*-переходов *p*-канальных МОПТ выше 100 В, на основе выбора подложки объемного кремния *n*-типа проводимости с максимально допустимой концентрацией доноров 10^{15} см⁻³, что соответствует кремнию марки КЭФ 4,5 (100). Такого же поряд-ка предельно допустимую результирующую концентрацию акцепторных и донорных примесей, с учетом перекомпенсации примесной проводимости, технологически обеспечивают на поверхности *p*-кармана и *n*-областей стока, истока *n*-канальных МОП-транзисторов.

Пробивные напряжения *p*-*n*-переходов также зависят от радиуса кривизны *p*-*n*-перехода [3, с. 61– 66], максимальной разницы потенциалов между затвором и стоком в закрытом состоянии КМОП-транзисторов ключа [4, с. 72] и расстояния от контакта к области стока до подзатворного диэлектрика.

Разность потенциалов между затвором и стоком в закрытом состоянии ключа на основе КМОПТ приводит к инверсии проводимости области стока, находящейся под затвором. Инверсионный слой ограничивает расширение *p*-*n*-перехода "сток-подложка" в сторону истока. Обедненный слой *p*-*n*-перехода формируется на поверхности области стока между контактом стоковой области и границей диэлектрика, находящегося под поликремниевым затвором. Лавинный пробой *p*-*n*-перехода "сток-подложка" возникает в случае превышения предельно допустимой напряженности электрического поля в *p*-*n*-переходе на поверхности стоковой области. На основании эмпирической зависимости между величиной напряжения лавинного пробоя резкого p-n-перехода и концентрацией примеси N, а также предельно допустимой напряженностью электрического поля в p-n-переходе E(N) [3, с. 51–60], минимально допустимое расстояние l от контакта к области стока до подзатворного диэлектрика, находящегося под поликремниевым или алюминиевым затвором, определяют из соотношений

$$l \ge \frac{258 \cdot (10^{15})^{0.75}}{N^{0.75} E(N)}$$
для 4·10¹³ см⁻³ < N<4·10¹⁵ см⁻³; (3)

$$l \ge \frac{53.6 \cdot (10^{16})^{0.56}}{N^{0.56} E(N)}$$
для 4·10¹⁵ см⁻³ 17 см⁻³. (4)

Увеличение расстояния l более 3 микрон нецелесообразно из-за существенного вклада линейного сопротивления области стока R_c в общее сопротивление открытого ключа.

Размеры W_n , L_n , и W_p , L_p комплементарных транзисторов входного инвертора УУК рассчитывают на основании заданных уровней входных напряжений логической единицы и нуля, подаваемых с выхода ТТЛ ИС, напряжения питания U_{cc1} , а также необходимых на выходе входного инвертора напряжений логической единицы $U_{cc1} - V_{Tp} \leq U_{Bbix(1)} \leq U_{cc1}$ и логического нуля $0 \leq U_{Bbix(0)} \leq V_{Tn}$. На **рис. 2** представлены зависимости минимально допустимых значений отношения удельной крутизны β_n к β_p для *n*и *p*-канальных МОП-транзисторов входного инвертора от величины напряжения питания U_{cc1} при различных постоянных значениях входного напряжения логического нуля $U_{Bbix(0)} \leq 0,6$ В и пороговых напряжений $V_{Tn} = V_{Tp}$.

Используя модель МОПТ в области насыщения выходных ВАХ при заданных токе потребления, U_{cc1} , $V_{\tau p}$, t_{0x} , μ_{p0} и необходимом значении времени переключения из состояния логического нуля в состояние логической единицы входного инвертора, определяют отношение $a=W_p/L_p$ для *p*-канального МОПТ. (Здесь μ – подвижность носителей зарядов в канале.) На основании конструктивно-технологических ограничений при *a*<1 выбирают минимальный размер W_p , определяют L_p .

Исходя из заданных величин $V_{\rm TP} = V_{\rm TR}, U_{\rm BX(1)}$, по графической зависимости на рис. 2 определяют минимально допустимое значение β_n/β_p и из соотношения

$$\frac{\beta_n}{\beta_p} = \frac{W_n L_p \mu_{n0} \left[1 + \theta \left(U_{cc1} - U_{BX1} - V_{T_T p} \right) \right]}{W_p L_n \mu_{p0} \left[1 + \theta \left(U_{BX1} - V_{T_T} \right) \right]}$$
(5)

определяют W_n/L_n , выбирают L_n и определяют W_n для *n*-канального МОПТ входного инвертора. (Здесь θ – коэффициент, учитывающий снижение подвижности заряда в канале при увеличении напряжения на затворе.)

Информативные параметры модели МОП-транзистора (такие как β , μ , θ , пороговые напряжения и сопротивления области стока R_c истока R_{μ} и кана-

ла $R_{\rm k}$, а также параметры модели p-n-переходов) определялись на тестовых элементах с помощью аналитических зависимостей и методов, представленных в работах [5, 6].

Пробивное напряжение подзатворного диэлектрика $U_{_{3\Pi}}$ определяется его толщиной $t_{_{0x}}$, которая зависит от технологических режимов его создания. Для напряжения между затвором и подложкой $U_{_{3\Pi}}$ =100 В требуемая толщина составляет $t_{_{0x}}$ =1200...1500 Å.

Низкий уровень порогового напряжения V_{тп} (0,8±0,2 В) в *n*-канальных МОП-транзисторах достигается путем их изоляции от общей подложки объемного кремния *n*-типа проводимости и *p*-канальных МОПТ обратносмещенными *p*-*n*-переходами (*p*карманы), выбором кристаллографической ориентации плоскости (100) объемного кремния на границе раздела "диэлектрик-полупроводник", а также дозами ионного легирования бором областей каналов комплементарных МОП-транзисторов 0,01...0,03 мккулон. В *p*-карманах истоки *n*-МОПТ электрически соединяются с их подложками (U_{пил}=0).

На общей подложке объемного кремния *n*-типа проводимости создают *p*-канальные МОП-транзисторы. Их пороговое напряжение U_{Tp} =0,8±0,2 В обеспечивают ионным легированием бором областей каналов в *n*-подложке объемного кремния и соединением области истока с общей подложкой *n*-типа проводимости, при этом $U_{пиp}$ =0.

Низкий уровень (менее 100 Ом) сопротивления открытого ключа $R_{\rm k}$, предотвращение смыкания областей стока с истоком при коммутации напряжений ±50 В, минимальное влияние положительного и отрицательного напряжений на подложке соответственно *p*- и *n*-канальных МОП-транзисторов ключа обеспечивается, исходя из выражений для R_{ν} и V_{τ} [7], максимально допустимой концентрацией доноров в подложке объемного кремния 10¹⁵ см⁻³, поверхностной концентрацией акцепторов в *p*-кармане не более $4 \cdot 10^{15}$ см⁻³, созданием плавных *p*-*n*-переходов с градиентом концентрации не более 4·10¹⁹ см⁻⁴, выбором кристаллографической плоскости (100) на границе раздела "подзатворный диэлектрик - полупроводник", поликремниевыми затворами, легированными фосфором, минимально возможной толщиной подзатворного диэлектрика 1200 Å на основе двуокиси кремния с $\varepsilon_{r} = 3,9$, минимально допустимым расстоянием от подзатворного диэлектрика до контактов к стоковой, истоковой области, определяемого из выражений (3), (4), а также соотношения W/L в комплементарных МОП-транзисторах ключа с минимально допустимыми значениями L=6 мкм.

Кроме того, в проектируемых КМОП ИС путем выбора конструкции ключа на основе двух последовательно соединенных с общими истоками *n*-канальных МОП-транзисторов и создания новой схемы управления таким ключом обеспечивается коммутация двухполярных (±50 В) напряжений при использовании только одного положительного источника напряжения питания КМОП ИС (см. **табл. 2**).

Создание КМОП ИС ключей с управлением, коммутаторов с коммутируемым напряжением более ±50 В на объемном кремнии возможно при концентрации доноров в подложке менее 10^{15} см⁻³, но это приведет к значительному росту сопротивления ключа из-за необходимого увеличения длины канала МОПТ для исключения смыкания *p*-*n*-переходов "сток–исток". А увеличение ширины канала W для снижения сопротивления ключа в открытом состоянии приводит к увеличению площади, занимаемой КМОП ИС, и экономической неэффективности их производства. Поэтому проектирование КМОП ИС для коммутации напряжений в диапазоне более ±50 В при обеспечении сопротивления ключа порядка единиц или десятков Ом необходимо проводить на основе применения ДИКЭД-структур с формированием ДКМОП-транзисторов.

* * *

Таким образом, проектирование высоковольтных КМОП БИС ключей и коммутаторов на основе изоляции *p*-канальных МОП-транзисторов от подложки кремния *p*-типа проводимости *p*-*n*-переходами, с обеспечением управления входным инвертором устройства управления ключом управляющим напряжением от ТТЛ ИС ограничивается максимально допустимым отрицательным напряжением питания и коммутации $U_{cc2} \le |-20|$ В, т. к. это напряжение, подаваемое на общую подложку всех *n*-МОПтранзисторов с индуцированными каналами, увеличивает пороговое напряжение и *n*-канального МОПтранзистора во входном инверторе — до уровня, при котором положительное управляющее напряжение от ТТЛ ИС уже не в состоянии открыть его и переключать входной инвертор из состояния логической единицы в состояние логического нуля.

Напряжение питания, Сопротив-Коммути-Коммутируемое B Обозначение руемый ление ключа, Аналог напряжение, В не более, Ом ток, мА U_{cc1} $U_{\rm cc\ 2}$ 5701KH04 — 50 4,5...55,0 50 -5050 АДG441 4-канальный ключ 5701КН16 — 16-ка-100 4,5...55,0 -27.5...0 25 -25 30 АДG506А нальный коммутатор

Электрические характеристики проектируемых КМОП ИС

Проектирование высоковольтных КМОП ИС ключей и коммутаторов на основе подложек объемного кремния *п*-типа проводимости и изоляции пкарманных МОП-транзисторов от подложки *p*-*n*переходами позволяет увеличить коммутируемые отрицательные напряжения до |-50| В, благодаря возможности исключения влияния отрицательного напряжения $U_{cc2} \le |-50|$ В на пороговое напряжение *п*-канального МОП-транзистора во входном инверторе путем электрического соединения его истока с подложкой в *p*-кармане. Ограничивающими факторами проектирования ключей, коммутаторов, переключателей для коммутации положительных и отрицательных напряжений в диапазоне более ±50 В являются пробивные напряжения *p*-*n*-переходов и экономическая нецелесообразность увеличения пробивных напряжений путем снижения концентрации примесей в подложке объемного кремния *n*-типа проводимости, т. к. это, в итоге, для обеспечения сопротивления открытого ключа менее 100 Ом приводит к существенному увеличению площади, занимаемой КМОП ИС на пластине кремния.

В КНИИ МП проектирование ключей с управлением, коммутаторов, переключателей для коммутации напряжений более ±50 В осуществляется

на основе ДКМОП-транзисторов с применением ДИКЭД-структур.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Интегральные схемы на МДП-приборах. – М.: Мир, 1975.

2. Shimohigashi K. and other. An *n*-well CVOS dinamic RAM // IEE Trans. - 1982. - Vol. SC-17, N 2. - P. 344–348.

3. Грехов И. В., Сережкин Ю. Н. Лавинный пробой p-n перехода в полупроводниках.– Л.: Энергия, 1980.

4. Ричман П. Физические основы полевых транзисторов с изолированным затвором. — М.: Сов. радио, 1971.

5. Zolotarevsky V. I., Serdyuk G. B., Samotovka L. I. et al. SOI-based Ics desigen, technology and electrical diagnostics // Physical and technical problem of SOI structures and devices. — Gurzuf, Ukraine. — November 1–4, 1994. – P. 69–70.

6. Lysenko V. S., Zolotarevsky V. I., Samotovka L. I. et al. *P-n* junction informative parameters and vield of SOI CMOSICs // Perspectives, science and technologies for novel silicon on insulator Devices. — Kyiv, Ukraine. — October 12–15, 1998. – P. 25.

7. // Зарубежная электронная техника. — М.: ЦНИИ "Электроника", 1976. – Вып. 21. — С. 10–11.

Таблица 2