#### PACS: 71.27.+a, 71.38.+i, 75.50.Cc

# В.А. Бойченко, А.И. Дьяченко, В.Ю. Таренков, В.Н. Криворучко ЭЛЕКТРОН-ФОНОННАЯ СВЯЗЬ В МАНГАНИТЕ LCMO

Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина

### Статья поступила в редакцию 15 мая 2008 года

Методом микроконтактной спектроскопии на комбинированных контактах Ag-Ag/LCMO исследована функция электрон-фононного взаимодействия (ЭФВ)  $g(\omega)$  манганита  $La_{2/3}Ca_{1/3}MnO_3$  (LCMO). Здесь Ag-Ag – микроконтакт Шарвина диаметром  $D \sim 100$  Å, а Ag/LCMO – монокристалл манганита, покрытый слоем серебра толщиной  $d_{Ag}$ . Показано, что при  $l_{\varepsilon} << D << d_{Ag}$  комбинированный контакт позволяет исследовать материалы с малой энергетической длиной свободного пробега  $l_{\varepsilon}$ , причем величина неупругих эффектов в проводимости контакта может составлять 20%, а соответствие  $d^2I/dV^2 \propto g(\omega)$  выполняется с одинаковой точностью для всей области фононных частот. Спектр  $g(\omega)$  продемонстрировал аномально-сильное взаимодействие электронов в манганите с высокочастотными фононными модами, участвующими в эффекте Яна–Теллера (ЯТ). Полученные результаты показывают, что в металлической фазе манганита LCMO даже при низких температурах реализуется особое состояние поляронной среды, отличное от состояния классической ферми-жидкости.

### Введение

Манганиты LCMO являются типичным примером материалов, демонстрирующих эффект колоссального магнитосопротивления [1–3], интенсивное исследование которого так и не привело к однозначной трактовке наблюдаемого резкого падения сопротивления манганитов  $\rho(T)$  при переходе из парамагнитного ( $T > T_C$ ) в ферромагнитное ( $T < T_C$ ) состояние [4]. То, что при  $T > T_C$  переход  $\rho(T)$  сопровождается поляронными ЯТ-эффектами, сомнений не вызывает [1,2,4]. Однако в последнее время появляется все больше экспериментальных свидетельств того, что даже при низких температурах  $T \ll T_C$  динамика заряда в металлической фазе манганитов обусловлена поляронами малого радиуса [5–7]. Эти результаты в корне противоречат традиционным представлениям о поляронах малого радиуса, согласно которым в поляронной среде должно быть сужение ширины W зоны проводимости:  $W \rightarrow W_p \ll W$  [1,3,8], тогда как в действительности измеренная ширина

 $W \approx 1.2 \text{ eV} [9,10]$  сопоставима с зонными расчетами [11,12]. Противоречие, однако, разрешимо, если признать, что в металлической фазе манганиты являются сильнокоррелированными системами, для которых неприменимы развитые ранее теории поляронов малого радиуса [13], основанные на одно-электронном приближении.

В настоящей работе поставлен эксперимент, позволяющий определить, насколько интенсивно взаимодействуют электроны с высокочастотными фононными модами, характерными для поляронов малого радиуса и для эффекта ЯТ. В обычных металлах матричный элемент электрон-фононной связи  $\alpha^2(\omega)$  с ростом частоты  $\omega$  убывает [14]. Если бы аналогичное поведение наблюдалось в манганите, это был бы аргумент против поляронной гипотезы. И, наоборот, если манганиты – поляронные металлы [13], то наиболее сильное взаимодействие электронов с фононами следует ожидать для энергий, соответствующих ЯТ-искажениям решетки.

Однако определить зависимость *g* от частоты (0) затруднительно, особенно в области больших частот. Традиционный метод туннельной спектроскопии функции  $g(\omega)$  применим только к сверхпроводникам [14,15]. Для металлов в нормальном состоянии высокую эффективность показал альтернативный метод микроконтактной спектроскопии [16,17], основанный на инжекции носителей высокой энергии в металл с помощью микроконтакта Шарвина [18]. Электрическое поле, приложенное к контакту Шарвина диаметром D, проникает в металл на глубину порядка D [17]. В этой области реализуется ускорение инжектируемых электронов, в результате чего они приобретают дополнительную энергию  $\varepsilon = eV$ . Если выполняется условие  $eV = \hbar \omega$ , электрон может испустить фонон с частотой ω, причем часть электронов рассеивается в сторону отверстия контакта. Возникающий противоток электронов уменьшает ток через контакт. Это приводит к излому зависимости I(V) при  $eV = \hbar \omega$ , что соответствует уменьшению проводимости контакта при  $eV \ge \hbar \omega$ . В результате суммирования таких процессов в спектре контакта Шарвина непосредственно отражается функция  $g(\omega)$ :  $g(\omega) \propto -d^2 I/dV^2|_{eV = \hbar\omega}$  [17]. Условием этого является выполнение неравенств l >> D,  $l_{\varepsilon} >> D$ , где l,  $l_{\varepsilon} - co$ ответственно упругая и неупругая длины свободного пробега электрона с избыточной энергией  $\varepsilon$ . Если нарушается неравенство l >> D, то контакт не является баллистическим. Такая ситуация обычно и реализуется в микроконтактах Шарвина с манганитами, которые являются плохими проводниками даже при низких температурах. В результате контакты с диаметром D = 100 Å не являются баллистическими, а приготовление стабильных контактов существенно меньшего размера затруднительно. В принципе можно получить определенную информацию о спектре  $g(\omega)$  и на контактах Шарвина с диффузным характером проводимости [19]. Однако нас интересует эффективность взаимодействия электронов с высокочастотными фононными модами в LCMO. В манганитах скорость электронов на уровне Ферми на порядок меньше, чем в обычных металлах, а характерные энергии фононов –

на порядок больше. В результате для электронов с избыточной энергией  $\varepsilon = 50 \text{ meV}$  длина пробега в LCMO  $l_{\varepsilon} \sim 10$  Å оказывается порядка постоянной решетки, поэтому нарушается второе, наиболее важное спектроскопическое условие для контактов Шарвина, согласно которому *обязательно* должно быть  $l_{\varepsilon} >> D$ . При обратном неравенстве  $l_{\varepsilon} << D$  только малая часть электронов достигает энергии  $\varepsilon = eV$  без рассеяния, поэтому информация об интенсивности высокочастотной части спектра  $g(\omega)$  оказывается искаженной (тепловой режим [19]).

Совсем иная ситуация реализуется в комбинированных контактах Ag-Ag|LCMO, в которых ускорение электронов реализуется в «идеальном» контакте Шарвина Ag-Ag, а релаксация энергии «горячих» электронов – в узком слое манганита на границе Ag|LCMO. В таком случае малая энергетическая длина пробега  $l_{\varepsilon}$  в манганите не мешает, а способствует наблюдению спектра  $g(\omega)$ , который, как и в обычном контакте Шарвина, находится из соответствия  $g(\omega) \propto -d^2 I/dV^2$ . При этом комбинированный контакт Шарвина Ag-Ag|LCMO имеет одинаковые спектроскопические характеристики для всего диапазона частот фононного спектра манганита.

## Эксперимент

В комбинированном контакте Ag–Ag|LCMO первый слой серебра Ag|LCMO должен наноситься на атомарно совершенную и чистую поверхность манганита, что лучше всего выполняется для микрокристаллов и эпитаксиальных пленок. Только в таком случае будет сохраняться компонента импульса электрона, параллельная границе раздела Ag|LCMO. Микрокристаллы LCMO приготавливали в процессе прессования тонких (~ 0.1 mm) керамических пластин LCMO при давлениях ~ 30 kbar с последующей термообработкой при температуре T = 1250°C [20]. Эпитаксиальные пленки получали методом магнетронного напыления.



**Рис. 1.** Схема комбинированного контакта Ag–Ag|LCMO (*a*) и распределение в нем потенциала  $eV(\delta)$ : стрелки – релаксация энергии горячего электрона на фононе (волнистая линия)

Потенциал, приложенный к комбинированному контакту, будет локализоваться на «ускоряющем» контакте Шарвина Ад-Ад, если выполняются условия  $\rho_{LCMO} \ll R_0 \phi$  (для монокристаллов) и  $R_{\Box} \ll R_0$  (для пленок). Здесь R0 – сопротивление микроконтакта Шарвина Ag-Ag, ф – размер покрытия Ag|LCMO,  $R_{\Box}$  – сопротивление пленки на квадрат площади. Нарушение этих условий не искажает спектр  $g(\omega)$ , но приводит к масштабированию шкалы потенциала V. Она «растягивается» в отношении  $\zeta \approx 1 + \rho_{LCMO}/(2\phi R_0)$  (кристалл) и  $\zeta \approx 1 + R_{\Box}/2R_0$  (пленки). Исследовали микрокристаллы LCMO (температура Кюри T<sub>C</sub> = 260 K) размером ф ~ 5 µm и эпитаксиальные пленки LCMO ( $T_C = 270$  K) оптимального состава La<sub>2/3</sub>Ca<sub>1/3</sub>MnO<sub>3</sub> с сопротивлением  $R_{\Box} \sim 0.5 \ \Omega \ (T = 4.2 \text{ K}).$  Измерения вольт-амперных характеристик (BAX) проводили стандартным четырехзондовым методом при температуре 4.2 К в среде жидкого гелия. Температурный датчик размещали непосредственно на поверхности образца. Производные dI/dV,  $d^2I/dV^2$  находили как численным дифференцированием *I–V*-зависимостей, так и непосредственно, с помощью стандартной мостовой схемы [14,15].

Согласно рис. 2,*a* ВАХ комбинированного контакта характеризуется законом Ома при  $V \le 50$  mV, отклонение от которого при больших напряжениях вызвано неупругим взаимодействием с фононами. На рис. 2,*б* приведена соответствующая проводимость контакта Ag–пленка LCMO. Как видим, наиболее сильное отклонение от закона Ома наблюдается в области напряжений  $V \le 80$  mV, что соответствует верхней границе фононного спектра манганита LCMO, найденного разными методами [21–25].

На рис. 3 приведена вторая производная тока через комбинированный микроконтакт, которая, как показано ниже, пропорциональна функции ЭФВ манганита,  $d^2I/dV^2 \propto g(\omega)$ . Как видим, при общем возрастании интенсивности спектра  $g(\omega)$  на высоких частотах четко проявляются особенности (пики) при  $\hbar\omega =$ = 21, 36, 45, 55, 66 и 73 meV (монокристалл), а также не всегда выраженный пик при низких энергиях в диапазоне 7–10 meV. Наблюдается хорошее



Рис. 2. ВАХ (a) и проводимость контакта Ag–Ag|LCMO ( $\delta$ )



Рис. 3. Спектр  $g_{pc}(\omega) \propto d^2 I/dV^2$  для пленок (▲, ▼, ■) и монокристалла (○) LCMO

согласие этих энергий с характерными фононными частотами манганита. Нижняя ветвь при 21 meV соответствует колебаниям La/Caионов относительно MnO<sub>6</sub>-октаэдра [23,26]. Ветви с энергиями в центре зоны при 37 и 45 meV обязаны возбуждению двух ЯТ-фононных мод с изгибными и линейно-дышащими характеристиками [27].

Наибольшей энергией обладают колебания с энергией  $\hbar \omega = 72-74$  meV,

которые возникают при вытягивании Mn–O-связей (bond stretching modes). Эта мода особенно ярко проявилась в спектре  $d^2I/dV^2$  пленки (рис. 3), она соответствует ЯТ-деформации (растяжению) Mn–O-связи [27]. Согласно [28] этой моде соответствует частота 18 THz (75 meV). «Растягивающая» (bond stretching) ЯТ-мода  $\omega_{JT}(\mathbf{q})$  показывает аномальное смягчение от 73 до 50 meV, когда импульс  $\mathbf{q}$  фонона приближается к границе зоны Бриллюэна [27], т.е. отражается в спектре «дважды». Сильное взаимодействие электронов с аналогичными «вытягивающими» колебаниями CuO-связи (с энергией  $\hbar\omega \approx 70$  meV) характерно и для купратов, но в манганитах эффективность ЭФВ представляется более сильной. Об эффективности взаимодействия электронов с bond stretching фононами говорит сравнение амплитуды пика в  $g_{pc}(\omega)$  при  $\hbar\omega = 75$  meV с особенностями при  $\hbar\omega \sim 20-30$  meV. Особенность при  $\hbar\omega \approx 51$  meV наблюдается также в спектре  $d^2I/dV^2$  пленок.

Согласно данным [28] закон дисперсии  $\omega_q$  акустических мод в манганите LCMO, начиная с вектора  $\mathbf{q} = 0.2(\pi/a, 0)$  и до границы зоны Бриллюэна, имеет плоский участок, т.е. расширенную сингулярность Ван-Хова при  $\upsilon = 1.6$  THz (6.6 meV) и 2.7 THz (11 meV). Возможно, именно эти моды проявляются в спектре  $d^2I/dV^2$  при  $\hbar\omega \approx 9$  meV (рис. 3). Следы таких мод при  $\hbar\omega \sim 10$  meV видны также в фононном спектре  $F(\omega)$ , полученном методом неупругого рассеяния нейтронов [22]. В обзоре [1] отсутствие прямого подтверждения взаимодействия низкочастотных мод с электронами послужило главным аргументом против поляронной гипотезы. Поэтому наблюдаемая заметная связь электронов с фононами малой энергии  $\hbar\omega \sim 10$  meV подтверждает поляронную гипотезу, согласно которой такие фононы вносят преобладающий вклад в температурную зависимость сопротивления  $\rho(T)$  манганитов [29,30].

Таким образом, эксперимент демонстрирует четкий спектр функции ЭФВ  $g(\omega)$ , пропорциональный второй производной тока через микроконтакт Ag–Ag|LCMO (рис. 3), а также аномально-большой (~ 20%) вклад неупругих процессов в проводимость контакта dI/dV (см. рис. 2, $\delta$ ). В следующем разделе показано, что возможность спектроскопии высокочастотных мод в комбинированных контактах обусловлена в первую очередь «разделением функций» ускорения (Ag–Ag)-электронов и их релаксации на фононах (Ag|LCMO). Такое разделение сохранило возможность спектроскопии в баллистическом режиме, при этом в спектре  $d^2 I/dV^2$  отсутствует так называемый [16] фон (рис. 3), обязанный неравновесным фононам [19]. В комбинированном контакте последние быстро уходят из тонкой (~  $l_{\varepsilon}$ ) «рабочей» области на Ag|LCMO-границе в прослойку серебра, толщина которой намного больше ( $d_{Ag} >> l_{\varepsilon}$ ), где и релаксируют, не давая вклад в процессы неупругого рассеяния в LCMO. В результате фон в спектре  $d^2 I/dV^2$  не проявляется.

#### Теория

Рассмотрим динамику заряда в комбинированных контактах Ag–Ag|LCMO (см. рис. 1), где Ag–Ag – баллистический микроконтакт Шарвина, а граница раздела Ag|LCMO совершенная, т.е. при ее прохождении электрон сохраняет продольную (вдоль границы) компоненту импульса. Тем не менее из-за разности скоростей Ферми в серебре  $v_{Ag}$  и манганите  $v_{LCMO}$  электроны частично отражаются от границы с эффективным коэффициентом прохождения

$$D_{\rm eff} = \frac{4v_{\rm Ag}v_{\rm LCMO}}{\left(v_{\rm Ag} + v_{\rm LCMO}\right)^2}.$$

Согласно данным зонной структуры [11] отношение  $v_{Ag}/v_{LCMO} \approx 10$ , поэтому для границы Ag|LCMO параметр  $D_{eff} \approx 0.3$ . В условиях баллистической динамики зарядов контактным сопротивлением границы Ag|LCMO можно пренебречь при выполнении условия  $d_{Ag}^2 << \phi^2 D_{eff}$ , что при  $d_{Ag} \sim 300$  Å,  $\phi \sim 10^4$  Å и  $D_{eff} \approx 0.3$  выполняется с большим запасом. Предполагаем также выполненными условия четырехзондовой схемы, когда параметр  $\zeta \approx 1$  (см. выше), поэтому весь внешний потенциал V приложен непосредственно к контакту Ag–Ag.

На рис. 1,*а* приведена схема контакта, штриховой окружностью показана область в окрестности отверстия контакта Шарвина Ag–Ag, в которой локализовано электрическое поле. На рис. 1,*б* положительный потенциал приложен к LCMO, на границе Ag|LCMO падение напряжения равно нулю. При  $D \ll d_{Ag}$  область, где приложен потенциал V (штрихпунктирная кривая), сосредоточена в окрестности контакта Шарвина, для которого всегда выполнено условие  $D \ll l^{Ag}$ . Сопротивление баллистического контакта Шарвина  $R_0$  дается формулой Ландауэра  $R_c/R_0 = Sk_F^2/4\pi$ ,  $R_c = \pi\hbar/e^2 = 12.9$  kΩ, где  $k_F$  – волновое число электрона на уровне Ферми Ag,  $S = \pi a^2$  – площадь отверстия контакта. При сопротивлении  $R_0 = 10$  Ω радиус контакта  $a \sim 100$  Å, что намного меньше длины свободного пробега электрона в серебре  $l^{Ag} \ge 10^4$  Å. Поэтому электроны движутся через контакт Шарвина без рассеяния, ускоряясь в области размером  $\sim a$ . Решение соответствующего бесстолкновительного кинетического уравнения

$$\mathbf{v}\frac{\partial f}{\partial \mathbf{r}} + e\mathbf{E}\frac{\partial f}{\partial \mathbf{p}} = 0 \tag{1}$$

находится при граничных условиях  $f(\mathbf{p}, \mathbf{r})|_{\mathbf{r}\to\pm\infty} = f(\varepsilon_{\mathbf{p}})$ ;  $\vec{f} = f\left(\varepsilon_{\mathbf{p}} + eV(1-\Omega/4\pi)\right)$ для электронов, падающих на манганит, и  $\vec{f} = f\left(\varepsilon_{\mathbf{p}} - eV\Omega/4\pi\right)$  для электронов, отраженных от манганита [17]. Здесь  $f(\varepsilon_{\mathbf{p}}) = 1/(\exp(\varepsilon_{\mathbf{p}}/kT)+1)$  – равновесная функция распределения Ферми, энергия  $\varepsilon_{\mathbf{p}}$  электрона с импульсом **p** отсчитывается от уровня Ферми,  $\Omega$  – телесный угол, под которым видно отверстие контакта с точки **r** (см. рис. 1,*a*). На оси симметрии контакта та  $|\mathbf{r}| = d_{\mathrm{Ag}}$ ,  $\Omega = 2\pi \left( d_{\mathrm{Ag}} - \sqrt{d_{\mathrm{Ag}}^2 - a^2} \right) / d_{\mathrm{Ag}}$  (*a* – радиус отверстия,  $d_{\mathrm{Ag}}$  – толщина покрытия Ag на поверхности LCMO). Как видим, с ростом  $d_{\mathrm{Ag}}$  поправки  $\Omega/4\pi \approx (1/4)(a/d_{\mathrm{Ag}})^2$  быстро убывают, поэтому в комбинированном контакте при условии  $d_{\mathrm{Ag}} \ge 2a = D$  практически все ускорение электронов приходится на контакт Шарвина Ag–Ag. Заметим, при выполнении неравенств  $\rho_{\mathrm{Ag}}/d_{\mathrm{Ag}} << R_0$  и  $d_{\mathrm{Ag}}^2 << \phi^2 D_{\mathrm{eff}}$  электрон, проникающий через границу Ag|LCMO, далее не ускоряется, а только может релаксировать, что делает контакт спектроскопическим даже при нарушении «строгого» неравенства  $a << d_{\mathrm{Ag}}$ .

На границе Ag|LCMO реализуется неупругое рассеяние электронов, разогнанных в области контакта Шарвина. В результате часть электронов рассеивается назад и *возвращается обратно через отверстие* контакта Ag–Ag в серебряный инжектор (см. рис. 1). Этот эффект и приводит к нелинейности ВАХ при энергиях, соответствующих фононным частотам  $eV \approx \hbar \omega$ .

Упругая компонента тока *I*<sub>el</sub> через комбинированный контакт равна току через контакт Шарвина Ag–Ag и поэтому имеет омический характер:

$$I_{el} = (1/eR_0) \int [f(E+eV) - f(E)] dE = V/R_0.$$
(2)

При вычислении неупругой компоненты тока рассмотрим предел малой энергетической длины свободного пробега в манганите  $l_{\varepsilon} \ll D$ , обратный тому, который анализировался в работе [17] для баллистических контактов Шарвина. В манганите константа ЭФВ  $\lambda = 2 \int d\omega \alpha^2 F(\omega)/\omega \approx 1.2$  [31], скорость Ферми  $v_F^{\text{LCMO}} \approx 2.10^7$  cm/s [11], поэтому для мод с энергией  $\varepsilon = \hbar\omega = 50-70$  meV длина пробега  $l_{\varepsilon} \sim \hbar v_F^{\text{LCMO}}/\lambda(1 + \lambda)\varepsilon \sim 10$  Å  $\ll a \sim 100$  Å. Предполагаем также выполненным условие  $d_{\text{Ag}} >> D$ , тогда «разгон» электронов реализуется еще до достижения Ag|LCMO-границы. Поэтому длина  $l_{\varepsilon}$  является наименьшим параметром теории.

Разогнанные на потенциале *eV* (рис. 1,*б*) электроны долетают до Ag|LCMO-границы без рассеяния. Однако, проникая в манганит, «горячие» электроны сразу же неупруго рассеиваются на фононах в тонком (~ 10 Å)

приповерхностном слое границы Ag|LCMO. При таком неупругом рассеянии на фононе с энергией  $\hbar\omega_{\mathbf{q}}$  электрон теряет энергию, но приобретает дополнительный импульс  $\mathbf{q}$  и в результате получает возможность отразиться «назад» на свободные состояния распределения f (рис. 4,*a*). В манганите функция распределения  $f_{in}(\mathbf{p},\mathbf{r})$  рассеянных электронов находится из решения кинетического уравнения Больцмана



**Рис. 4.** Процесс рассеяния электронов на границе Ag|LCMO (*a*) и на дырочной поверхности Ферми манганита LCMO (*б*): окружность – сечение поверхности Ферми Ag, затененный участок – занятые электронные состояния LCMO, тонкие стрелки – волновые векторы, широкие короткие стрелки – направления групповых скоростей электрона до (темная стрелка) и после (светлая стрелка) рассеяния на фононе

$$\mathbf{v}_F \, \frac{\partial f_{\rm in}}{\partial \mathbf{r}} = I_{\rm col}(\mathbf{p}, \mathbf{r}) \,, \tag{3}$$

где  $I_{\rm col}$  – интеграл столкновений электронов с фононами манганита,

$$I_{\rm col} = \int \frac{d^3 \mathbf{q}}{(2\pi)^3} W_{\mathbf{q}} \begin{cases} \left( f_{\mathbf{p}+\mathbf{q}} (1-f_{\mathbf{q}}) (N_{\mathbf{q}}+1) - f_{\mathbf{p}} (1-f_{\mathbf{p}+\mathbf{q}}) N_{\mathbf{q}} \right) \delta(\varepsilon_{\mathbf{p}+\mathbf{q}} - \varepsilon_{\mathbf{p}} - \hbar \omega_{\mathbf{q}}) + \\ + \left( f_{\mathbf{p}-\mathbf{q}} (1-f_{\mathbf{p}}) N_{\mathbf{q}} - f_{\mathbf{p}} (1-f_{\mathbf{p}-\mathbf{q}}) (N_{\mathbf{q}}+1) \right) \delta(\varepsilon_{\mathbf{p}-\mathbf{q}} - \varepsilon_{\mathbf{p}} + \hbar \omega_{\mathbf{q}}) \end{cases}; (4)$$

 $W_{q}$  – квадрат матричного элемента ЭФВ;  $\hbar\omega_{q}$  – энергия фонона с импульсом **q**;  $N_{q} = 1/(\exp(\omega_{q}/kT) - 1)$  – равновесная функция распределения Бозе;  $f_{p} = f(\varepsilon_{p})$  – функция распределения Ферми; **v**<sub>F</sub> – скорость электрона в манганите на поверхности Ферми. В отличие от кинетического уравнения (1), записанного для серебра, в (3) нет слагаемого с электрическим полем, т.к. по условию задачи все электрическое поле приложено непосредственно к контакту Ag–Ag. Величина неупругого тока  $I_{in}$  (потока электронов, отброшенных назад от Ag|LCMO-границы в отверстие контакта Ag–Ag, рис. 1,*a*) дается формулой

$$I_{\rm in} = e \int_{S} d^2 \mathbf{r} \int \frac{d^3 \mathbf{p}}{(2\pi\hbar)^3} f_{\rm in}(\mathbf{p}, \mathbf{r}) \mathbf{v} , \qquad (5)$$

где поверхностный интеграл по  $d^2\mathbf{r}$  берется по границе раздела Ag|LCMO. Используя решение уравнения (3) и формулу (4), ток  $I_{in}$  (5) можно представить в виде

$$I_{\rm in} = -\frac{e}{(2\pi)^6} \times$$

$$\times \int d^{2}\mathbf{r} \int_{0}^{\infty} d\tau \int_{0}^{\infty} d\omega L(\omega, eV, T) \int \frac{dS_{\mathbf{p}}}{v_{\perp}} \int \frac{dS_{\mathbf{p}'}}{v'_{\perp}} |v_{z}| \Theta(\mathbf{p}'_{\mathrm{Ag}}, \mathbf{p}_{\mathrm{Ag}}, \mathbf{r}) W_{\mathbf{p}-\mathbf{p}'} \delta(\omega - \omega_{\mathbf{p}-\mathbf{p}'}), \quad (6)$$

где функция

$$L(\omega, eV, T) = M(\omega, eV, T) - M(-\omega, eV, T),$$
$$M(\omega, eV, T) = \frac{eV - \omega}{\exp((eV - \omega)/kT) - 1} \frac{\exp(eV/kT) - 1}{\exp(\omega/kT) - 1}$$

Интеграл по параметру  $\tau = l/v_F$  выполняется в (6) вдоль траектории электрона в манганите; Z – ось симметрии контакта; импульсы и скорости электрона берутся на поверхности Ферми LCMO. При пересечении электроном с энергией  $\varepsilon_{\mathbf{p}}^{Ag}$  границы Ag|LCMO сохраняются энергия электрона  $\varepsilon_{\mathbf{p}_{Ag}}^{Ag} = \varepsilon_{\mathbf{p}_{LCMO}}^{LCMO}$  и продольная (вдоль границы) компонента импульса **p**:  $\mathbf{p}_{\parallel}^{Ag} = \mathbf{p}_{\parallel}^{LCMO}$ . Аналогичные условия выполняются и для электронов, возвращающихся после рассеяния из манганита в серебро. Пример согласования значений импульсов **p** при  $\mathbf{p}_{\parallel}^{Ag} = \mathbf{p}_{\parallel}^{LCMO}$  приведен на рис. 4,*a*. В интеграле (6) подразумевается, что векторы  $\mathbf{p}_{Ag}$  и  $\mathbf{p}'_{Ag}$  для электрона в серебре задаются импульсами **p**, **p**' этого электрона в манганите в соответствии с упомянутыми законами сохранения на границе Ag|LCMO.

Функция  $\Theta(\mathbf{p}_{Ag}, \mathbf{p}'_{Ag}, \mathbf{r}) = \theta(\mathbf{p}'_{Ag} \in \Omega(\mathbf{r}))\theta(\mathbf{p}_{Ag} \in \Omega(\mathbf{r}))$  ( $\theta(x > 0) = 1, \ \theta(x < 0)$ )

<0) = 0) отбирает процессы рассеяния, при которых импульсы электрона в серебре до ( $\mathbf{p}_{Ag}$ ) и после ( $\mathbf{p}'_{Ag}$ ) рассеяния попадали в телесный угол  $\Omega(\mathbf{r})$ , под которым отверстие контакта Ag–Ag видно с точки  $\mathbf{r}$  на интерфейсе Ag|LCMO (см. рис. 1,*a*). Все остальные отраженные электроны релаксируют в самой структуре Ag|LCMO и поэтому не влияют на «обратный» поток электронов через отверстие контакта Ag–Ag (серые стрелки на рис. 1,*a*). В результате, хотя интеграл  $\int d^2 \mathbf{r}$  в (6) берется по *всей* площади контакта Ag|LCMO, основной вклад дают участки, удаленные от оси симметрии контакта на расстояние порядка  $d_{Ag}$ .

Анализ геометрии неупругого рассеяния электронов в манганите существенно упрощается условием  $l_{\varepsilon} \ll d_{Ag}$ . Тогда расчет функции  $\Theta$  с погрешностью порядка  $l_{\varepsilon}/d_{Ag} \ll 1$  можно выполнять на самой границе Ag|LCMO. Кроме того, при малых характерных значениях  $l_{\varepsilon}$  интеграл по (6) ограничен диапазоном «времен»  $\tau \sim l_{\varepsilon}/v_{z}$ . В результате в интеграле (6) можно выделить часть («эффективную длину»), зависящую только от импульсов электронов в серебре и манганите:

$$l_{\rm eff}(\mathbf{p},\mathbf{p}') = \frac{1}{D^2} \int d^2 \mathbf{r} \int_0^\infty d\tau \Theta \left( \mathbf{p}'_{\rm Ag}, \mathbf{p}_{\rm Ag}, \mathbf{r} \right) |v_z| \,.$$
(7)

Диссипация энергии электронов в манганите происходит на границе Ag|LCMO в объеме размером ~  $l_{\rm e}d_{\rm Ag}^2$ , однако телесный угол  $\Omega$ , попав в который отраженный электрон возвращается в отверстие контакта Ag–Ag, убывает с ростом толщины  $d_{\rm Ag}$  слоя серебра как  $(D/d_{\rm ag})^2$ . В результате множители ~  $d_{\rm Ag}^2$  и ~  $d_{\rm Ag}^{-2}$  в интеграле (7) взаимно компенсируются, и по порядку величины  $l_{\rm eff}$  ~  $l_{\rm e}$ . В общем случае можно записать

$$l_{\rm eff} = l_{\varepsilon} K(\mathbf{v}, \mathbf{v}'), \qquad (8)$$

где форм-фактор  $K(\mathbf{v}, \mathbf{v}')$  выражен через скорости падающего и отраженного электронов в манганите. Величина  $K(\mathbf{v}, \mathbf{v}')$  определяется геометрией процесса, при котором электроны с поверхности Ферми серебра попадают на поверхность Ферми манганита (рис. 4,*a*), которая имеет протяженные «плоские» участки (рис. 4,*b*) [12]. С учетом уравнений (6) и (8) неупругий «возвратный» ток составляет

$$I_{\rm in}(V) = -\frac{e}{(2\pi)^6} D^2 l_{\varepsilon} \int_0^{\infty} d\omega L(\omega, eV, kT) \int \frac{dS_{\tilde{\mathbf{p}}}}{v_{\perp}} \int \frac{dS}{v'_{\perp}} K(\mathbf{v}, \mathbf{v}') W_{\mathbf{p}-\mathbf{p}'} \delta(\omega - \omega_{\mathbf{p}-\mathbf{p}'}) \,. \tag{9}$$

(Здесь стоит заряд *e*, а не 2*e*, так как манганит – половинный металл, поэтому в неупругих процессах участвуют только электроны с выделенным направлением спина  $\uparrow$ ). Ток  $I_{in}$  «возвратных» электронов уменьшает полный ток *I* через контакт:  $I = I_{el} + I_{in}$ , что и приводит к излому на ВАХ при *eV* в области характерных фононных энергий  $\hbar\omega$  (см. рис. 2,*a*). Согласно (2), (9) вторая производная тока через комбинированный контакт  $d^2I/dV^2 = d^2I_{in}/dV^2$  непосредственно отражает спектральную функцию ЭФВ  $g(\omega)$ :

$$\frac{\mathrm{d}^2 I}{\mathrm{d}V^2} \approx -\frac{C}{R_0} \frac{e l_\varepsilon}{\hbar v_F} \int_0^\infty \frac{\mathrm{d}\omega}{T} g(\omega) \chi\left(\frac{\omega - eV}{T}\right),\tag{10}$$

где C – безразмерная константа порядка единицы, определяемая формфактором  $K(\mathbf{v},\mathbf{v}')$  из уравнений (7), (8);  $R_0$  – сопротивление отверстия; температурное уширение (в масштабе  $\Delta \omega = 5.4kT$ ) задается функцией

$$\chi(x) = \frac{\mathrm{d}^2}{\mathrm{d}x^2} \left( \frac{x}{e^x - 1} \right),$$

а эффективная микроконтактная функция ЭФВ

$$g_{pc}(\omega) = \alpha_{pc}^{2}(\omega)F(\omega) = \frac{\sum_{s} \int \frac{\mathrm{d}S_{p}}{(2\pi)^{3} v_{\perp}} \int \frac{\mathrm{d}S_{p'}}{(2\pi)^{3} v'_{\perp}} K(\mathbf{v}, \mathbf{v}') W_{\mathbf{p}-\mathbf{p}',s} \delta(\omega - \omega_{\mathbf{p}-\mathbf{p}',s})}{\int \frac{\mathrm{d}S_{p}}{(2\pi)^{3} v_{\perp}}}.$$
 (11)

Здесь все переменные относятся к манганиту. В пределе  $T \rightarrow 0$ 

$$\frac{\mathrm{d}^2 I}{\mathrm{d}V^2} \approx -\frac{C}{R_0} \frac{e l_\varepsilon}{\hbar v_F} g_{pc}(\hbar \omega = eV).$$
(12)

В манганите LCMO поверхность Ферми характеризуется плоскими участками (рис. 4) [12,32,33]. Как видим (рис. 4,*a*), для таких участков рассеяние электронов на фононах с большой передачей импульса **q** с высокой вероятностью обеспечивает возвращение неупругорассеянных электронов в сторону отверстия контакта Шарвина. Согласно (12) амплитуду нелинейностей в ВАХ комбинированного контакта Ag–Ag|LCMO можно оценить как

$$\frac{1}{R_0} \frac{\mathrm{d}R}{\mathrm{d}(eV)} \sim C \frac{l_\varepsilon}{\hbar v_F} g(eV) \sim \frac{C}{\hbar \omega_D},\tag{13}$$

где  $R = dV/dI - динамическое сопротивление, <math>l_{\varepsilon} = v_F \tau_{\varepsilon} (1/\tau_{\varepsilon} \sim \omega_D g, \omega_D - xa-$ рактерная частота фононного спектра LCMO). То есть в комбинированных контактах отклонение от омического закона  $\delta R/R_0 \sim CeV/\hbar\omega_D$ . При  $eV \sim \hbar\omega_D$  и  $C \sim 1$  это составляет величину порядка самого сопротивления  $R_0$ . Максимум нелинейных эффектов в проводимости может даже превысить наблюдаемую 20%-ную величину (рис. 2, $\delta$ ), если барьер, разделяющий два электрода Ag (см. рис. 1), предельно тонкий и размер  $d_{Ag} >> D$ . Тогда электроны, испускаемые из инжектора под большими углами  $\theta \leq (2/3)\pi$ , благодаря большой длине пробега в серебре также возвращаются в инжектор, поэтому доля неупругого тока в проводимости контакта может достигать 30% ( $\theta/2\pi \sim 1/3$ ).

Для баллистического контакта Шарвина типа металл–металл с энергетической длиной пробега в металле *l*<sub>s</sub> аналогичные оценки [19] приводят к результату

$$\frac{1}{R_0} \frac{\mathrm{d}R}{\mathrm{d}(eV)} \sim \frac{D}{\hbar v_F} g(eV) \sim \frac{1}{\hbar \omega_D} \frac{D}{l_{\varepsilon}} << \frac{1}{\hbar \omega_D},\tag{14}$$

так как баллистический режим в контактах Шарвина реализуется только при условии  $D \ll l_{\varepsilon}$ . При технологически достижимом диаметре контакта D = 100 Å условие  $D/l_{\varepsilon} \ll 1$  выполняется, например, для простых металлов типа Pb, Hg, Sn [16].

Как видим, оценка (14) для контакта Шарвина в отношении  $D/l_{\varepsilon} << 1$  меньше оценки (13). Однако главное преимущество комбинированных контактов над контактами Шарвина не столько в величине нелинейных эффектов в проводимости dI/dV контакта, сколько в *сохранении баллистического режима* для материалов с малой энергетической длиной свободного пробега  $l_{\varepsilon}$  (манганиты, купраты). В микроконтактах с этими материалами вместо условия  $D/l_{\varepsilon} \ll 1$ , как правило, выполняется обратное неравенство  $D/l_{\varepsilon} \gg 1$ , т.е. диаметр контакта  $D \sim 100$  Å превосходит длину  $l_{\varepsilon} \approx 10$  Å. Тем не менее комбинированные контакты типа Ag–Ag|LCMO позволяют исследовать ЭФВ и в таких материалах, причем в баллистическом режиме, когда соответствие  $d^2I/dV^2 \propto g_{pc}(\omega) \propto \alpha^2(\omega)F(\omega)$  выполняется для всех частот  $\omega$  фононного спектра.

## Заключение

Таким образом, проведенный теоретический анализ показывает, что при  $l_{\varepsilon} \ll D \leq d_{Ag}$  для спектра комбинированного контакта Ag–Ag|LCMO выполняется соответствие  $d^2 I/dV^2 \propto g_{pc}(\omega)$ .



**Рис. 5.** Сопоставление фононной плотности состояний  $F(\omega)$  ( $\blacktriangle$ ) (нейтронные измерения [23]) со спектральной функцией  $g_{pc}(\omega) \propto d^2 I/dV^2|_{eV=\hbar\omega}$  манганита LCMO ( $\circ$ ) **Рис. 6.** Матричный элемент  $\alpha^2(\omega)$  ЭФВ в манганите LCMO ( $\bullet$ ) (приведена интерполяция полиномом третьего порядка)

Функция  $g_{pc}(\omega)$  отличается от стандартной функции ЭФВ  $g(\omega) = \alpha^2(\omega)F(\omega)$  [14,15] форм-фактором  $\langle K(\mathbf{v},\mathbf{v}')\rangle$ , который определяется граничными условиями на интерфейсе Ag|LCMO и строением поверхности Ферми манганита LCMO (рис. 4). Существенно, что при условии  $l_{\varepsilon} << d_{Ag}$  этот форм-фактор *не зависит* от фононных частот манганита. Поэтому для определения относительного вклада фононных мод в матричный элемент ЭФВ  $\alpha^2(\omega)$  достаточно использовать отношение  $\alpha^2(\omega) \propto g_{pc}(\omega)/F(\omega)$ , где  $g_{pc}(\omega)$  – спектр манганита, определяемый из соотношения  $-d^2I/dV^2 \propto g_{pc}(\omega)$ , а  $F(\omega)$  – фононная плотность состояний в LCMO. На рис. 5 показаны функция  $F(\omega)$  [22] и функция  $g_{pc}(\omega)$  для монокристалла LCMO, найденная из соответствия  $-d^2I/dV^2 \propto g_{pc}(\omega)$ . Обе функции нормированы на одну площадь. Как видим, общим для  $g_{pc}(\omega)$  и  $F(\omega)$  в перовскитах провал в районе энергий  $\hbar\omega \sim 30$  meV, отделяющих преимущественно звуковые моды от массива оптических колебаний ио-

нов кислорода. Согласно рис. 6 в LCMO существует аномально-сильная связь  $\alpha^2(\omega)$  электронов с деформациями MnO<sub>6</sub>-октаэдров, характерными для «остаточного» ЯТ-эффекта в металлической фазе манганитов. Наиболее значительно взаимодействие с высокочастотными (oxygen bond stretching) [27] фононами. Эти результаты хорошо согласуются с поляронной гипотезой [4–7], согласно которой поляроны «выживают» и в металлической фазе манганитов, что возможно только для сильнокоррелированных систем.

- 1. M.B. Salamon, M. Jaime, Rev. Mod. Phys. 73, 583 (2001).
- 2. E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344, 1 (2001).
- 3. В.М. Локтев, Ю.Г. Погорелов, ФНТ 26, 231 (2000).
- 4. C. Shen, G. Alvarez, E. Dagotto, Phys. Rev. Lett. 98, 127202 (2007).
- 5. N. Mannella, W.L. Yang, K. Tanaka, X.J. Zhou, H. Zheng, J.F. Mitchell, J. Zaanen, T.P. Devereaux, N. Nagaosa, Z. Hessian, Z.-X. Shen, Phys. Rev. **B76**, 233102 (2007).
- S. Seiro, Y, Fasano, I. Maggio-Aprile, E. Koller, O. Kuffer, Ø. Fisher, Phys. Rev. B77, 020407 (2008).
- 7. S. Röβler, S. Ernst, B. Padmanabhan, S. Elizabeteth, H.L. Bhat, F. Steglich, S. Wirth, cond-mat/0705.4243 (2008).
- 8. E.L. Nagaev, Phys. Rep. 346, 387 (2001).
- Z. Sun, Y.-D. Chuang, A.V. Fedorov, J.F. Douglas, D. Reznik, F. Weber, N. Aliouane, D.N. Argyriou, H. Zheng, J.F. Mitchell, T. Kimura, Y. Tokura, A. Revcolevschi, D.S. Dessau, Phys. Rev. Lett. 97, 056401 (2006).
- 10. В.А. Бойченко, А.И. Дьяченко, В.Н. Криворучко, В.Ю. Таренков, ФТВД **16**, № 4, 115 (2006).
- 11. W.E. Pickett, David J. Singh, Phys. Rev. B53, 1146 (1996).
- 12. E.A. Livesay, R.N. West, S.B. Dugdale, G. Santi, T. Jarlborg, J. Phys.: Condens. Matter 11, L279 (1999).
- 13. A.S. Alexandrov, N.F. Mott, Rep. Prog. Phys. 57, 1197 (1994).
- 14. *Е.Л. Вольф*, Принципы электронной туннельной спектроскопии, Наукова думка, Киев (1990).
- 15. В.М. Свистунов, М.А. Белоголовский, Туннельная спектроскопия квазичастичных возбуждений в металлах, Наукова думка, Киев (1986).
- 16. И.К. Янсон, ФНТ **17**, 275 (1991).
- 17. И.О. Кулик, А.Н. Омельянчук, Р.И. Шехтер, ФНТ 3, 1543 (1977).
- 18. *Ю.В. Шарвин*, ЖЭТФ **48**, 984 (1965).
- 19. I.O. Kulik, ΦΗΤ 18, 450 (1992).
- 20. А.И. Дьяченко, В.А. Дьяченко-Бойченко, В.Ю. Таренков, В.Н. Криворучко, ФТТ **48**, 407 (2006).
- 21. D. Reznik, W. Reichardt, cond-mat/0312368 (2003).
- C.P. Adams, J.W. Lynn, V.N. Smolyaninova, A. Biswas, R.L. Greene, W. Ratcli II, S-W. Cheong, Y.M. Mukovskii, D.A. Shulyatev, cond-mat/0304031 (2003).
- 23. N.E. Massa, H.C.N. Tolentino, H. Salva, J.A. Alonso, M.J. Martinez-Lope, M.T. Casais, cond-mat/0304584 (2003).
- 24. A.E. Pantoja, H.J. Trodahl, R.G. Buckley, Y. Tomioka, Y. Tokura, J. Phys.: Condens. Matter 13, 3741 (2001).

- 25. A. Congeduti, P. Postorino, E. Caramagno, M. Nardone, A. Kumar, D.D. Sarma, Phys. Rev. Lett. 86, 1251 (2000).
- 26. H. Kim, J.Y. Gu, H.S. Choi, G.W. Park, T.W. Noh, Phys. Rev. Lett. 77, 1877 (1996).
- 27. J. Zhang, P. Dai, J.A. Fernandez-Baca, E.W. Plummer, Y. Tomioka, Y. Tokura, Phys. Rev. Lett. 86, 3283 (2001).
- 28. W. Reichardt, M. Braden, Physica B263–264, 416 (1999).
- 29. Guo-meng Zhao, V. Smolyaninova, W. Prellier, H. Keller, Phys. Rev. Lett. 84, 6086 (2000).
- 30. Д.И. Бойченко, В.А. Бойченко, В.Ю. Таренков, А.И. Дьяченко, В.Н. Криворучко, ФТВД **16**, № 3, 76 (2006).
- 31. C. Şen, G. Alvarez, E. Dagotto, cond-mat/0702426 (2007).
- M. Shi, M.C. Falub, P.R. Willmott, J. Krempasky, R. Herger, K. Hricovini, L. Patthey, Phys. Rev. B70, 140407 (2004).
- 33. Y.-D. Chuang, A.D. Gromko, D.S. Dessau, T. Kimura, Y. Tokura, Science **292**, 1509 (2001).

V.A. Boychenko, A.I. Dyachenko, V.Yu. Tarenkov, V.N. Krivoruchko

## ELECTRON-PHONON COUPLING IN MANGANITE LCMO

The electron-phonon interaction (EPI) function  $g(\omega)$  of manganite La<sub>2/3</sub>Ca<sub>1/3</sub>MnO<sub>3</sub> (LCMO) has been investigated on composite junctions Ag–Ag|LCMO by microjunction spectroscopy method. Here Ag–Ag is the Sharvin microjunction of ~ 100 Å diameter, Ag|LCMO is the manganite single crystal covered by argentum layer having thickness  $d_{Ag}$ . It is shown that for  $l_{\varepsilon} \ll D \ll d_{Ag}$  the composite junction enables studies of materials with small energy free path  $l_{\varepsilon}$ ; value of inelastic effects in junction conductivity may reach 20% and conformity  $d^2I/dV^2 \propto g(\omega)$  is satisfied for the whole of the phonon frequency range to the identical accuracy. The  $g(\omega)$  spectrum has demonstrated anomalously strong interaction of electrons in the manganite with high-frequency phonon modes participating in the Jahn-Teller effect. It is demonstrated that in the metallic phase of manganite LCMO a specific state of polaron medium different from the state of classical Fermi liquid is realized even at low temperatures.

**Fig. 1.** A scheme of composite junction Ag–Ag|LCMO (*a*) and distribution of potential eV there ( $\delta$ ): arrows – hot-electron energy relaxation at the phonon (wavy line)

Fig. 2. CVC (a) and conductivity of junction Ag–Ag|LCMO (δ)

**Fig. 3.** Spectrum of  $g_{pc}(\omega) \propto d^2 I/dV^2$  for films ( $\blacktriangle$ ,  $\blacktriangledown$ ,  $\blacksquare$ ) and singe crystal ( $\circ$ ) of LCMO

**Fig. 4.** Electron scattering process at the boundary of Ag|LCMO (*a*) and on the hole Fermi surface of manganite LCMO: circle – sross-section of Ag Fermi surface, shaded part – occupied electronic states of LCMO, thin arrows – wave vectors, thick short arrows – directions of electron group velocities before (dark arrow) and after (light arrow) the phonon scattering

**Fig. 5.** Comparison of the phonon density of states  $F(\omega)$  ( $\blacktriangle$ ) (neutron measurements [23]) and spectral function  $g_{pc}(\omega) \propto d^2 I/dV^2|_{eV=\hbar\omega}$  for manganite LCMO ( $\circ$ )

**Fig. 6.** Matrix element  $\alpha^2(\omega)$  of EPI in manganite LCMO (•) (third-order polynomial interpolation is shown)