PACS: 05.70.-a, 62.50.-p

Н.Н. Белоусов, И.Р. Венгеров

ТЕПЛОФИЗИЧЕСКИЕ АСПЕКТЫ ПОЛУЧЕНИЯ И ПРИМЕНЕНИЯ ДЕФОРМИРУЕМЫХ НАНОМАТЕРИАЛОВ. II. ПРЕДВАРИТЕЛЬНЫЕ РЕЗУЛЬТАТЫ

Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина

Статья поступила в редакцию 11 декабря 2006 года

В рамках изложенной программы разработаны модели: 1) вязкоупругого сжатия и растяжения нуль-мерной мезомодели (цепочки из наночастиц) с предельным переходом к одномерной континуальной (макроскопической) модели; 2) термического взаимодействия наночастицы со «средой» при стационарности, нестационарности и нелинейности теплофизических параметров частицы; 3) теплопереноса в однородной цепочке наночастиц с предельным переходом к одномерной континуальной модели; 4) теплопереноса в неоднородной цепочке наночастиц с соответствующим предельным переходом; 5) теплопереноса в нестационарных и нелинейных цепочках частиц с переходом к континууму; 6) взаимосвязанного нелинейного тепломассопереноса.

1. Модели вязкоупругого сжатия и растяжения

Рассматривается цепочка из N одинаковых с массой m_0 частиц, центры которых имеют координаты $x_n(t)$ ($n=\overline{1,N}$). Между частицами действуют силы: квазиупругие (типа $F_1=-k\Delta x,\,k={\rm const}$) и вязкого сопротивления (типа $F_2=-\alpha\dot{x}_n$). Первая частица закреплена, а к N-й приложена постоянная сила F_0 ($F_0>0$ — при растяжении, $F_0<0$ — при сжатии). Ось Ox направлена в сторону возрастания номеров частиц. Ньютоновы уравнения движения имеют вид

$$m_0\ddot{x}_n(t) = k(x_{n+1} - 2x_n + x_{n-1}) - \alpha\dot{x}_n(t), \quad n = \overline{1, N-1}, \quad x_n(0) = na,$$
 (1)

где $a-\underline{\text{меж}}$ частичное расстояние; L_0- начальная длина цепочки; $\dot{x}_n=0(n=\overline{1,N})-$ начальные скорости. Параметр вязкости α является «эффективным», его интерпретация может быть различной.

Система (1) описывает как сжатие, так и растяжение цепочки и может быть решена известными методами [1] или преобразованием Лапласа по времени. Последнее позволяет сразу найти стационарные решения системы (1), записанной относительно смещений $U_n(t) = x_n(t) - x_n(0)$:

$$\lim_{t\to\infty} U_n(t) = U_{ns} = \lim_{\rho\to 0} \rho \overline{U}_n(\rho) , \quad \overline{U}_n(p) = \int_0^\infty e^{-pt} U_n(t) dt .$$

Для случая сжатия получено

$$U_{ns} = -n\frac{|F_0|}{k}, \quad U_{NS} = -N\frac{|F_0|}{k}, \quad \frac{U_{NS}}{L_0} = \varepsilon = \frac{\sigma}{E}, \quad \sigma = -\frac{|F_0|}{S_0}. \tag{2}$$

Здесь ε — относительное удлинение цепочки; S_0 — площадь поперечного сечения цепочки; σ — напряжение сжатия (σ < 0); $E = ak/S_0$ — модуль Юнга. Таким образом, получен закон Гука, ранее считавшийся чисто экспериментальным. Этот результат связан с наличием в (1) «вязких» членов ($-\alpha\dot{x}_k$), поскольку без них «чисто упругие» уравнения не имеют стационарного решения (все решения колебательные [1]).

Переход от (1) к макромодели осуществляется методом континуализации [2] при $a \to 0$, $N \to \infty$, $Na \to L_0$, $ak/S_0 = E = \text{const.}$ При $n = \overline{1, N-1}$ уравнения (1) дают:

$$\tau_r \frac{\partial^2 U}{\partial t^2} + \frac{\partial U}{\partial t} = D_r \frac{\partial^2 U}{\partial x^2}, \quad U = U(x, t), \quad t > 0, \quad x \in (0, L_0),$$
 (3)

$$\tau_r = \frac{m_0}{\alpha}, \quad D_r = \tau_r c^2, \quad c = \left(\frac{E}{\rho}\right)^{1/2}, \quad \rho = \frac{m_0}{S_0 a}, \quad U(0, t) = 0.$$
 (4)

Уравнение (3) — гиперболическое уравнение теплопроводности («телеграфное») [3], последнее из соотношений (4) — граничное условие первого рода при x=0. В отличие от уравнения Ламэ теории упругости, уравнение (3) эволюционное, описывающее диссипативный процесс деформации стержня длиной L_0 . Последнее уравнение системы (1) (при n=N) переходит в граничное условие при $x=L_0$:

$$E \frac{\partial U}{\partial x} \bigg|_{x=L_0} = \sigma. \tag{5}$$

Краевая задача (27)–(29) [4] с однородными начальными условиями решена преобразованием Лапласа; получены формулы, позволяющие на основе дилатационных экспериментов определить параметры τ_r и α .

Уравнение (3) может быть обобщено для моделей: 1) неоднородной одномерной среды с k=k(x) и 2) анизотропной вязкости, в которой есть две силы вязкого сопротивления: $\alpha_1\dot{U}(x,t)$ (сопротивление «среды» за счет взаимодействий частицы по направлениям, нормальным смещениям) и $-\alpha_2(\frac{\partial^2\dot{U}}{\partial x^2})$ (вязкое взаимодействие частицы в продольном направлении). В

модели 1 уравнение (3) принимает вид

$$\tau_r \frac{\partial^2 U}{\partial t^2} + \frac{\partial U}{\partial t} = \frac{\partial}{\partial x} \left[D_r(x) \frac{\partial U}{\partial x} \right], \quad D_r(x) = \tau_r c^2(x), \tag{6}$$

а в модели 2:

$$\tilde{\tau}_r \frac{\partial^2 U}{\partial t^2} + \frac{\partial U}{\partial t} - B_\alpha \frac{\partial^3 U}{\partial t \partial x^2} = \tilde{D}_r \frac{\partial^2 U}{\partial x^2}, \quad \tilde{\tau}_r = \frac{m_0}{\alpha_1}, \quad \tilde{D}_r = \tilde{\tau}_r c^2, \tag{7}$$

где $B_{\alpha} = \alpha_2 a^2 / \alpha_1$. Возможны иные, в том числе нелинейные, обобщения уравнения (3), которое может, на наш взгляд, рассматриваться как базовое при построении различных моделей деформирования (в частности и пластического).

2. Модель термического взаимодействия в системе «частица-среда»

Известны различные модели взаимодействия одиночной малой частицы со «средой» [5]. Рассмотрим модель термического взаимодействия (нагрева) наночастицы с термостатом, имеющим T_s = const. Так как характерный размер наночастицы $l_0 \sim 10 - 10^2$ nm, а для объектов с объемом $V \leq l_0^3$ характерны заметные флуктуации температуры [2], искать в наночастице поле T = T(x,t) некорректно, а необходимо ограничиться средней температурой наночастицы $T_n(t)$.

Полагаем температуру наночастицы изменяющейся дискретно с шагом ΔT_0 , соответствующим порогу разрешения измерительного устройства. Если начальная температура наночастицы T_0 , то ее температурная эволюция (переход $T_0 \to T_s$) потребует $N = (T_s - T_0)/\Delta T_0$ шагов. Баланс тепла в частице на k-м шаге:

$$S_0 l_0 c_v \Delta T_0 = 2S_0 \overline{q}_k^{(+)} \tau_k , \quad k = \overline{1, N} .$$
 (8)

Здесь S_0 — торцевое сечение наночастицы цилиндрической формы; l_0 — длина частицы; c_v — объемная удельная теплоемкость вещества частицы; $\overline{q}_k^{(+)}$ — средняя за время τ_k плотность потока тепла к частице от термостата, подводящего тепло к ней через оба торцевых сечения; τ_k — период времени k-го шага изменения температуры (на ΔT_0 при каждом шаге). Вводим «виртуальную» температуру частицы $\tilde{T}_k = T_k(\tau) = T_{k-1} + \Delta T_0 \phi_n(\tau/\tau_k)$, где $\phi_n(\tau/\tau_k) = (\tau/\tau_k)^n$, $n \in (0,\infty)$. Имеем:

$$\overline{q}_k^{(+)} = \frac{1}{\tau_k} \int_0^{\tau_k} \tilde{q}_k(\tau) d\tau = \frac{2}{\tau_k} \frac{\lambda}{l_0} \int_0^{\tau_k} \left[T_s - \tilde{T}_k(\tau) \right] d\tau. \tag{9}$$

Вычисление интеграла в (9) дает

$$\tau_k = \frac{\psi_n t_0}{(N - k)\psi_n + 1}, \quad t_0 = \frac{l_0^2}{4a}, \quad a = \frac{\lambda}{c_v}, \quad \psi_n = \frac{n + 1}{n}.$$
 (10)

Полученная формула для τ_k описывает температурную динамику наночастицы, так как всем дискретным моментам времени $\tau = \tau_k$ ставятся в соот-

ветствие температуры $T_k = T_0 + k\Delta T_0$. Параметр n в (10) можно считать равным 1, поскольку при n = 1, $\psi_n = 2$ из (10) следует правильный переход к континуальной (по времени) модели, осуществляемой соответствиями: $\Delta T_0 \to dT$, $\tau_k \to d\tau$.

В случае нестационарности наночастицы, когда с изменением времени изменяются ее параметры: $l_0 = l_0(\tau)$, $c_v = c_v(\tau)$, $\lambda = \lambda(t)$, имеем на k-м шаге:

$$\tilde{T}_{k}(\tau) = T_{k-1} + \Delta T_{0}\left(\frac{\tau}{\tau_{k}}\right) = T_{0} + (k-1)\Delta T_{0} + \Delta T_{0}\eta^{n}, \quad \eta = \frac{\tau}{\tau_{k}},$$
(11)

$$l_0(\tau) = l_{0,k-1}(1 + \varepsilon_{l,k}\eta^{\alpha}), \quad c_{v,k} = c_{v,k-1}(1 + \varepsilon_{c,k}\eta^{\beta}), \quad \lambda_k(\tau) = \lambda_{k-1}(1 + \varepsilon_{\lambda,k}\eta^{\gamma}).$$
 (12)

Параметры α , β , γ в (12) описывают различные временные зависимости изменения l_0 , c_v , λ . Выполняя интегрирование в левой и правой частях балансового уравнения (аналога (8)), получаем

$$\tilde{\tau}_{k} = \frac{\Psi_{n} t_{0,k-1}}{\left[(N-k) \Psi_{n} + 1 \right]} \Phi_{0,k}, \quad t_{0,k-1} = \frac{l_{0,k-1}^{2}}{4a_{k-1}}, \quad \Phi_{0,k} = \frac{\Phi_{1,k}}{\Phi_{2,k}}, \tag{13}$$

где $\Phi_{1,k}$ и $\Phi_{2,k}$ выражаются через $\epsilon_{l,k}$, $\epsilon_{c,k}$, $\epsilon_{\lambda,k}$ и α,β,γ,n .

Случай нелинейного теплообмена наночастицы с термостатом при n=1 сводится к нестационарному случаю. При $n \neq 1$ вновь приходим к соотношениям (13), но с несколько более громоздким выражением для $\Phi_{i,k}$ (i=1,2).

3. Модель теплопереноса в цепочке наночастиц

Рассматривается однородная цепочка — система из N_1 плотно контактирующих наночастиц. Если выделить в ней три произвольные смежные частицы M_{k-1} , M_k , M_{k+1} , то балансовое уравнение для M_k с учетом термического взаимодействия с M_{k-1} и M_{k+1} на j-м временном шаге примет вид

$$\frac{\Delta T_{k,j}}{\tau_j} = \frac{a}{l_0^2} \left(\overline{T}_{k-1,j} - 2\overline{T}_{k,j} + \overline{T}_{k+1,j} \right), \quad k = \overline{2, N_1 - 1}, \tag{14}$$

где

$$\Delta T_{k,j} = T_{k,j} - T_{k,j-1}, \quad \overline{T}_{k,j} = \frac{1}{\tau_j} \int_{0}^{\tau_j} \tilde{T}_{k,j}(\tau) d\tau = T_{k,j-1} + \frac{\Delta T_{k,j}}{2}.$$

Уравнение (14) отличается от известных конечно-разностных аппроксимаций одномерного уравнения теплопроводности тем, что в нем величины $\overline{T}_{v,j}$ (v=k-1,k,k+1) усреднены по j-му временному интервалу, а не относятся к некоторому j-му моменту времени. Это обстоятельство играет решающую роль, так как позволяет из (14) получить целый новый класс уравнений (квазилокальных), в который в качестве нулевого приближения входит и обычное уравнение Фурье

$$\frac{\partial T}{\partial \tau} = a \frac{\partial^2 T}{\partial x^2}.$$
 (15)

Уравнение (14) может быть представлено в виде

$$-X_{k-1,j} + R_j X_{k,j} - X_{k+1,j} = b_{k,j}, \quad k = \overline{2, N_1 - 1},$$
 (16)

где

$$X_{k,j} = \frac{\Delta T_{k,j}}{\Delta T_0}, \quad R_j = 2\left(2\frac{\tau_r}{\tau_j} + 1\right), \quad b_{k,j} = \frac{2}{\Delta T_0} \Delta_2(T_{k,j-1}), \quad \tau_r = \frac{l_0^2}{2a},$$

$$\Delta_2(T_{k,j-1}) = T_{k-1,j-1} - 2T_{k,j-1} + T_{k+1,j-1}.$$
(17)

Уравнения (16) для k=1 и $k=N_1$ (граничные наночастицы цепочки) содержат соответственно $X_{1,j}$, $X_{2,j}$ и $X_{N_1-1,j}$, $X_{N_1,j}$, т.е. матрица системы (16), дополненная двумя «граничными» уравнениями, является трехдиагональной.

Аналитические выражения элементов таких обратных матриц получены в [6]. Если рассмотреть две или три взаимно ортогональные цепочки, имеющие общую частицу, то легко получить аналоги (16) — соответственно пятии семиэлементные уравнения, которые позволяют рассчитать теплоперенос в «плоскости» из наночастиц и в составленном из них объеме. Предельный переход к континууму дает дву- и трехмерное уравнения Фурье вида (15).

Переход от (14) к континуальной модели осуществляется на основе «правил перевода» $T_{k,j-1} \to T(x,t)$, $T_{k,j} \to T(x,t+\tau_j)$, $T_{k+1,j-1} \to T(x+l_0,t)$. Используя разложение в ряды по τ_j и l_0 , получаем

$$D_t T(x,t) = \left(1 + \frac{\tau_j}{2}\partial_t + \frac{\tau_j^2}{6}\partial_t^2 + \dots\right) T(x,t), \qquad (18)$$

$$\Delta_{2}(\overline{T}_{k,j}) = D_{t} \left[T(x - l_{0}, t) - 2T(x, t) + T(x + l_{0}, t) \right] = D_{t} D_{x} T(x, t) ,$$

$$D_{x} T(x, t) = 2a \tau_{r} \left(\partial_{x}^{2} + \frac{l_{0}^{2}}{12} \partial_{x}^{4} + \dots \right) T(x, t) .$$
(19)

В итоге приходим к континуальному аналогу (14) вида

$$\left[(\partial_t + \tau_r \partial_t^2 + \dots) - a(\partial_x^2 + \frac{a}{6} \tau_r \partial_x^4 + \dots) (1 + \tau_r \partial_t + \frac{2}{3} \tau_r^2 \partial_t^2 + \dots) \right] T(x, t) = 0. \quad (20)$$

При характерных временах теплопереноса, меньших или одного порядка с $\tau_r = l_0^2/2a$, необходимо использовать уравнение (16), либо (20). При характерных временах, много больших τ_r , возможно использование различных приближений (20), полученных отбрасыванием членов, содержащих высокие степени τ_r . В нулевом приближении из (20) следует (15), в первом приближении ($\tau_r^m = 0$, $m \ge 2$) имеем:

$$(1 + \tau_r \partial_t) \left(\frac{\partial T}{\partial t} - a \frac{\partial^2 T}{\partial x^2} \right) - \frac{a^2}{6} \tau_r \frac{\partial^4 T}{\partial x^4} = 0.$$
 (21)

Аналогично можно получить второе и последующие приближения (20).

4. Неоднородная цепочка наночастиц

К неоднородным относим цепочки, составленные из наночастиц, отличающихся друг от друга всеми параметрами: $l_{0,k} \neq l_{0,k+1}, \quad c_{v,k} \neq c_{v,k+1},$ $\lambda_k \neq \lambda_{k+1}, \quad \tau_{r,k} \neq \tau_{r,k+1}$. Составляющие теплового баланса для частицы M_k на j-м шаге

$$\Delta Q_{k,j} = c_{\nu,k} l_{0,k} \Delta T_{k,j}, \quad \Delta Q_{k,j}^{(+)} = \tau_j \left[\left\langle q_{(k-1)-k}^{(j)} \right\rangle - \left\langle q_{k-(k+1)}^{(j)} \right\rangle \right], \tag{22}$$

где

$$\left\langle q_{(k-1)-k}^{(j)} \right\rangle = \frac{1}{\tau_{j}} \int_{0}^{\tau_{j}} \left[\frac{\tilde{T}_{k-1,j}(\tau) - \tilde{T}_{k,j}(\tau)}{R_{k-1,k}} \right] d\tau = \frac{\overline{T}_{k-1,j} - \overline{T}_{k,j}}{R_{k-1,k}},$$

$$R_{k-1,k} = \frac{\rho_{k-1} + \rho_{k}}{2}, \quad \rho_{k} = \frac{l_{0,k}}{\lambda_{k}}.$$
(23)

Подстановкой (23) во второе из соотношений (22) и приравниванием его первому получим

$$\frac{\Delta I_{k,j}}{\tau_{j}} = \frac{a_{k}}{l_{0,k}^{2}} \Delta_{2}(\gamma_{k} \overline{I}_{k,j}),$$

$$a_{k} = \frac{\lambda_{k}}{c_{v,k}}, \quad \gamma_{k-1} = \frac{\rho_{k}}{R_{k-1,k}}, \quad \gamma_{k+1} = \frac{\rho_{k}}{R_{k,k+1}}, \quad 2\gamma_{k} = \gamma_{k-1} + \gamma_{k+1}.$$
(24)

Из (24) следует аналог (16) для рассматриваемого случая:

$$\overline{a}_{k-1,k}^{(j)} X_{k-1,j} + \overline{a}_{k,k}^{(j)} X_{k,j} + \overline{a}_{k,k+1}^{(j)} X_{k+1,j} = \overline{b}_{k,j},
\overline{a}_{k-1,k}^{(j)} = -\gamma_{k-1}, \quad \overline{a}_{k,k+1}^{(j)} = -\gamma_{k+1}, \quad \overline{a}_{k,k}^{(j)} = 2 \left(\frac{\tau_{r,k}}{\tau_j} + \gamma_k \right).$$
(24)

Предельный переход к одномерной континуальной модели осуществляется на основе (24) способом, аналогичным ранее изложенному, и приводит к уравнениям теплопереноса для первого и второго приближений:

$$L^{(1)}T(x,t) = (1 + \tau_r \partial_t) \left[c_v(x) \frac{\partial T}{\partial t} - \frac{\partial}{\partial x} \left(\lambda(x) \frac{\partial T}{\partial x} \right) \right] = 0, \qquad (26)$$

$$\left\{ L^{(1)} - \frac{\tau_r^2(x)}{3c_v(x)} \left[\partial_t \partial_x \left(\frac{\lambda^2}{2} \partial_x^3 \right) + 2c_v(x) \partial_t^2 \partial_x \left(\lambda(x) \partial_x \right) \right] \right\} T(x,t) = 0.$$
(27)

В (26) и (27) $\tau_r(x) = l_0^2 / 2a(x)$, $L^{(1)}$ — оператор первого приближения. Из (26) при $\tau_r = 0$ следует нулевое приближение — стандартное уравнение теплопроводности для среды с переменными (зависящими от координаты) параметрами:

$$c_{v}(x)\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda(x) \frac{\partial T}{\partial x} \right).$$

5. Нестационарные и нелинейные цепочки

В этой модели рассматривается неоднородная цепочка, в которой все (различные) параметры наночастиц изменяются со временем. Для j-го временного шага эти зависимости таковы:

$$\begin{split} l_{k,j}(\tau) &= l_{k,j-1} \left[1 + \varepsilon_{k,j}^{(l)} \left(\frac{\tau}{\tau_j} \right) \right], \quad \varepsilon_{k,j}^{(l)} &= \frac{l_{k,j} - l_{k,j-1}}{l_{k,j-1}}, \\ C_{vk,j}(\tau) &= C_{vk,j-1} \left[1 + \varepsilon_{k,j}^{(c)} \left(\frac{\tau}{\tau_j} \right) \right], \quad \varepsilon_{k,j}^{(c)} &= \frac{C_{vk,j} - C_{vk,j-1}}{C_{vk,j-1}}, \\ \lambda_{k,j}(\tau) &= \lambda_{k,j-1} \left[1 + \varepsilon_{k,j}^{(\lambda)} \left(\frac{\tau}{\tau_j} \right) \right], \quad \varepsilon_{k,j}^{(\lambda)} &= \frac{\lambda_{k,j} - \lambda_{k,j-1}}{\lambda_{k,j-1}}. \end{split}$$

При рациональном допущении $\left(\varepsilon_{k,j}^{(v)}\right)^2 <<1$, $\left(\varepsilon_{k,j}^{(v)}\varepsilon_{k,j}^{(\mu)}\right) <<1$ (v, $\mu=l$, c, λ) уравнение теплового баланса на j-м шаге в частице M_k после несколько громоздких преобразований приводится к виду

$$\tilde{a}_{k,k-1}^{(j)} X_{k-1,j} + \tilde{a}_{k,k}^{(j)} X_{k,j} + \tilde{a}_{k,k+1}^{(j)} X_{k+1,j} = \tilde{b}_{k,j},$$
(28)

где коэффициенты $\tilde{a}_{k,v}^{(j)}$ ($v=k-1,\,k,\,k+1$) и правая часть $\tilde{b}_{k,j}$ выражаются аналогично (25), но несколько более громоздкими выражениями. Как и в случае модели для теплообмена с термостатом одиночной частицы, для нелинейной цепочки аналог уравнения (28) легко из него следует.

Переход к континуальной модели для нестационарной цепочки достаточно громоздок, поэтому ограничиваемся тем, что приводим лишь первое приближение уравнения теплопереноса для одномерной сплошной среды, параметры которой описываются зависимостями: l = l(x,t), $\lambda = \lambda(x,t)$, $c_v = c(x,t)$, $a = a(x,t) = \lambda(x,t)/c(x,t)$,

$$(1+\tau_{r}\partial_{t})\left\{\frac{\partial T}{\partial t}-a\left[\frac{\partial^{2} T}{\partial x^{2}}-\frac{\partial}{\partial x}\left(\ln\frac{l}{\lambda}\right)\frac{\partial T}{\partial x}\right]\right\}+\tau_{r}\left\{\left(\frac{1}{lc}\frac{\partial(lc)}{\partial t}\right)\frac{\partial T}{\partial t}+a\left[\frac{\partial}{\partial x}\left(\ln\frac{l}{\lambda}\right)\frac{\partial T}{\partial x}\right]\right\}+\frac{1}{\lambda}\frac{\partial\lambda}{\partial t}\frac{\partial}{\partial t}\left(\ln\frac{l}{\lambda}\right)\frac{\partial T}{\partial x}\right]\right\}=0,$$

$$(29)$$

При $\tau_r = 0$ из (29) следует нулевое приближение

$$\frac{\partial T}{\partial t} - a \left[\frac{\partial^2 T}{\partial x^2} - \frac{\partial}{\partial x} \left(\ln \frac{l}{\lambda} \right) \frac{\partial T}{\partial x} \right], \tag{30}$$

переходящее при постоянных параметрах l и λ в уравнение (15).

Для континуальной модели нелинейной цепочки выкладки также весьма громоздки, так что вновь ограничиваемся уравнением первого приближения:

$$\frac{\partial T}{\partial t} + \frac{\partial}{\partial t} \left(\tau_r(T) \frac{\partial T}{\partial t} \right) + \tau_r(T) \left(\frac{1}{cl} \frac{\partial (cl)}{\partial T} \right) \left(\frac{\partial T}{\partial t} \right)^2 - a(T) \left[\left(1 - \tau_r \frac{\partial}{\partial T} \left(\ln \frac{l}{\lambda} \right) \right) \frac{\partial^2 T}{\partial x^2} - \frac{\partial}{\partial x} \left(\ln \frac{l}{\lambda} \right) \frac{\partial}{\partial x} \left(T + \tau_r \frac{\partial T}{\partial t} \right) + \tau_r(T) \frac{\partial^2}{\partial T^2} \left(\ln \frac{l}{\lambda} \right) \left(\frac{\partial T}{\partial x} \right)^2 \frac{\partial T}{\partial t} \right] = 0.$$
(31)

Если в (31) считать все параметры постоянными (это соответствует линеаризации уравнения в достаточно узком температурном диапазоне), то из (31) следует

$$\frac{\partial T}{\partial t} + \tau_r \frac{\partial^2 T}{\partial t^2} = a \frac{\partial^2 T}{\partial x^2},\tag{32}$$

т.е. известное гиперболическое уравнение теплопроводности, используемое в моделях интенсивного теплообмена. Нулевое приближение, полученное из (31) при $\tau_r(T) = 0$:

$$C(T)\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda(T) \frac{\partial T}{\partial x} \right),$$

т.е. соответствует обычному нелинейному уравнению теплопроводности.

6. Модель взаимосвязанного нелинейного тепломассопереноса

Модель строится как континуальная, но на основе представлений молекулярно-кинетической теории для твердых тел [7]. Полагаем, что и в нелинейном случае справедливы конститутивные уравнения Онзагера

$$J_q = L_{qq}X_q + L_{qm}X_m, \quad J_m = L_{mq}X_q + L_{mm}X_m,$$
 (33)

где L_{qm} — кинетические коэффициенты, зависящие от температуры и плотности (концентрации примеси). Рассматриваем диффузию частиц с массой m_0 в одномерной температурно-неоднородной среде. В сечениях x-h, x, x+h единичной площади S_0 среды плотности частиц будут $\rho(x-h)$, $\rho(x)$, $\rho(x+h)$ (h — постоянная решетки, $\rho = M/V_0$, M — суммарная масса частиц, $V_0 = S_0 h$ — элементарный объем). Эффективный поток частиц к сечению x равен разности между числом «прибывших» и «убывших» частиц:

$$q_N = \frac{1}{6} [(V_0 N_0)_- - (V_0 N_0)_+], \tag{34}$$

где индексы «—» и «+» соответствуют сечениям системы x - h и x + h, V_0 — средние скорости «скачков» частиц:

$$\frac{m_0 V_0^2}{2} = \varepsilon_0 = \frac{kT}{2}, \quad V_0 = \left(\frac{k}{m_0}\right)^{1/2} \sqrt{T} = V_0(T) = V_0[T(x)].$$

Поток массы $q_{\rm p}=q_N m_0/V_0$. Из (34) получаем, разлагая функции в ряды Тейлора по степеням h и ограничиваясь линейными по h членами:

$$q_{\rho} = -D(T) \left(\frac{\partial \rho}{\partial x} + \frac{\rho}{2T} \frac{\partial T}{\partial x} \right), \quad D(T) = \frac{1}{3} h V_0(T).$$
 (35)

Получено уравнение для потока массы (второе из уравнений (33)), где член, содержащий $\partial T/\partial x$, описывает термодиффузию. Плотность потока тепла в случае отсутствия примеси выражается (как можно показать аналогичным способом) формулой

$$q_n = -\lambda(T) \frac{\partial T}{\partial x}, \quad \lambda(T) = \frac{1}{2} h V_T(T) c_v, \quad V_T \sim \sqrt{T}$$
 (36)

Если к q_n добавить составляющую, обусловленную массопереносом $q_n^{(D)}=\frac{\varepsilon_0}{m_0}q_\rho$, то получим

$$q_n^{(\Sigma)} = q_n + q_n^{(D)} = -\lambda_{\Sigma}(T) \frac{\partial T}{\partial x} - D_T(T) \frac{\partial \rho}{\partial x}, \tag{37}$$

где

$$\lambda_{\Sigma}(T) = \lambda(T) + \frac{\rho D_T(T)}{2T} \,, \quad D_T(T) = \frac{\varepsilon_0 D(T)}{m_0} \,.$$

Формулой (37) дано второе конститутивное уравнение (первое из уравнений (33)). Если воспользоваться выражениями для термодинамических сил [7]:

$$X_q = \frac{1}{T} \frac{\partial T}{\partial x}, \quad X_m = \frac{kT}{\rho m_0} \frac{\partial \rho}{\partial x},$$
 (38)

то из (35), (37), (38) и (33) сразу следует $L_{qm} = L_{mq}$ – соотношение взаимности Онзагера, что является подтверждением верности полученных формул.

- 1. Л.Д. Ландау, Е.М. Лифшиц, Механика, Физматлит, Москва (1958).
- 2. И.Р. Венгеров, Хроноартефакты термодинамики, Норд-Пресс, Донецк (2005).
- 3. А.В. Лыков, Тепломассообмен. Справочник, Энергия, Москва (1972).
- 4. Н.Н. Белоусов, И.Р. Венгеров, Е.Г. Пашинская, ФТВД 17, № 3, 103 (2007).

Физика и техника высоких давлений 2007, том 17, № 4

- 5. *В.Ф. Лось*, Автореф. дис. ... д-ра физ.-мат. наук, Ин-т физики АН ЭССР, Тарту (1982).
- 6. И.Р. Венгеров, Препринт ДонФТИ АН УССР-82-27, ДонФТИ, Донецк (1982).
- 7. *П.П. Кузьменко*, Электроперенос, термоперенос и диффузия в металлах, Вища школа, Киев (1983).

N.N. Belousov, I.R. Vengerov

THERMAL AND PHYSICAL ASPECTS IN PREPARATION AND APPLICATION OF DEFORMABLE NANOMATERIALS. II. PRELIMINARY RESULTS

In the disclosed program the following models have been elaborated: 1) viscous-elastic compression and tension of zero-dimensional mesomodel (nanoparticle chains) with limiting transition to one-dimensional continual (macroscopic) model; 2) thermal interaction of nanoparticle with a «medium» under stationary, unstationary and nonlinear thermophysical parameters of the particle; 3) heat transfer in a uniform nanoparticle chain with limiting transition to one-dimensional continual model: 4) heat transfer in nonuniform nanoparticle chain with a corresponding limiting transition; 5) heat transfer in nonstationary and nonlinear particle chains with transition to continuum; 6) interrelated nonlinear thermal mass transfer.