PACS: 62.50.-p, 64.10.+h, 64.30.+t

Е.П. Троицкая 1 , В.В. Чабаненко 1 , Е.Е. Горбенко 2 , Н.В. Кузовой 2 ТЕПЛОЕМКОСТЬ ГЦК-Хе ПОД ДАВЛЕНИЕМ

Статья поступила в редакцию 3 мая 2007 года

Представлены теоретические ab initio исследования динамики решеток сжатых кристаллов инертных газов (КИГ) в модели К.Б. Толпыго, явно учитывающей деформацию электронных оболочек в дипольном приближении. С помощью динамической матрицы на основе неэмпирического короткодействующего потенциала отталкивания и интегрирования по точкам главного значения в зоне Бриллюэна (ВZ) рассчитывается удельная теплоемкость сжатого гранецентрированного кубического (ГЦК) Хе в гармоническом приближении. Полученные температурные зависимости удельной теплоемкости и температуры Дебая находятся в хорошем согласии с имеющимися результатами эксперимента при нулевом давлении и расчетами в теории функционала плотности при всех давлениях.

1. Введение

Структурная простота КИГ делает их особенно привлекательными для количественного исследования динамики и термодинамики этих кристаллов под давлением.

Твердый ксенон относится к тяжелым КИГ, в нем пренебрежимо малы квантовые эффекты, и он имеет самое низкое давление металлизации p_m . Экспериментальные измерения p_m лежат в области от 121 до 138 GPa [1,2].

При низких температурах Xe кристаллизуется в ГЦК-структуру и под действием давления переходит в гексагональную плотноупакованную структуру при 75 GPa [3,4].

Большинство теоретических исследований динамических и термодинамических свойств Хе используют эмпирические межатомные потенциалы. Такой подход удобен тем, что позволяет обойти сложную проблему изучения деталей межатомного взаимодействия в кристалле. Но именно по этой причине он ограничивает возможность однозначного понимания получаемых результатов. Так, если применяется потенциал с небольшим количеством подгоночных параметров (типа Леннарда–Джонса), то в расчеты заведомо вносится неточность, связанная с качественным характером определе-

¹Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина

²Луганский национальный педагогический университет им. Т. Шевченко ул. Оборонная, 2, г. Луганск, 91011, Украина

ния самого потенциала. Поэтому успешное описание в данном случае некоторых свойств КИГ не является гарантией адекватности потенциала [5,6].

В работах [7-17] с помощью метода сильной связи было реализовано адиабатическое приближение, необходимое для построения динамики и термодинамики решетки КИГ. Оно позволяет провести рассмотрение разнообразных свойств КИГ из первых принципов, опираясь лишь на знание волновых функций основного и возбужденного состояний атомов. «...Обращаясь к явлениям, обусловленным динамикой кристаллической решетки и процессами возбуждения и поляризации атомов кристалла, мы видим у них общую основу: нижайший уровень энергии электронной подсистемы представляет собой адиабатический потенциал для движения ядер. Электронные процессы отвечают различным уровням возбуждения той же электронной подсистемы, которые можно рассматривать как квазичастицы, способные, в свою очередь, взаимодействовать и между собой, и с фононами, т.е. элементарными возбуждениями ядерной подсистемы. Однако в большинстве теоретических работ эта первичная связь игнорируется, а электрон-фононное (или экситон-фононное) взаимодействие вводится в дальнейшем феноменологически. В развиваемой нами теории для диэлектриков и полупроводников ... шаг вперед состоит в явном учете зависимости электронных состояний и электронной энергии от смещения ядер» [11].

В цикле работ [18–22] исследовались фононные дисперсионные кривые сжатых кристаллов Ne, Ar, Kr, Xe в симметричных направлениях для выяснения роли различных взаимодействий, прежде всего электрон-фононного.

В работе [23] в рамках модели К.Б. Толпыго с помощью динамической матрицы, построенной на основе неэмпирического короткодействующего потенциала отталкивания, рассчитаны фононные частоты сжатого ГЦК-Хе с учетом электрон-фононного взаимодействия в точках главного значения Чади–Коэна [24,25]. Проведено исследование энергии нулевых колебаний E_{zp} в КИГ при различных давлениях.

Целью настоящей работы является количественное описание термодинамических свойств, в частности температурной зависимости удельной теплоемкости C_V и температуры Дебая θ_D в кристалле Хе при различных давлениях.

2. Основные формулы и приближения

Решеточная теплоемкость C_V в гармоническом приближении описывается известными формулами [17,26]:

$$C_{V} = \frac{R\Omega}{(2\pi)^{3}} \sum_{\lambda} \int d^{3}(\mathbf{k}) \left[\left(\frac{\hbar \omega_{\lambda}(\mathbf{k})}{k_{B}T} \right)^{2} n_{\lambda}(\mathbf{k}) \left(n_{\lambda}(\mathbf{k}) + 1 \right) \right],$$

$$n_{\lambda}(\mathbf{k}) = \left[\exp \left(\frac{\hbar \omega_{\lambda}(\mathbf{k})}{k_{B}T} \right) - 1 \right]^{-1},$$
(1)

где $k_B = 1.3806662 \cdot 10^{-23}$ J/K — постоянная Больцмана, $R = k_B N_A$ (N_A — число Авогадро), $\Omega = 2a^3$ — объем элементарной ячейки для КИГ в ГЦК-фазе.

При низких температурах ($T << \theta_D$) C_V очень мало и пропорционально T^3 . Поэтому для сравнения теории с экспериментом удобнее рассчитывать величину

$$\theta(T) = \left(\frac{12\pi^4}{5}\right)^{1/3} T \left(\frac{R}{C_V}\right)^{1/3}.$$
 (2)

Нетрудно заметить, что при T = 0 $\theta(0) = \theta_D$.

Для вычисления интегралов по BZ используем метод Чади–Коэна [27]. Сущность этого метода состоит в замене интеграла по BZ суммой значений подынтегральной функции в особых точках (точках главного значения), найденных теоретико-групповыми методами.

Координаты такой точки главного значения \mathbf{k}^* были найдены в [28]: $\mathbf{k}^* = [0.6223; 0.2953; 0]$ для ГЦК-решетки. Вообще говоря, чтобы обеспечить необходимую точность в расчетах, нужно знать значения искомой функции $f(\mathbf{k})$ в большом числе тт. \mathbf{k} .

В работе [21] авторы предложили метод генерирования этих точек на основе двух точек главного значения \mathbf{k}_1 и \mathbf{k}_2 для определения $f(\mathbf{k})$ в кристалле:

$$f(\mathbf{k}) = \frac{1}{4} [3f(\mathbf{k}_1) + f(\mathbf{k}_2)], \quad \mathbf{k}_1 = \left[\frac{3}{4}; \frac{1}{4}; \frac{1}{4} \right], \quad \mathbf{k}_2 = \left[\frac{1}{4}; \frac{1}{4}; \frac{1}{4} \right]. \tag{3}$$

Точки \mathbf{k}_1 и \mathbf{k}_2 используются в [21] для генерирования десяти устойчивых точек главного значения, по которым среднее $f(\mathbf{k})$ по зоне определяется с высокой степенью точности.

Координаты и соответствующие веса α_i этих точек для ГЦК-структуры следующие:

$$\mathbf{k}_{1} = \left[\frac{7}{8}; \frac{3}{8}; \frac{1}{8}\right], \quad \alpha_{1} = \frac{3}{16}; \quad \mathbf{k}_{2} = \left[\frac{7}{8}; \frac{1}{8}; \frac{1}{8}\right], \quad \alpha_{2} = \frac{3}{32};$$

$$\mathbf{k}_{3} = \left[\frac{5}{8}; \frac{5}{8}; \frac{1}{8}\right], \quad \alpha_{3} = \frac{3}{32}; \quad \mathbf{k}_{4} = \left[\frac{5}{8}; \frac{3}{8}; \frac{3}{8}\right], \quad \alpha_{4} = \frac{3}{32};$$

$$\mathbf{k}_{5} = \left[\frac{5}{8}; \frac{3}{8}; \frac{1}{8}\right], \quad \alpha_{5} = \frac{3}{16}; \quad \mathbf{k}_{6} = \left[\frac{5}{8}; \frac{1}{8}; \frac{1}{8}\right], \quad \alpha_{6} = \frac{3}{32};$$

$$\mathbf{k}_{7} = \left[\frac{3}{8}; \frac{3}{8}; \frac{3}{8}\right], \quad \alpha_{7} = \frac{1}{32}; \quad \mathbf{k}_{8} = \left[\frac{3}{8}; \frac{3}{8}; \frac{1}{8}\right], \quad \alpha_{8} = \frac{3}{32};$$

$$\mathbf{k}_{9} = \left[\frac{3}{8}; \frac{1}{8}; \frac{1}{8}\right], \quad \alpha_{9} = \frac{3}{32}; \quad \mathbf{k}_{10} = \left[\frac{1}{8}; \frac{1}{8}; \frac{1}{8}\right], \quad \alpha_{10} = \frac{3}{32}.$$

$$(4)$$

В табл. 1 приведены рассчитанные частоты для Xe при сжатиях $\Delta V/V_0$ от 0 до 0.7, необходимые для вычисления термодинамических свойств и энергии нулевых колебаний по десятиточечной схеме Чади–Коэна (4).

Таблица 1 Частоты $\hbar \omega$ [meV] для Xe, рассчитанные в моделях M3 и M3a при различных сжатиях для 10 точек главного значения (4)

$\Delta V/V_0$			k ₃ [5/8;	k_4 [5/8;	\mathbf{k}_{5} [5/8;	k ₆ [5/8;	$k_7 [3/8;$	$k_8 [3/8;$	k ₉ [3/8;	$\mathbf{k}_{10} [1/8;$
Δ/// ()	3/8;1/8]		5/8;1/8]			1/8;1/8]	3/8;3/8]	3/8;1/8]	1/8;1/8]	1/8;1/8]
1	2	3	4	5	6	7	8	9	10	11
					M3					
	5.0896	3.6813	3.0637	3.0617	3.0164	3.2577	2.3839	2.0442	2.0210	0.9901
0.0	4.4001	3.9669	4.2049	2.7997	3.7477	3.1396	2.3839	2.8268	2.1575	0.9901
	3.5695	5.3707	5.1201	5.4253	5.1988	4.6893	5.1205	4.3910	3.4935	2.0806
	6.5983	4.6761	3.8331	3.8584	3.7590	4.1479	2.9502	2.5013	2.5407	1.2249
0.1	5.6609	5.0687	5.4087	3.4922	4.7829	3.9860	2.9502	3.6010	2.7311	1.2249
	4.5192	6.9794	6.6514	7.0811	6.7066	6.1079	6.6991	5.7405	4.5709	2.7341
	8.5192	5.9309	4.8317	4.8972	4.7252	5.2793	3.7039	3.1231	3.219	1.5373
0.2	7.2633	6.4624	6.9457	4.3983	6.1022	5.0562	3.7039	4.5897	3.4615	1.5373
	5.7396	9.0262	8.6137	9.2100	8.6534	7.9317	8.7315	7.4798	5.9633	3.5739
	11.0052	7.5301	6.1291	6.2544	5.9866	6.7313	4.6986	3.9563	4.1043	1.9497
0.3	9.3284	8.2473	8.9331	5.5810	7.8027	6.4215	4.6986	5.8627	4.3972	1.9497
	7.3190	11.6760	11.1683	11.9922	11.2027	10.3138	11.391	9.7573	.0442 2.0210 .8268 2.1575 .3910 3.4935 .5013 2.5407 .6010 2.7311 .7405 4.5709 .1231 3.219 .5897 3.4615 .4798 5.9633 .9563 4.1043 .8627 4.3972 .7573 7.7905 4.649 4.845 6.922 5.159 1.816 9.451 5.493 5.69 8.089 5.98 4.253 11.433 8.811 8.828 2.761 18.357 3.516 12.277 6.375 11.821 2.501 26.537 .0442 2.0208 .8254 2.1570 .3809 3.4884 .5009 2.5404 .5975 2.7302 .7183 4.5597 .1148 3.2187 .5800 3.4592 .4319 5.9380 .0225 4.1046 <th>4.6715</th>	4.6715
	13.198	8.869	7.213	7.4	7.047	7.955	5.51	4.649	4.845	2.286
0.4	11.118	9.769	10.655	6.554	9.249	7.551	5.51	6.922		2.286
0.4	8.67	14.028	13.446	14.496	13.489	12.461	13.793	11.816	9.451	5.663
	15.725	10.347	8.459	8.721	8.283	9.318	6.448	5.493	5.69	2.675
0.5	13.153	11.476	12.618	7.662	10.874	8.782	6.448	8.089	5.98	2.675
	10.223	16.751	16.108	17.445	16.193	14.999	16.63	14.253	11.433	6.832
	24.657	15.806	13.186	13.63	12.97	13.326	10.077	8.811	8.828	4.181
0.6	20.451	17.688	19.634	11.891	16.761	14.301	10.077	12.337	8.828	4.181
	15.955	26.339	25.485	27.744	25.738	23.906	26.508	22.761	18.357	10.891
	34.201	21.319	18.86	19.344	18.597	17.682	14.616	13.516	12.277	6.065
0.7	28.135	24.099	26.943	16.89	22.741	19.343	14.616	16.375		6.065
	22.46	36.653	35.92	39.286	36.564	34.129	37.642	32.501	26.537	15.456
					M3a					
	3.5675	3.6787	3.0632	2.7994		3.1380	2.3839	2.0442	2.0208	
0.0	4.3922	3.9625	4.1980	3.0608	3.7437	3.2555	2.3839	2.8254		0.9901
	5.0752	5.3535	5.1048	5.4063	5.1852	4.6777	5.1043	4.3809		2.0794
	4.5153	4.6707	3.8327	3.4921	3.7583	3.9826	2.9502	2.5009	1/8;1/8] 10 2.0210 2.1575 3.4935 2.5407 2.7311 4.5709 3.219 3.4615 5.9633 4.1043 4.3972 7.7905 4.845 5.159 9.451 5.69 5.98 11.433 8.828 8.828 18.357 12.277 11.821 26.537 2.0208 2.1570 3.4884 2.5404 2.7302 4.5597 3.2187 3.4592 5.9380 4.1046 4.4004 7.7648 5.159 4.849 9.383 5.987 5.708	1.2249
0.1	5.6422		5.3922	3.8568		4.1430	2.9502	3.5975		
	6.5651									
	5.7320	5.9189	4.8317	4.3980	4.7248	5.0480	3.7009	3.1148		1.5370
0.2	7.2178		6.9051	4.8950	6.0768	5.2667	3.7009	4.5800		1.5370
	8.4436		8.5359	9.1200	8.5863	7.8772	8.6566	7.4319		3.5688
0.3	7.3037	11.4961		6.2536	6.0381	6.6698	4.7538	4.0225		1.9520
	9.2151	8.1777	8.8302	5.6372	7.7248	6.3571	4.7538	5.7287		1.9520
	10.8391	7.4941		11.8060		10.1982				4.6614
0.4	8.67	8.877	7.265	7.411	7.093	7.552	5.575	4.726		2.29
	12.891	8.948	10.399	6.609	11.438	7.973	5.575	6.932		2.29
	10.862	13.698	13.134	14.162	13.829	12.275	13.52	11.662		5.645
	15.208	10.36	8.617	8.786	8.399	9.318	6.609	5.665		2.685
0.5	10.258		11.893	7.818	10.945	8.791	6.609	8.089		2.685
	12.577	16.205	15.566	16.881	15.806	14.693	16.168	13.991	11.318	6.802

Физика и техника высоких давлений 2007, том 17, № 4

Продолжение табл. 1

1	2	3	4	5	6	7	8	9	10	11
	23.6749	17.7071	13.8541	13.9856	16.7626	14.3567	10.6636	9.3823	9.0806	4.2193
0.6	18.8243	16.0191	23.8227	12.5166	13.4679	13.4522	10.6636	22.2186	8.9184	4.2193
	16.2013	25.2629	58.3854	26.5606	24.957	23.3082	25.525	12.364	18.1262	10.8277
	32.7794	24.6093	21.1165	20.7311	20.2312	19.778	16.4145	15.1064	12.1075	6.1852
0.7	29.9819	22.5239	27.1942	18.9531	22.921	18.3865	16.4145	31.5233	12.6082	6.1852
	24.3191	34.8484	34.63	37.0843	35.2417	33.1385	35.7659	16.6032	26.1521	15.3372

3. Решеточная теплоемкость и температура Дебая

На рис. 1 и в табл. 2 представлена температурная зависимость удельной теплоемкости C_V при разных давлениях (сжатиях). Мы выбрали величины давления p = 0.5; 1; 4 GPa, чтобы сравнить с результатами, полученными в теории функционала плотности (DFT) [29].

Таблица 2 Теплоемкость решетки Хе C_V (в единицах k_B), посчитанная в модели МЗа в зависимости от температуры T при различных сжатиях

Decomposition Color					•	J F	•		
5 0.15468 0.07459 0.03531 0.01615 0.00925209 0.0487381 0.000334946 0 10 0.89029 0.54521 0.30039 0.14728 0.08734 0.05186 0.01227 0.00248682 15 1.59308 1.16664 0.77183 0.45314 0.2901 0.18401 0.04424 0.01363 20 2.04901 1.66528 1.24343 0.83526 0.58107 0.40434 0.10994 0.0345 25 2.33019 2.01521 1.62853 1.20276 0.89633 0.67034 0.21633 0.06975 30 2.50833 2.25528 1.92126 1.51803 1.19509 0.94324 0.35616 0.12381 35 2.62601 2.42218 2.13957 1.77507 1.45901 1.19987 0.51694 0.19759 40 2.70698 2.54102 2.30284 1.98042 1.68367 1.42965 0.68702 0.2889 45 2.76472 2.62783 2.4264 2.1437		0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7
15 1.59308 1.16664 0.77183 0.45314 0.2901 0.18401 0.04424 0.01363 20 2.04901 1.66528 1.24343 0.83526 0.58107 0.40434 0.10994 0.0345 25 2.33019 2.01521 1.62853 1.20276 0.89633 0.67034 0.21633 0.06975 30 2.50833 2.25528 1.92126 1.51803 1.19509 0.94324 0.35616 0.12381 35 2.62601 2.42218 2.13957 1.77507 1.45901 1.19987 0.51694 0.19759 40 2.70698 2.54102 2.30284 1.98042 1.68367 1.42965 0.68702 0.2889 45 2.76472 2.62783 2.4264 2.1437 1.87141 1.62979 0.85755 0.39399 50 2.80722 2.69279 2.5213 2.27394 2.02714 1.80153 1.02258 0.50868 55 2.839272 2.74248 2.59535 2.37854	5	0.15468	0.07459	0.03531	0.01615	0.00925209	0.00487381	0.000334946	0
20 2.04901 1.66528 1.24343 0.83526 0.58107 0.40434 0.10994 0.0345 25 2.33019 2.01521 1.62853 1.20276 0.89633 0.67034 0.21633 0.06975 30 2.50833 2.25528 1.92126 1.51803 1.19509 0.94324 0.35616 0.12381 35 2.62601 2.42218 2.13957 1.77507 1.45901 1.19987 0.51694 0.19759 40 2.70698 2.54102 2.30284 1.98042 1.68367 1.42965 0.68702 0.2889 45 2.76472 2.62783 2.4264 2.1437 1.87141 1.62979 0.85755 0.39399 50 2.8072 2.69279 2.5213 2.27394 2.02714 1.80153 1.02258 0.50868 55 2.83927 2.74248 2.59535 2.37854 2.15619 1.94785 1.17847 0.62903 65 2.88355 2.81201 2.70108 2.53263 <	10	0.89029	0.54521	0.30039	0.14728	0.08734	0.05186	0.01227	0.00248682
25 2.33019 2.01521 1.62853 1.20276 0.89633 0.67034 0.21633 0.06975 30 2.50833 2.25528 1.92126 1.51803 1.19509 0.94324 0.35616 0.12381 35 2.62601 2.42218 2.13957 1.77507 1.45901 1.19987 0.51694 0.19759 40 2.70698 2.54102 2.30284 1.98042 1.68367 1.42965 0.68702 0.2889 45 2.76472 2.62783 2.4264 2.1437 1.87141 1.62979 0.85755 0.39399 50 2.8072 2.69279 2.5213 2.27394 2.02714 1.80153 1.02258 0.50868 55 2.83927 2.74248 2.59535 2.37854 2.15619 1.94785 1.17847 0.62903 60 2.86404 2.78125 2.65398 2.4633 2.26339 2.07223 1.3233 0.75169 65 2.88355 2.81201 2.70108 2.53263 <t< td=""><td>15</td><td>1.59308</td><td>1.16664</td><td>0.77183</td><td>0.45314</td><td>0.2901</td><td>0.18401</td><td>0.04424</td><td>0.01363</td></t<>	15	1.59308	1.16664	0.77183	0.45314	0.2901	0.18401	0.04424	0.01363
30 2.50833 2.25528 1.92126 1.51803 1.19509 0.94324 0.35616 0.12381 35 2.62601 2.42218 2.13957 1.77507 1.45901 1.19987 0.51694 0.19759 40 2.70698 2.54102 2.30284 1.98042 1.68367 1.42965 0.68702 0.2889 45 2.76472 2.62783 2.4264 2.1437 1.87141 1.62979 0.85755 0.39399 50 2.8072 2.69279 2.5213 2.27394 2.02714 1.80153 1.02258 0.50868 55 2.83927 2.74248 2.59535 2.37854 2.15619 1.94785 1.17847 0.62903 60 2.86404 2.78125 2.65398 2.4633 2.26339 2.07223 1.3233 0.75169 65 2.88355 2.81201 2.70108 2.53263 2.35286 2.17804 1.45635 0.87396 70 2.89917 2.83579 2.77993 2.63756 <t< td=""><td>20</td><td>2.04901</td><td>1.66528</td><td>1.24343</td><td>0.83526</td><td>0.58107</td><td>0.40434</td><td>0.10994</td><td>0.0345</td></t<>	20	2.04901	1.66528	1.24343	0.83526	0.58107	0.40434	0.10994	0.0345
35 2.62601 2.42218 2.13957 1.77507 1.45901 1.19987 0.51694 0.19759 40 2.70698 2.54102 2.30284 1.98042 1.68367 1.42965 0.68702 0.2889 45 2.76472 2.62783 2.4264 2.1437 1.87141 1.62979 0.85755 0.39399 50 2.8072 2.69279 2.5213 2.27394 2.02714 1.80153 1.02258 0.50868 55 2.83927 2.74248 2.59535 2.37854 2.15619 1.94785 1.17847 0.62903 60 2.86404 2.78125 2.65398 2.4633 2.26339 2.07223 1.3233 0.75169 65 2.88355 2.81201 2.70108 2.53263 2.35286 2.17804 1.45635 0.87396 70 2.89917 2.83679 2.73939 2.58987 2.42797 2.26827 1.57766 0.99379 75 2.91187 2.85704 2.77093 2.63756 <t< td=""><td>25</td><td>2.33019</td><td>2.01521</td><td>1.62853</td><td>1.20276</td><td>0.89633</td><td>0.67034</td><td>0.21633</td><td>0.06975</td></t<>	25	2.33019	2.01521	1.62853	1.20276	0.89633	0.67034	0.21633	0.06975
40 2.70698 2.54102 2.30284 1.98042 1.68367 1.42965 0.68702 0.2889 45 2.76472 2.62783 2.4264 2.1437 1.87141 1.62979 0.85755 0.39399 50 2.8072 2.69279 2.5213 2.27394 2.02714 1.80153 1.02258 0.50868 55 2.83927 2.74248 2.59535 2.37854 2.15619 1.94785 1.17847 0.62903 60 2.86404 2.78125 2.65398 2.4633 2.26339 2.07223 1.3233 0.75169 65 2.88355 2.81201 2.70108 2.53263 2.35286 2.17804 1.45635 0.87396 70 2.89917 2.83679 2.73939 2.58987 2.42797 2.26827 1.57766 0.99379 75 2.91187 2.85704 2.77093 2.63756 2.49141 2.34552 1.68773 1.1097 80 2.9233 2.87378 2.79177 2.67763	30	2.50833	2.25528	1.92126	1.51803	1.19509	0.94324	0.35616	0.12381
45 2.76472 2.62783 2.4264 2.1437 1.87141 1.62979 0.85755 0.39399 50 2.8072 2.69279 2.5213 2.27394 2.02714 1.80153 1.02258 0.50868 55 2.83927 2.74248 2.59535 2.37854 2.15619 1.94785 1.17847 0.62903 60 2.86404 2.78125 2.65398 2.4633 2.26339 2.07223 1.3233 0.75169 65 2.88355 2.81201 2.70108 2.53263 2.35286 2.17804 1.45635 0.87396 70 2.89917 2.83679 2.73939 2.58987 2.42797 2.26827 1.57766 0.99379 75 2.91187 2.85704 2.77093 2.63756 2.49141 2.34552 1.68773 1.1097 80 2.92233 2.87378 2.79717 2.67763 2.54533 2.41192 1.78734 1.22068 85 2.93104 2.88777 2.81922 2.71159 <t< td=""><td>35</td><td>2.62601</td><td>2.42218</td><td>2.13957</td><td>1.77507</td><td>1.45901</td><td>1.19987</td><td>0.51694</td><td>0.19759</td></t<>	35	2.62601	2.42218	2.13957	1.77507	1.45901	1.19987	0.51694	0.19759
50 2.8072 2.69279 2.5213 2.27394 2.02714 1.80153 1.02258 0.50868 55 2.83927 2.74248 2.59535 2.37854 2.15619 1.94785 1.17847 0.62903 60 2.86404 2.78125 2.65398 2.4633 2.26339 2.07223 1.3233 0.75169 65 2.88355 2.81201 2.70108 2.53263 2.35286 2.17804 1.45635 0.87396 70 2.89917 2.83679 2.73939 2.58987 2.42797 2.26827 1.57766 0.99379 75 2.91187 2.85704 2.77093 2.63756 2.49141 2.34552 1.68773 1.1097 80 2.92233 2.87378 2.79717 2.67763 2.54533 2.41192 1.78734 1.22068 85 2.93104 2.88777 2.81922 2.71159 2.59146 2.46927 1.87736 1.3261 90 2.93837 2.89957 2.83791 2.74057 <	40	2.70698	2.54102	2.30284	1.98042	1.68367	1.42965	0.68702	0.2889
55 2.83927 2.74248 2.59535 2.37854 2.15619 1.94785 1.17847 0.62903 60 2.86404 2.78125 2.65398 2.4633 2.26339 2.07223 1.3233 0.75169 65 2.88355 2.81201 2.70108 2.53263 2.35286 2.17804 1.45635 0.87396 70 2.89917 2.83679 2.73939 2.58987 2.42797 2.26827 1.57766 0.99379 75 2.91187 2.85704 2.77093 2.63756 2.49141 2.34552 1.68773 1.1097 80 2.92233 2.87378 2.79717 2.67763 2.54533 2.41192 1.78734 1.22068 85 2.93104 2.88777 2.81922 2.71159 2.59146 2.46927 1.87736 1.3261 90 2.93837 2.89957 2.83791 2.74057 2.63115 2.51903 1.9587 1.42564 95 2.9446 2.90962 2.85388 2.76549 <	45	2.76472	2.62783	2.4264	2.1437	1.87141	1.62979	0.85755	0.39399
60 2.86404 2.78125 2.65398 2.4633 2.26339 2.07223 1.3233 0.75169 65 2.88355 2.81201 2.70108 2.53263 2.35286 2.17804 1.45635 0.87396 70 2.89917 2.83679 2.73939 2.58987 2.42797 2.26827 1.57766 0.99379 75 2.91187 2.85704 2.77093 2.63756 2.49141 2.34552 1.68773 1.1097 80 2.92233 2.87378 2.79717 2.67763 2.54533 2.41192 1.78734 1.22068 85 2.93104 2.88777 2.81922 2.71159 2.59146 2.46927 1.87736 1.3261 90 2.93837 2.89957 2.83791 2.74057 2.63115 2.51903 1.9587 1.42564 95 2.9446 2.90962 2.85388 2.76549 2.66552 2.56242 2.03223 1.51918 100 2.94953 2.91257 2.87954 2.80582	50	2.8072	2.69279	2.5213	2.27394	2.02714	1.80153	1.02258	0.50868
65 2.88355 2.81201 2.70108 2.53263 2.35286 2.17804 1.45635 0.87396 70 2.89917 2.83679 2.73939 2.58987 2.42797 2.26827 1.57766 0.99379 75 2.91187 2.85704 2.77093 2.63756 2.49141 2.34552 1.68773 1.1097 80 2.92233 2.87378 2.79717 2.67763 2.54533 2.41192 1.78734 1.22068 85 2.93104 2.88777 2.81922 2.71159 2.59146 2.46927 1.87736 1.3261 90 2.93837 2.89957 2.83791 2.74057 2.63115 2.51903 1.9587 1.42564 95 2.9446 2.90962 2.85388 2.76549 2.66552 2.56242 2.03223 1.51918 100 2.94993 2.91824 2.86762 2.78705 2.69543 2.60042 2.0988 1.60678 105 2.95453 2.93218 2.88993 2.82225	55	2.83927	2.74248	2.59535	2.37854	2.15619	1.94785	1.17847	0.62903
70 2.89917 2.83679 2.73939 2.58987 2.42797 2.26827 1.57766 0.99379 75 2.91187 2.85704 2.77093 2.63756 2.49141 2.34552 1.68773 1.1097 80 2.92233 2.87378 2.79717 2.67763 2.54533 2.41192 1.78734 1.22068 85 2.93104 2.88777 2.81922 2.71159 2.59146 2.46927 1.87736 1.3261 90 2.93837 2.89957 2.83791 2.74057 2.63115 2.51903 1.9587 1.42564 95 2.9446 2.90962 2.85388 2.76549 2.66552 2.56242 2.03223 1.51918 100 2.94993 2.91824 2.86762 2.78705 2.69543 2.60042 2.0988 1.60678 105 2.95853 2.93218 2.88993 2.82225 2.74463 2.6634 2.21394 1.76485 115 2.96202 2.93786 2.89904 2.83671	60	2.86404	2.78125	2.65398	2.4633	2.26339	2.07223	1.3233	0.75169
75 2.91187 2.85704 2.77093 2.63756 2.49141 2.34552 1.68773 1.1097 80 2.92233 2.87378 2.79717 2.67763 2.54533 2.41192 1.78734 1.22068 85 2.93104 2.88777 2.81922 2.71159 2.59146 2.46927 1.87736 1.3261 90 2.93837 2.89957 2.83791 2.74057 2.63115 2.51903 1.9587 1.42564 95 2.9446 2.90962 2.85388 2.76549 2.66552 2.56242 2.03223 1.51918 100 2.94993 2.91824 2.86762 2.78705 2.69543 2.60042 2.0988 1.60678 105 2.95453 2.9257 2.87954 2.80582 2.72161 2.63386 2.15914 1.68859 110 2.95853 2.93786 2.89904 2.83671 2.76497 2.68961 2.26381 1.83585 120 2.96509 2.94285 2.90707 2.8495	65	2.88355	2.81201	2.70108	2.53263	2.35286	2.17804	1.45635	0.87396
80 2.92233 2.87378 2.79717 2.67763 2.54533 2.41192 1.78734 1.22068 85 2.93104 2.88777 2.81922 2.71159 2.59146 2.46927 1.87736 1.3261 90 2.93837 2.89957 2.83791 2.74057 2.63115 2.51903 1.9587 1.42564 95 2.9446 2.90962 2.85388 2.76549 2.66552 2.56242 2.03223 1.51918 100 2.94993 2.91824 2.86762 2.78705 2.69543 2.60042 2.0988 1.60678 105 2.95453 2.9257 2.87954 2.80582 2.72161 2.63386 2.15914 1.68859 110 2.95853 2.93218 2.88993 2.82225 2.74463 2.6634 2.21394 1.76485 115 2.96202 2.93786 2.89904 2.83671 2.76497 2.68961 2.26381 1.83585 120 2.96509 2.94285 2.90707 2.8495 2.78302 2.71296 2.30928 1.9019 125 2.96781 <td>70</td> <td>2.89917</td> <td>2.83679</td> <td>2.73939</td> <td>2.58987</td> <td>2.42797</td> <td>2.26827</td> <td>1.57766</td> <td>0.99379</td>	70	2.89917	2.83679	2.73939	2.58987	2.42797	2.26827	1.57766	0.99379
85 2.93104 2.88777 2.81922 2.71159 2.59146 2.46927 1.87736 1.3261 90 2.93837 2.89957 2.83791 2.74057 2.63115 2.51903 1.9587 1.42564 95 2.9446 2.90962 2.85388 2.76549 2.66552 2.56242 2.03223 1.51918 100 2.94993 2.91824 2.86762 2.78705 2.69543 2.60042 2.0988 1.60678 105 2.95453 2.9257 2.87954 2.80582 2.72161 2.63386 2.15914 1.68859 110 2.95853 2.93218 2.88993 2.82225 2.74463 2.6634 2.21394 1.76485 115 2.96202 2.93786 2.89904 2.83671 2.76497 2.68961 2.26381 1.83585 120 2.96509 2.94285 2.90707 2.8495 2.78302 2.71296 2.30928 1.9019 125 2.96781 2.94727 2.91419 2.86086 2.79911 2.73383 2.35083 1.9633 130 2.97429 <td>75</td> <td>2.91187</td> <td>2.85704</td> <td>2.77093</td> <td>2.63756</td> <td>2.49141</td> <td>2.34552</td> <td>1.68773</td> <td>1.1097</td>	75	2.91187	2.85704	2.77093	2.63756	2.49141	2.34552	1.68773	1.1097
90 2.93837 2.89957 2.83791 2.74057 2.63115 2.51903 1.9587 1.42564 95 2.9446 2.90962 2.85388 2.76549 2.66552 2.56242 2.03223 1.51918 100 2.94993 2.91824 2.86762 2.78705 2.69543 2.60042 2.0988 1.60678 105 2.95453 2.9257 2.87954 2.80582 2.72161 2.63386 2.15914 1.68859 110 2.95853 2.93218 2.88993 2.82225 2.74463 2.6634 2.21394 1.76485 115 2.96202 2.93786 2.89904 2.83671 2.76497 2.68961 2.26381 1.83585 120 2.96509 2.94285 2.90707 2.8495 2.78302 2.71296 2.30928 1.9019 125 2.96781 2.94727 2.91419 2.86086 2.79911 2.73383 2.35083 1.9633 130 2.97022 2.9512 2.92053 2.88823 2.83807 2.78466 2.45591 2.12283 150 2.97759 </td <td>80</td> <td>2.92233</td> <td>2.87378</td> <td>2.79717</td> <td>2.67763</td> <td>2.54533</td> <td>2.41192</td> <td>1.78734</td> <td>1.22068</td>	80	2.92233	2.87378	2.79717	2.67763	2.54533	2.41192	1.78734	1.22068
95 2.9446 2.90962 2.85388 2.76549 2.66552 2.56242 2.03223 1.51918 100 2.94993 2.91824 2.86762 2.78705 2.69543 2.60042 2.0988 1.60678 105 2.95453 2.9257 2.87954 2.80582 2.72161 2.63386 2.15914 1.68859 110 2.95853 2.93218 2.88993 2.82225 2.74463 2.6634 2.21394 1.76485 115 2.96202 2.93786 2.89904 2.83671 2.76497 2.68961 2.26381 1.83585 120 2.96509 2.94285 2.90707 2.8495 2.78302 2.71296 2.30928 1.9019 125 2.96781 2.94727 2.91419 2.86086 2.79911 2.73383 2.35083 1.9633 130 2.97022 2.9512 2.92053 2.87099 2.8135 2.75256 2.38889 2.02039 140 2.977429 2.96323 2.94 2.90226	85	2.93104	2.88777	2.81922	2.71159	2.59146	2.46927	1.87736	1.3261
100 2.94993 2.91824 2.86762 2.78705 2.69543 2.60042 2.0988 1.60678 105 2.95453 2.9257 2.87954 2.80582 2.72161 2.63386 2.15914 1.68859 110 2.95853 2.93218 2.88993 2.82225 2.74463 2.6634 2.21394 1.76485 115 2.96202 2.93786 2.89904 2.83671 2.76497 2.68961 2.26381 1.83585 120 2.96509 2.94285 2.90707 2.8495 2.78302 2.71296 2.30928 1.9019 125 2.96781 2.94727 2.91419 2.86086 2.79911 2.73383 2.35083 1.9633 130 2.97022 2.9512 2.92053 2.87099 2.8135 2.75256 2.38889 2.02039 140 2.97429 2.95785 2.93128 2.88823 2.83807 2.78466 2.45591 2.12283 150 2.97759 2.96323 2.94 2.90226 2.85814 2.81099 2.5128 2.21153	90	2.93837	2.89957	2.83791	2.74057	2.63115	2.51903	1.9587	1.42564
105 2.95453 2.9257 2.87954 2.80582 2.72161 2.63386 2.15914 1.68859 110 2.95853 2.93218 2.88993 2.82225 2.74463 2.6634 2.21394 1.76485 115 2.96202 2.93786 2.89904 2.83671 2.76497 2.68961 2.26381 1.83585 120 2.96509 2.94285 2.90707 2.8495 2.78302 2.71296 2.30928 1.9019 125 2.96781 2.94727 2.91419 2.86086 2.79911 2.73383 2.35083 1.9633 130 2.97022 2.9512 2.92053 2.87099 2.8135 2.75256 2.38889 2.02039 140 2.97429 2.95785 2.93128 2.88823 2.83807 2.78466 2.45591 2.12283 150 2.97759 2.96323 2.94 2.90226 2.85814 2.81099 2.5128 2.21153	95	2.9446	2.90962	2.85388	2.76549	2.66552	2.56242	2.03223	1.51918
110 2.95853 2.93218 2.88993 2.82225 2.74463 2.6634 2.21394 1.76485 115 2.96202 2.93786 2.89904 2.83671 2.76497 2.68961 2.26381 1.83585 120 2.96509 2.94285 2.90707 2.8495 2.78302 2.71296 2.30928 1.9019 125 2.96781 2.94727 2.91419 2.86086 2.79911 2.73383 2.35083 1.9633 130 2.97022 2.9512 2.92053 2.87099 2.8135 2.75256 2.38889 2.02039 140 2.97429 2.95785 2.93128 2.88823 2.83807 2.78466 2.45591 2.12283 150 2.97759 2.96323 2.94 2.90226 2.85814 2.81099 2.5128 2.21153	100	2.94993	2.91824	2.86762	2.78705	2.69543	2.60042	2.0988	1.60678
115 2.96202 2.93786 2.89904 2.83671 2.76497 2.68961 2.26381 1.83585 120 2.96509 2.94285 2.90707 2.8495 2.78302 2.71296 2.30928 1.9019 125 2.96781 2.94727 2.91419 2.86086 2.79911 2.73383 2.35083 1.9633 130 2.97022 2.9512 2.92053 2.87099 2.8135 2.75256 2.38889 2.02039 140 2.97429 2.95785 2.93128 2.88823 2.83807 2.78466 2.45591 2.12283 150 2.97759 2.96323 2.94 2.90226 2.85814 2.81099 2.5128 2.21153	105	2.95453	2.9257	2.87954	2.80582	2.72161	2.63386	2.15914	1.68859
120 2.96509 2.94285 2.90707 2.8495 2.78302 2.71296 2.30928 1.9019 125 2.96781 2.94727 2.91419 2.86086 2.79911 2.73383 2.35083 1.9633 130 2.97022 2.9512 2.92053 2.87099 2.8135 2.75256 2.38889 2.02039 140 2.97429 2.95785 2.93128 2.88823 2.83807 2.78466 2.45591 2.12283 150 2.97759 2.96323 2.94 2.90226 2.85814 2.81099 2.5128 2.21153	110	2.95853	2.93218	2.88993	2.82225	2.74463	2.6634	2.21394	1.76485
125 2.96781 2.94727 2.91419 2.86086 2.79911 2.73383 2.35083 1.9633 130 2.97022 2.9512 2.92053 2.87099 2.8135 2.75256 2.38889 2.02039 140 2.97429 2.95785 2.93128 2.88823 2.83807 2.78466 2.45591 2.12283 150 2.97759 2.96323 2.94 2.90226 2.85814 2.81099 2.5128 2.21153	115	2.96202	2.93786	2.89904	2.83671	2.76497	2.68961	2.26381	1.83585
130 2.97022 2.9512 2.92053 2.87099 2.8135 2.75256 2.38889 2.02039 140 2.97429 2.95785 2.93128 2.88823 2.83807 2.78466 2.45591 2.12283 150 2.97759 2.96323 2.94 2.90226 2.85814 2.81099 2.5128 2.21153	120	2.96509	2.94285	2.90707	2.8495	2.78302	2.71296	2.30928	1.9019
140 2.97429 2.95785 2.93128 2.88823 2.83807 2.78466 2.45591 2.12283 150 2.97759 2.96323 2.94 2.90226 2.85814 2.81099 2.5128 2.21153	125	2.96781	2.94727	2.91419	2.86086	2.79911	2.73383	2.35083	1.9633
150 2.97759 2.96323 2.94 2.90226 2.85814 2.81099 2.5128 2.21153	130	2.97022	2.9512	2.92053	2.87099	2.8135	2.75256	2.38889	2.02039
	140	2.97429	2.95785	2.93128	2.88823	2.83807	2.78466	2.45591	2.12283
160 2.98029 2.96764 2.94716 2.91383 2.87474 2.83284 2.56146 2.28852	150	2.97759	2.96323	2.94	2.90226	2.85814	2.81099	2.5128	2.21153
	160	2.98029	2.96764	2.94716	2.91383	2.87474	2.83284	2.56146	2.28852

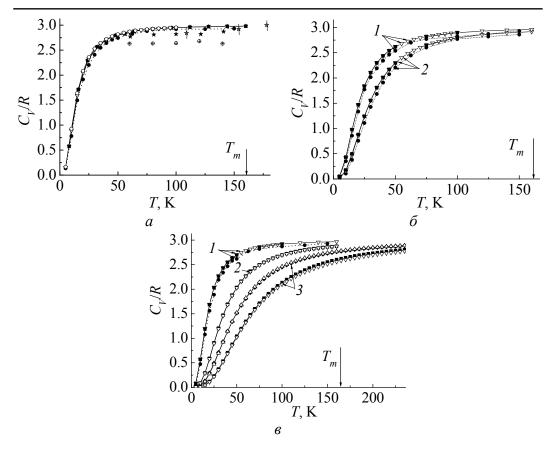
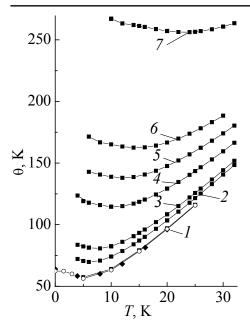



Рис. 1. Температурная зависимость теплоемкости C_V ксенона при давлении, GPa: a-p=u=0; δ : I-1, 2-4; ϵ : I-0.5, 2-10,1 ($u=\Delta V/V_0=0,4$), 3-57,65 (u=0,6); ∎ и ∇ со сплошной линией – наши расчеты в моделях соответственно M3 (без учета электрон-фононного взаимодействия) и M3a (с учетом электрон-фононного взаимодействия). Эксперимент: $\bigstar - [30]$, $\thickapprox - [31]$; \oplus – расчеты [32] в гармоническом приближении, \bullet с точечной кривой – расчет в DFT [29], \circ – расчеты [17], \bullet и Δ – наши расчеты в двухточечной схеме Чади–Коэна в моделях соответственно M3 и M3a. Температура плавления T_m (при p=0) показана стрелкой

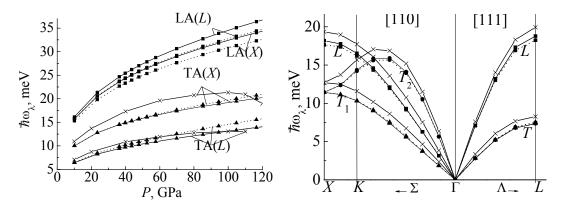
На рис. 1,a приведены экспериментальные зависимости теплоемкости C_V от T для Xe при нулевом давлении как пересчитанные по значениям C_P , так и измеренные непосредственно; кроме того, представлены результаты, полученные по формуле (1), а также теоретические результаты других авторов. Поскольку $C_V(T)$ однозначно определяется фононным спектром во всей зоне Бриллюэна, ясно, что лучшее согласие с экспериментом по теплоемкости должны давать теории, наиболее точно описывающие фононный спектр. Поэтому неудивительно, что теория Толпыго (модель М1) [17], параметры которой определялись из минимума среднеквадратичного отклонения для $\omega_{\lambda k}$ (в симметричных направлениях, так как других экспериментальных точек нет), приводит и к лучшему согласию для $C_V(T)$ по сравнению с теорией [32], в которой использовался потенциал Леннарда—Джонса с параметрами, определенными только по значениям энергии связи и постоянной решетки. Этого явно недостаточно для хорошего воспроизведения фононных частот.

Рис. 2. Температурная зависимость θ (см. (2)) ксенона при разных давлениях, GPa: I-0, 2-0.5, 3-1, 4-4, 5-10.1, 6-23.45, 7-57.65; \blacksquare со сплошной линией — наши расчеты в модели M3a; \bullet — эксперимент [30], \circ — расчеты [17]

Мы не приводим теоретических результатов для $C_V(T)$ из работы [33], в которой использовалась оболочечная модель кристалла, поскольку эти результаты еще хуже согласуются с экспериментом (по-видимому, неудачен был выбор параметров теории или метод расчета). Обращает на себя внимание тот факт, что теория [32] дает систематически заниженные в сравнении с экспериментом значения C_V при высоких температурах и даже «завал» кривых. Напротив, наши расчеты, выполненные в гармоническом приближении, как и расчеты [29], приводят к лучшему согласию, особенно с более поздними прямыми измерениями $C_{\nu}(T)$ [31].

На рис. 1,6,6 представлена удельная теплоемкость Хе при $p \neq 0$ в зависимости от температуры. Как видно из рис. 1,6, при увеличении давления значения C_V/R уменьшаются, они не достигают предельного значения 3 (в единицах k_B) и

изменяется вид кривой. Вклад электрон-фононного взаимодействия мал и заметен только при сжатии u=0.6, что соответствует p=57.65 GPa. Согласие с расчетами [29] нам представляется хорошим при всех давлениях. Для удобства сравнения при низких T на рис. 2 приведены значения $\theta(T)$, полученные по формуле (2). Сопоставление расчетных значений $\theta(T)$ (рис. 2) при нулевом давлении с экспериментальными показывает правильность общего хода этой величины в достаточно широком температурном интервале 0–20 K. Это свидетельствует о том, что теория правильно передает значения $\omega_{\lambda k}$ в начальном участке кривых, в первую очередь для поперечных (низких) частот. Предельные значения $\theta(0) = \theta_D$ при p=0 в нашей теории совпадают с рассчитанными по упругим постоянным C_{iikl} .


4. Заключение

В [17] было проведено исследование на сходимость результата расчета $C_V(T)$ в зависимости от числа точек Чади–Коэна при p=0. При температурах 20 К и выше достаточно 10 точек для получения трех значащих цифр. При использовании 408 точек с такой же точностью можно получить C_V при 2 К. Расчет $C_V(T)$ проведен при постепенном увеличении числа точек разбиений от 2 до 408. При этом оказывается, что результат сходится тем быст-

рее, чем выше температура. В работе [23, табл. 4] для Ne–Kr при p=0 показано, что если расчет $E_{zp}^{(2)}$ по двум точкам **k** существенно улучшает согласие теории и эксперимента, то увеличение числа точек главного значения до 10 не имеет такого значения и исследования нулевых колебаний можно проводить в двухточечной схеме интегрирования в широком интервале давлений.

Для удельной теплоемкости нужно использовать не менее 10 точек главного значения. Величины C_V в двухточечной схеме интегрирования существенно отличаются, как это видно для u = 0.6 (см. рис. 1,s).

К сожалению, в настоящее время пока мало экспериментальных и теоретических данных по динамике решетки КИГ при высоких давлениях. Первопринципные расчеты проводились в рамках DFT в приближении локальной плотности (LDA) [29,34–36]. Авторы работы [29] предполагают, что увеличение плотности заряда в результате сжатия приведет к улучшению приближения LDA, хотя известно, что последняя плохо описывает системы, связанные такими слабыми силами, как силы Ван-дер-Ваальса [37]. В работе [29] найдено, что для Xе в ГЦК-фазе все фононные моды монотонно растут с увеличением давления до 100 GPa, выше которого поперечные акустические моды в тт. X и L начинают размягчаться.

Рис. 3. Зависимость фононных частот $\hbar\omega_{\lambda}(X)$ и $\hbar\omega_{\lambda}(L)$ от давления для ГЦК-Хе в тт. X и L. Наши расчеты [24] в моделях M3 (—) и M3a (---): $\blacksquare - \hbar\omega_L(X,L)$, $\blacktriangle - \hbar\omega_T(X,L)$, $\times - \hbar\omega_T(\mathbf{k})$, рассчитанные в тт. X и L в работе [29] (мы сохранили обозначения авторов: $\mathrm{TA}(X,L)$ – transverse acoustic modes)

Рис. 4. Фононные частоты $\hbar\omega_{\lambda}$ в симметричных направлениях волнового вектора **k** для Xe при p=16 GPa: сжатие $\Delta V/V_0=0.455$ [24], $-\times--$ расчет [29] (остальные обозначения как на рис. 3). Буквы L, T, T_1 , T_2 обозначают поляризуемость λ

Как видно из рис. 3 и 4, значения частот примерно такие же, как полученные в данной работе. Однако в отличие от [29] мы показали, что в тт. X и L продольные моды «размягчаются», а в поперечные моды электрон-фононное взаимодействие вносит положительный вклад [25]. К сожалению, продольные моды при высоких давлениях в [29] не представлены.

Несмотря на указанное различие, согласие рассчитанных нами частот [24] с полученными в [29], на наш взгляд, удовлетворительное, не хуже, чем в

случае упругих свойств этих кристаллов под давлением [38], где также проведено сравнение наших результатов с расчетами в рамках DFT с LDA-приближением [39].

При p=0, как полагают авторы [29], рассчитанная ими величина $E_{zp}=230~\mu$ Hartree близка к $E_{zp}=200~\mu$ Hartree = 63.155 K (1 Hartree = 2 Ry, 1 Ry = 15.7888 K = 13,6058 eV), полученной в [40]. Энергия нулевых колебаний, рассчитанная при нулевом давлении в [17] для $Xe~E_{zp}=62.9~K=199~\mu$ Hartree. Если ввести относительную погрешность $\gamma[i]$ (i- номер ссылки) как

$$\gamma[i] = \frac{\left| E_{zp}[i] - E_{zp}[40] \right|}{E_{zp}[40]} \cdot 100\%,$$

тогда $\gamma[29]=15\%$, $\gamma[17]=0.4\%$. Представленные нами результаты в [23, табл. 3] дают γ от 2 до 3% по отношению к $E_{zp}[40]$.

Термодинамические величины, в частности удельная теплоемкость C_V , являются интегральными характеристиками, и поэтому согласие наших результатов температурной зависимости C_V с расчетами $C_V(T)$ [29] лучше, чем для фононного спектра в симметричных направлениях при всех давлениях. Кроме того, зависимость $C_V(T)$ содержит информацию обо всем фононном спектре, что позволяет также сделать вывод в пользу рассмотренных теорий.

Таким образом, представленные результаты показывают, что расчеты динамики решетки для Xе при $p \neq 0$, выполненные в рамках метода Xартри—Фока в теории, учитывающей деформацию электронных оболочек (неэмпирическая версия модели K.Б. Толпыго), позволяют количественно исследовать фононы, упругие свойства и термодинамические характеристики Xе в широком интервале давлений с хорошей точностью.

- 1. K.A. Goettel, J.H. Eggert, I.F. Silvera, W.C. Moss, Phys. Rev. Lett. 62, 665 (1989).
- 2. M.I. Eremets, E.A. Gregoryanz, V.V. Struzhkin, H.K. Mao, R.J. Hemley, N. Mulders, N.M. Zimmerman, Phys. Rev. Lett. 85, 2797 (2000).
- 3. W.A. Caldwell, J.H. Nguyen, B.G. Pfrommer, F. Mauri, S.G. Louie, R. Jeanloz, Science 277, 930 (1997).
- 4. A.P. Jephcoat, H.K. Mao, L.W. Finger, D.E. Cox, R.J. Hemley, C.S. Zha, Phys. Rev. Lett. **59**, 2670 (1987).
- 5. D. Acocella, G.K. Horton, E.R. Cowley, Phys. Rev. **B61**, 8753 (2000).
- 6. A.I. Karasevskii, W.B. Holzapfel, Phys. Rev. **B67**, 224 (2003).
- 7. К.Б. Толпыго, Е.П. Троицкая, ФТТ **13**, 1135 (1971).
- 8. М.А. Белоголовский, К.Б. Толпыго, Е.П. Троицкая, ФТТ 13, 2109 (1971).
- 9. К.Б. Толпыго, Е.П. Троицкая, ФТТ 17, 102 (1975).
- 10. К.Б. Толпыго, Е.П. Троицкая, ФТТ 16, 795 (1974).
- 11. *О.Н. Болонин, К.Б. Толпыго, Е.П. Троицкая*, Препринт ДонФТИ–81–23, Донецк (1981).
- 12. К.Б. Толпыго, Е.П. Троицкая, ФТТ 14, 2867 (1972).

Физика и техника высоких давлений 2007, том 17, № 4

- 13. Е.В. Зароченцев, К.Б Толпыго, Е.П. Троицкая, ФНТ 5, 1324 (1979).
- 14. В.Л. Дорман, Е.В. Зароченцев, Е.П. Троицкая, ФТТ 23, 1581 (1981).
- 15. Ю.В. Еремейченкова, Е.В. Зароченцев, Е.П. Троицкая, ТМФ **106**, 498 (1996).
- 16. В.Л. Дорман, Е.В. Зароченцев, Е.П. Троицкая, ФНТ 8, 94 (1982).
- 17. Е.В. Зароченцев, К.Б. Толпыго, Е.П. Троицкая, ФНТ 5, 1324, (1979).
- 18. Е.В. Зароченцев, Е.П. Троицкая, В.В. Чабаненко, ФТВД 13, № 4, 7 (2003).
- 19. Е.П. Троицкая, В.В. Чабаненко, Е.Е. Горбенко, ФТВД 14, № 3, 7 (2004).
- 20. Е.П. Троицкая, В.В. Чабаненко, Е.Е. Горбенко, ФТВД **15**, № 3, 7 (2005).
- 21. Е.П. Троицкая, В.В. Чабаненко, Е.Е. Горбенко, ФТТ 47, 1683 (2005).
- 22. Е.П. Троицкая, В.В. Чабаненко, Е.Е. Горбенко, ФТТ 48, 695 (2006).
- 23. Е.П. Троицкая, В.В. Чабаненко, Е.Е. Горбенко, Н.В. Кузовой, ФТВД **17**, № 3, 14 (2007).
- 24. Е.П. Троицкая, В.В. Чабаненко, Е.Е. Горбенко, ФТТ 49, 2055 (2007).
- 25. Е.П. Троицкая, В.В. Чабаненко, Е.Е. Горбенко, ФТВД 16, № 1, 25 (2006).
- 26. V.G. Bar'yakhtar, E.V. Zarochentsev, E.P. Troitskaya, Theory of Adiabatic Potential and Atomic Properties of Simple Metals, Gordon and Breach, London (1999).
- 27. D.J. Chadi, M.L. Cohen, Phys. Rev. B8, 5747 (1973).
- 28. A. Baldereschi, Bull. Am. Phys. Soc. 17, 237 (1972).
- 29. J.K. Dewhurst, R. Ahuja, S. Li, B. Johansson, Phys. Rev. Lett. 88, 5504 (2002).
- 30. J.U. Trefny, B. Seria, J. Low Temp. Phys. 1, 231 (1969).
- 31. K. Gamper, J. Low Temp. Phys. 6, 35 (1972).
- 32. J.W. Leech, J.A. Reassland, J. Phys. C3, 975 (1970).
- 33. S.K. Jain, G.P. Srivastava, Canad. J. Phys. 56, 849 (1978).
- 34. I. Kwon, L.A. Collins, J.D. Kress, N. Troullier, Phys. Rev. B52, 15165 (1995).
- 35. W.A. Caldwell, J.H. Nguyen, B.G. Pfrommer, F. Mauri, S.G. Louie, R. Jeanloz, Science 277, 930 (1997).
- 36. M. Springbord, J. Phys.: Condens. Matter 12, 9869 (2000).
- 37. W. Kohn, Y. Meir, D.E. Makarov, Phys. Rev. Lett. 80, 4153 (1998).
- 38. E.V. Zarochentsev, V.N. Varyukhin, E.P. Troitskaya, Val.V. Chabanenko, E.E. Horbenko, Phys. stat. sol. (b) 243, 2672 (2006).
- 39. T. Tsuchiva, K. Kawamura, J. Chem. Phys. 117, 5859 (2002).
- 40. K. Rościszewski, B. Paulus, P. Fulde, H. Stoll, Phys. Rev. **B62**, 5482 (2000).

E.P. Troitskaya, V.V. Chabanenko, E.E. Gorbenko, N.V. Kuzovoy

HEAT CAPACITY OF FCC Xe UNDER PRESSURE

Theoretical *ab initio* investigations of the lattice dynamics of compressed inert gas crystals (IGC) done within K.B. Tolpygo's model, which considers the deformation of electronic shells in the dipole approximation, are given. Specific heat of the compressed fcc Xe is calculated by using a dynamic matrix based on nonempirical short-range repulsive potential and by integration with respect to principal-value points in the Brillouin zone. The obtained temperature dependences of specific heat and Debye temperature agree well with the available experimental results for zero pressure and with calculations within the theory of density functional for all pressures.

- Fig. 1. Temperature dependence of heat capacity $C_V(T)$ for xenon at pressure, GPa: a-p=u=0; δ : I-1, 2-4; ϵ : I-0.5, 2-10,1 ($u=\Delta V/V_0=0,4$), 3-57,65 (u=0,6); \blacksquare and ∇ with solid line our calculations within models M3 (no electron-phonon interaction) and M3a (with electron-phonon interaction taken into account), respectively. Experiment: $\bigstar [30]$, $\bigstar [31]$; \oplus calculations [32] in harmonic approximation, \bullet with dot curve calculation in DFT [29], \circ calculations [17], \bullet and Δ our calculations in two-point Chadi–Cohen scheme within M3 and M3a models, respectively. The melting temperature T_m (for p=0) is shown by arrow
- **Fig. 2.** Temperature dependence (see (2)) of xenon for different pressures, GPa: 1 0, 2 0.5, 3 1, 4 4, 5 10.1, 6 23.45, 7 57.65; with solid line our calculations within the M3a model; \bullet experiment [30], \circ calculations [17]
- Fig. 3. Dependence of phonon frequences $\hbar\omega_{\lambda}(X)$ and $\hbar\omega_{\lambda}(L)$ on pressure for fcc Xe at points X and L. Our calculations within the M3 (—) and M3a (---) models: $\blacksquare \hbar\omega_L(X,L)$, $\blacktriangle \hbar\omega_T(X,L)$, $\times \hbar\omega_T(\mathbf{k})$, calculated at points X and L [29] (notation is that by the authors: TA(X,L) transverse acoustic modes)
- **Fig. 4.** Phonon frequences $\hbar\omega_{\lambda}$ in symmetric directions of wave vector **k** for Xe, p=16 GPa: compression $\Delta V/V_0=0.455$ [24]), $-\times-$ calculation [29] (the rest designation as in Fig. 3). Letters L, T, T_1 , T_2 denote polarizability λ