PACS: 81.40.Ef

С.Е. Шейкин, Д.В. Ефросинин, И.Ю. Ростоцкий

ИЗМЕНЕНИЕ СОСТОЯНИЯ ПОВЕРХНОСТНОГО СЛОЯ ПРИ НАКАТЫВАНИИ СПЛАВОВ ВТ1-0 И ВТ22 ИНСТРУМЕНТОМ ИЗ АЛМАЗНОГО КОМПОЗИЦИОННОГО ТЕРМОСТОЙКОГО МАТЕРИАЛА

Институт сверхтвердых материалов им. В.Н. Бакуля НАН Украины ул. Автозаводская, 2, г. Киев, 04074, Украина

Изложены результаты исследований по накатыванию титановых сплавов шарами из алмазного композиционного термоустойчивого материала (АКТМ), а также представлены технологические рекомендации по их обработке накатыванием.

Ключевые слова: холодное поверхностное пластическое деформирование, титан, микротвердость, шероховатость, алмазный композиционный термостойкий материал

При изготовлении деталей машин методы холодного поверхностного пластического деформирования (ХППД) позволяют получить комплекс свойств, которые существенно повышают их эксплуатационные характеристики. Однако применение этих методов для обработки титановых сплавов сдерживается их повышенной склонностью к схватыванию с инструментальными материалами [1].

В данном случае возможно использование лишь методов ХППД, в которых трение скольжения сведено к минимуму, например накатывания роликами и шарами [2,3]. Предпочтительным является накатывание шарами ввиду более низкой степени трения скольжения и, как следствие, меньшей вероятности брака.

В [2–4] изучена обрабатываемость деталей из титановых сплавов накатыванием шарами и роликами из закаленной стали. При этом стойкость инструментов не исследовалась.

Эксперименты, проведенные в ИСМ НАН Украины [5] при усилии прижима $P_y = 400$ N, скорости V = 0.075 m/s и подаче S = 0.14 mm/rev, показали, что на шаре из стали ШХ15 $\oslash 0.005$ m после прохождения 2000 m по обрабатываемой поверхности детали из сплава ВТ1-0 появляются очаги разрушения. Последнее может быть причиной увеличения шероховатости обрабатываемой поверхности и брака при накатке длинномерных изделий.

Вследствие этого задача создания инструментов из сверхтвердых материалов для ХППД деталей из титановых сплавов является чрезвычайно актуальной.

В экспериментах использовали рабочий элемент накатника в виде шара Ø 0.005 m из АКТМ (рис. 1). Спекание заготовки шара и последующую ее механическую обработку производили по технологии, разработанной в ИСМ

Рис. 1. Сферическое изделие из АКТМ

НАН Украины [5–8]. Шероховатость поверхности готового изделия составила *Ra* = 0.16 µm.

Испытания инструмента проводили при накатывании упругим накатником отожженных заготовок из сплавов ВТ1-0 (НВ 160) и ВТ22 (НВ 330) при скорости V = 0.075 m/s. Исходная шероховатость обрабатываемой поверхности заготовки составляла Ra == 7 µm, диаметр – 0.036 m. В качестве технологической смазки использовали масло индустриальное 20 [4].

Шероховатость поверхности измеряли на приборе Talysurf 5М-120, микротвердость – на приборе ПМТ-3.

При анализе экспериментальных данных с целью уменьшения разброса и большей наглядности графических зависимостей использовали относительную шероховатость поверхности Ra/Ra_0 , где Ra – шероховатость поверхности после накатывания, Ra_0 – исходная шероховатость.

На рис. 2 в полулогарифмических координатах представлены зависимости *Ra/Ra*₀, полученные при накатывании деталей из сплавов BT1-0 и BT22 при использовании шаров из стали и AKTM, от количества проходов.

Рис. 2. Зависимость Ra/Ra_0 от количества циклов *n* накатки деталей из сплавов ВТ1-0 (*a*-*г*) и ВТ22 (*∂*-*ж*) с использованием шаров из АКТМ (- - -) при различных подачах *S*, mm/rev: *a*, *∂* – 0.07, *б*, *e* – 0.14, *s* – 0.11, *г* – 0.28 и при различных усилиях прижима P_y , N: \blacklozenge – 50, \blacksquare – 100, \blacktriangle – 150, ◊ – 200, \blacklozenge – 300, \square – 400, △ – 600, \circ – 800; на изображении *ж*: P_y = 600 N, *S* = 0.21 (\blacksquare) и 0.28 (\blacklozenge) mm/rev. Для сравнения показаны зависимости при использовании шара из стали (*—*) при тех же подачах и P_y = 600 N

Из приведенных данных видно, что наименьших величин *Ra/Ra*₀ достигает при обработке с минимальной подачей из исследованного диапазона значений при прочих одинаковых условиях. При этом значения шероховатости для сплава BT22 больше, что объясняется его меньшей пластичностью.

При обработке деталей из сплавов как BT1-0, так и BT22 разницу в значениях Ra/Ra_0 , полученных при использовании шаров из стали и AKTM, можно объяснить различием в величине шероховатости шаров. Так, для шара из стали $Ra = 0.08 \mu$ m, из AKTM – $Ra = 0.16 \mu$ m.

На рис. 3 приведены зависимости Ra/Ra_0 от усилий прижима P_y после трех циклов накатывания деталей из сплавов ВТ1-0 и ВТ22 при подачах S = 0.07 и 0.14 mm/rev. Характер изменения величин Ra/Ra_0 в зависимости от подачи после трех проходов с усилием прижима инструмента $P_y = 400$ и 600 N при накатывании деталей из исследуемых сплавов показан на рис. 4.

Рис. 3. Зависимость Ra/Ra_0 от усилия прижима $P_y(a, \delta)$ при подачах S = 0.07 (\blacklozenge) и 0.14 (\blacksquare) mm/rev после трех проходов при накатывании деталей из сплавов BT1-0 (a) и BT22 (δ)

Рис. 4. Зависимость Ra/Ra_0 от подачи после трех проходов с усилием прижима $P_y = 400$ (*a*) и 600 (*б*) N при накатывании деталей из сплавов BT1-0 (*a*) и BT22 (*б*)

Видно, что при подачах S = 0.07-0.14 mm/rev применение усилий прижима $P_y > 200$ N практически не приводит к снижению значения Ra, а с ростом S шероховатость увеличивается.

Распределение микротвердости в поверхностном слое деталей из сплавов ВТ1-0 и ВТ22 после накатывания шаром из АКТМ по различным технологическим режимам приведено на рис. 5. Как видим, для сплава ВТ1-0 можно получить увеличение поверхностной микротвердости (HV/HV₀) в 1.6 раза и глубину слоя деформационного упрочнения *h* до 400 µm, а для сплава ВТ22 – HV/HV₀ = 1.1 и *h* до 100 µm.

Исследования стойкости инструмента из АКТМ, проведенные по тем же технологическим режимам, что и стального инструмента [5], показали отсутствие признаков износа после прохождения пути в 10000 m по обрабатываемой поверхности детали из сплава ВТ1-0 (рис. 6).

Рис. 5. Распределение микротвердости в поверхностном слое деталей из BT1-0 (*a*) и BT22 (б) после накатывания по различным технологическим режимам: *a*: $\blacktriangle - S = 0.07 \text{ mm/rev}$, $P_y = 400 \text{ N}$, n = 5; $\blacksquare - S = 0.14 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 3; $\blacklozenge - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; 혀 - S = 0.07 mm/rev, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.14 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.14 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.14 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.14 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.14 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/rev}$, $P_y = 600 \text{ N}$, n = 5; $\blacksquare - S = 0.28 \text{ mm/$

Рис. 6. Поверхность инструмента из АКТМ: a - исходная, $\delta -$ после накатывания (10000 m)

Выводы

При накатывании деталей из сплавов ВТ1-0 и ВТ22 инструментом из АКТМ Ø 0.005 m можно отметить следующие закономерности.

1. При исходной шероховатости обрабатываемой поверхности $Ra_0 = 5-7$ µm можно получить шероховатость Ra = 0.15 µm для сплава BT1-0 и 0.25 µm – для BT22.

2. В исследованном диапазоне технологических режимов минимальные значения шероховатости достигаются после трех проходов. Увеличение количества проходов приводит к росту значений шероховатости вследствие перенаклепа и шелушения.

3. При накатывании деталей из сплава BT1-0 с подачей менее 0.14 mm/rev изменение силы прижима инструмента в диапазоне 200–600 N на величину шероховатости практически не влияет. Для сплава BT22 этот диапазон составляет 300–600 N.

4. При накатывании деталей из сплавов ВТ1-0 и ВТ22 возможно повышение поверхностной микротвердости HV/HV₀ соответственно в 1.6 и 1.1 раза и глубины упрочненного слоя – соответственно до 400 и 100 μm. При этом:

- с увеличением подачи поверхностная микротвердость уменьшается;

 количество проходов на глубину упрочненного слоя практически не влияет;

 с ростом силы прижима инструмента микротвердость поверхностного слоя и глубина слоя деформационного упрочнения увеличиваются.

5. При накатывании титановых сплавов стойкость рабочего элемента из АКТМ превышает этот показатель для стального элемента как минимум в 5 раз.

- 1. Л.А. Хворостухин, С.В. Шишкин, И.П. Ковалев, Р.А. Ишмаков, Повышение несущей способности деталей машин поверхностным упрочнением, Машиностроение, Москва (1988).
- 2. В.М. Смелянский, Механика упрочнения деталей поверхностным пластическим деформированием, Машиностроение, Москва (2002).
- 3. *В.А. Горохов*, Чистовая обработка титановых сплавов, Машиностроение, Москва (1975).
- 4. Д.Д. Папшев, Отделочно-упрочняющая обработка поверхностным пластическим деформированием, Машиностроение, Москва (1978).
- 5. О.А. Розенберг, С.Е. Шейкин, А.А. Шульженко, А.А. Шепелев, В.Г. Гаргин, И.Ю. Ростоцкий, Д.В. Ефросинин, Н.А. Русинова, в сб.: Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения № 12, 443 (2009).
- 6. Патент 36041, МПК (2009) с22с 26/00, Спосіб виготовлення виробів з композиційного матеріалу на основі алмазу, О.О. Шульженко, О.О. Розенберг, В.Г. Гаргін, Н.О. Русинова, U 2008 06406, Заяв. 14.05.08, Бюл. № 7 (2008).
- 7. *Н.В. Новиков, А.А. Шепелев, Л.П. Стафецкий, В.И. Румянцев*, Інструментальний світ № 2–3(38–39), 48 (2008).
- 8. А.А. Шепелев, В.Г. Сороченко, А.А. Шепелев (мл.), Інструментальний світ № 4(40), 8 (2008).

С.Є. Шейкін, Д.В. Єфросинін, І.Ю. Ростоцький

ЗМІНА СТАНУ ПОВЕРХНЕВОГО ШАРУ ПІД ЧАС НАКАТУВАННЯ СПЛАВІВ ВТ1-0 І ВТ22 ІНСТРУМЕНТОМ З АЛМАЗНОГО КОМПОЗИЦІЙНОГО ТЕРМОСТІЙКОГО МАТЕРІАЛУ

Викладено результати досліджень з накочування титанових сплавів кулями з алмазного композиційного термостійкого матеріалу (АКТМ), а також представлено технологічні рекомендації з їхньої обробки накочуванням.

Ключові слова: холодне поверхневе пластичне деформування, титан, мікротвердість, шорсткість, алмазний композиційний термостійкий матеріал

S.E. Sheykin, D.V. Iefrosinin, I.Yu. Rostockiy

CHANGES IN THE STATE OF SURFACE LAYER DURING BURNISHING TITANIUM ALLOYS BT1-0 AND BT22 BY INSTRUMENT MADE OF DIAMOND COMPOSITE HEAT-RESISTANT MATERIAL

Results of researches on roll burnishing the titanium alloys by spheres made of diamond composite heat-resistant material (DCRM) are described, the technological recommendations on machining by roll burnishing are also submitted.

Keywords: cold surface plastic deformation, titanium, microhardness, roughness, diamond composite heat-resistant material

Fig. 1. Spherical product made of DCRM

Fig. 2. Dependence of Ra/Ra_0 on the amount of cycles *n* of roll burnishing the parts made of alloys BT1-0 (*a*-*z*) and BT22 (∂ , $\mathcal{H}c$) by DCRM-spheres (—) for different feed velocities, mm/rev: *a*, $\partial - 0.07$, δ , e - 0.14, e - 0.11, z - 0.28 and different pressing forces P_y , N: $\bigstar - 50$, $\blacksquare - 100$, $\blacktriangle - 150$, $\Diamond - 200$, $\blacklozenge - 300$, $\Box - 400$, $\triangle - 600$, $\circ - 800$; $\mathcal{H}c$: $P_y =$ = 600 N, S = 0.21 (\blacksquare) $\bowtie 0.28$ (\bigstar) mm/rev. Dependences for the case of steel sphere (---) for the same feed velocities and $P_y = 600$ N are shown for comparison

Fig. 3. Dependence of Ra/Ra_0 on pressing force $P_y(a, \delta)$ for feeds S = 0.07 (\blacklozenge) and 0.14 mm/rev (\blacksquare) after three passes under roll burnishing the parts made of alloys BT1-0 (*a*) and RT22 (δ)

Fig. 4. Dependence of Ra/Ra_0 on feeding after three passes with pressing force $P_y = 400$ (*a*) and 600 N (δ) under roll burnishing the parts made of alloys BT1-0 (*a*) and BT22 (δ)

Fig. 5. Microhardness distribution in surface layer of parts made of BT1-0 (*a*) and BT22 (*b*) after roll burnishing by different technological modes: *a*: $\blacktriangle - S = 0.07$ mm/rev, $P_y = 400$ N, n = 5; $\blacksquare - S = 0.14$ mm/rev, $P_y = 600$ N, n = 3; $\blacklozenge - S = 0.28$ mm/rev, $P_y = 600$ N, n = 5; *b*: $\blacklozenge - S = 0.07$ mm/rev, $P_y = 600$ N, n = 5; $\blacksquare - S = 0.14$ mm/rev, $P_y = 600$ N, n = 5; $\blacksquare - S = 0.14$ mm/rev, $P_y = 600$ N, n = 5; $\blacksquare - S = 0.14$ mm/rev, $P_y = 600$ N, n = 5; $\blacksquare - S = 0.28$ mm/rev, $P_y = 600$ N, n = 5; $\blacksquare - S = 0.28$ mm/rev, $P_y = 600$ N, n = 5; $\blacksquare - S = 0.28$ mm/rev, $P_y = 600$ N, n = 5

Fig. 6. Surface of DCRM-tool: a – original, δ – after roll burnishing (10000 m)