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INTRODUCTION

Event-related potentials (ERPs) recorded 
using electroencephalography (EEG) or 
magnetoencephalography (MEG) are routinely used 
in the studies of cortical activity related to cognitive 
tasks [1-3] and are also applied to the analysis of 
local field potentials and electrocorticograms. The 
time resolution of the ERP technique allows certain 
aspects of cortical activity to be studied with relatively 
high temporal resolution. This can be used, e.g., for 
examination of electrophysiological reactions induced 
by presentation of a single word embedded within a 
sentence, as well as many other types of time-limited 
cerebral activity. However, a persistent problem 
with this approach is that the magnitude of the ERP 
is usually very small compared to the noise or the 
unmoduled activity; the latter is inevitably present 
in individual trials. This activity often substantially 
varies from one experimental participant to another, 
complicating estimation and inference for “useful” 
responses. Outside of electrophysiology, statistical 
techniques, such as mixed-effect linear modeling, have 
been used for improved statistical treatment of the 

participant heterogeneity [4, 5], but the mixed-effect 
approach is not yet commonly applied to time series 
analysis in EEG experiments. This paper describes the 
application of a wavelet-based functional mixed-effect 
model (WFMM) developed by Morris and Carroll [6] 
to EEG data for the purpose of regression analysis of 
ERPs. This technique provides a flexible model of 
fixed and random effects, as well as a method to limit 
the false discovery rate (FDR) for statistical contrasts 
of time series. 

A wavelet is a limited-duration function with an 
oscillatory pattern, which can be used to provide 
local analysis of the signal energy in nonstationary 
signals ([7-9], for introduction see [8, 9]). For a signal  
Xk = (x1, x2 ... xk), let k = 2J, where J is a positive 
integer denoting the scale of the analysis. The discrete 
wavelet transform (DWT) can be described as the 
recursive application of high-pass (hl) and low-pass 
(gl) filters to Xk (1 and 2) followed by downsampling. 
The filter coefficients depend on the family of wavelets 
that are employed.

aJ –1,k = Σmhm–2kaJ, m           (1)

dJ–1,k = Σmgm–2kaJ, m .          (2)

The coefficients aJ–1,k are termed scaling coefficients 
at the scale J–1 and time index k, and the dJ–1,k are termed 
detail coefficients at the scale J–1 and time index k. 
The low-pass filter coefficients gl can be defined as gl  = 
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= (–1)1hl–1. The DWT can be represented in the form 
of a matrix computation, D = WY, where W is an 
orthogonal matrix with the wavelet filter coefficients. 
Applying W to a time series in the data matrix Y, a 
matrix D of detail and approximation coefficients is 
obtained. This matrix D can be used to parameterize 
a model of the stochastic process investigated in an 
EEG experiment. It captures nonstationary response 
properties via the location of the wavelet coefficients, 
which capture the translation of the analysis wavelet 
function in time. It also captures the scale, which 
refers to the extent of the analysis function over time. 
The arrangement of these two parameters allows a 
wavelet analysis to jointly capture both global and 
local signal patterns with some degree of temporal 
localization. This approach is well-suited to modeling 
the chirp-like character often seen in the observed ERP 
responses, which often contain early shorter timescale 
components followed by longer timescale components 
at later time intervals (see Fig. 1A for an example).

Wavelets are now widely applied to EEG analyses 
to characterize time-varying properties of the 
unaveraged EEG signal [10, 11], as well as to address 
the issue of noise in ERP estimations [12]. With regard 
to the analysis of the ERP itself, Bertrand et al. [13] 
were one of the first who proposed to analyze ERP 
responses with the DWT and describe the relation 
between the estimates and the continuous wavelet 
transform (see also [14, 15]). Demiralp et al. [16] used 
a wavelet based on quadratic B-splines to analyze late 
cognitive components in ERPs. Their approach treated 
each coefficient (at each scale and time) as a separate 
random variable, which they analyzed using repeated 
ANOVA measures. This analysis takes into account 
the subject variability in the wavelet coefficients 
when characterizing the population estimates of 
the wavelet coefficients. This subject variability in 
either the ERP response or the background activity 
may have a substantial impact on the sensitivity of 
wavelet analysis for later components, which would 
be expected to be more variable than the earlier 
sensory-related components. More recently, Kiebel 
and Friston [17] proposed a hierarchical observation 
model of ERP responses based on analyses of either 
fixed or random effects. Also, Raz et al. [18] proposed 
a random-effect inferential scheme for ERP analysis 
based on wavelets, which is conceptually similar to 
the model adopted here (see also recent work by Wang 
and colleagues [19]).

From a statistical perspective, the wavelet 
transform is popular for denoising because of a 

decorrelating property of the wavelet coefficients 
[20]. The assumption is that the energy of the signal 
will be concentrated in a small number of wavelet 
coefficients, while Gaussian noise is evenly dispersed 
over the remaining coefficients. If these assumptions 
hold, then an EEG signal might be denoised by 
reducing the magnitude of small coefficients. Using 
a DWT, the procedure consists of transforming the 
EEG signal into wavelet domain, shrinking relatively 
small coefficients towards zero and then using an 
inverse discrete wavelet transform (IDWT) to project 
the signal back to the data domain; this allows one 
to obtain a denoised signal. The scope of the present 
paper will be limited to the use of wavelets to denoise 
the ERPs and leaves for future work the application 
of mixed-effect analysis to the time/frequency power 
distribution of the unaverged EEG signal.

There have been several recent approaches to 
EEG or MEG signal analysis, which have exploited 
wavelets for this type of noise reduction. Quian 
Quiroga and Garcia [21] showed that thresholding the 
wavelet coefficients to zero and subsequent using an 
inverse DWT allow one to obtain improved averaged 
ERP estimates. They also suggested that once wavelet 
coefficients for this denoising analysis are chosen, the 
method does not require heuristic assessment. Wang et 
al. [22] also demonstrated that wavelet denoising can 
improve ERP estimates when a priori knowledge of 
the components is available. Related work by Effern et 
al. [23] compared wavelet, combined Woody-filtering 
and wavelets, and a posteriori Wiener filtering for the 
analysis of single-trial data (see also [24, 25]). As in 
the previous work, they showed that signal estimation  
was improved when wavelet denoising has been 
applied, and that the wavelet approaches  have certain 
advantages over other approaches. However, they 
did not place the estimation procedure in a statistical 
framework to account for subject variability. When 
embedded in an inferential framework, the choice of 
wavelet coefficients for shrinkage could also be seen as 
elicitation of priors in an empirical Bayesian analysis. 
In general, the use of these techniques has considerable 
theoretical relevance, as there is persistent debate 
regarding how the functional EEG response should be 
modeled [26, 27].

The linear regression of multiple covariates has 
been applied to ERP responses by Hauk et al. [28, 29], 
but not using denoising wavelet analysis or mixed-
effect modeling. Other related works included several 
applications of wavelets to functional neuroimaging 
data [30] (Fadili and Bullmore [31] provided an 
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overview). For example, Sendur et al. [32] introduced 
a resampling method based on a DWT to improve 
statistical testing of statistical parametric maps. 

Finally, there is an issue of false discovery rates. 
ERP difference waveforms are sometimes calculated 
in order to find the onset and/or offset of a response 
when comparing an active period to a baseline, or a 
difference between the responses obtained under  two 
different conditions. This difference can be evaluated 
using a point-by point confidence interval for the 
difference, based on the standard error of the difference 
between the waveforms (e.g., [33]). However, there 
is a multiple-comparison problem if there is a large 
number of time points to compare [34-36]. Corrections 
for multiple comparisons reduce the sensitivity of 
the test in order to control the false alarm rate, and 
this problem is multiplied if samples recorded either 
by many electrodes or under many conditions should 
be compared. One approach to this problem is to 
adopt non-parametric permutation tests [37]. Another 
approach (described in the present paper) is to calculate 
a Bayesian FDR for providing the difference contrast 
computed with the functional mixed-effect model.

The aim of this review is to illustrate the application 
of the WFMM developed by Morris and Carroll [6] 
to the electrophysiological data. While conceptually 
similar approaches have been advanced from a variety 
of theoretical perspectives, the novel aspects of the 
approach outlined here are that (i) it embeds the 
wavelet denoising procedure in an explicit inferential 
framework, and (ii) it allows the computation of a 
Bayesian FDR for a response time series associated with 
a regressor in the design matrix for an experiment. This 
can be used to model single fixed effects or interactions 
in functional terms. The application is illustrated with 
an experimental design that includes random effects 
for subjects and covariates for properties of the 
stimulus items. In the following, a brief description of 
the mixed-effect approach is provided, along with the 
extension of this to functional data analysis. Finally, 
the example analysis is used to illustrate the technique, 
and this is followed by several discussion points.

METHODS

Fixed and Random Effects. The linear mixed-effect 
model approach simulates a response as a function of 
fixed and random effects, as well as a noise term, as in 
Eq. (3) below (the notation similar to Laird and Ware  
[38]). This approach treats each observation as a single 

point; it can be applied to ERP analysis to model the 
mean amplitude of the response within a pre-defined 
time interval, e.g.,

y = Xβ + Zb + ε, ε ~N(0,σ2I), b ~ N(0,Ψ), ε ⊥ b,    (3)

where y are N samples of the response variable, X is 
the N × p design matrix for the fixed effects, β is the  
p × 1 column vector of fixed-effect coefficients, Z is 
the N × m design matrix for the random effects, b is 
the m × 1 matrix of the random-effect coefficients, and 
ε is the N × 1 column vector of the residual error. The 
random-effect coefficients b and residual error ε are 
distributed according to Ψ, the variance-covariance 
matrix of the random effects.

In the case where the design matrix Z models a single 
grouping factor, such as experimental participants, the 
model is qualified as having a single random effect. 
When there are more than one grouping factors, Z is 
subdivided into blocks, which capture the correlations 
between and within the grouping factors.

If a participant is presented with a set of stimuli, 
then the responses to those stimuli are likely to be 
more similar to each other than to the responses of 
a different participant. This correlation is captured 
with the grouping factor. Likewise, if a stimulus word 
is presented to a set of participants, the responses to 
that word may be more similar to each other than to 
a different word. Thus, either participants or items 
can be grouping factors. When each participant is 
presented with each stimulus item, then these two 
random effects are said to be fully crossed. Depending 
on the distribution of items to participants within the 
design, other relationships are possible, such as nesting 
of items within separate groups of participants.

Functional Mixed-Effect Models. The functional 
mixed-effect model generalizes the linear mixed-
effect approach to functional analysis. This treats the 
response vector as a time series ([6, 39, 40]; for an 
application to physiological data see [41, 42]). To 
model electrophysiological data, the mixed-effect 
model in Eq. (3) is replaced with a form that includes 
the time parameter in Eq. (4).

y(t) = Xβ(t) + Zb(t) + ε (t), ε ~ MN(P,Q),  
b ~ MN(R,S),               (4)

where y(t) = y1(t),y2(t)...yn(t) are samples of N 
observed time series, arranged so that each observed 
time series is a row. Each time series is observed for  
t = t1, ..., tn time points of the length T, and, therefore, 
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the matrix Y is N × T, X is the N × p design matrix for 
the fixed effects, β(t) is the p × T matrix of fixed-effect 
coefficients in the functional form, Z is the N × m design 
matrix for the random-effects, b(t) is the m × T matrix 
of random-effect coefficients in the functional form, 
and ε(t) is the N × T matrix of a residual error process. 
The random-effect functions b(t) and residual error 
process ε(t) are assumed to be distributed according to 
the Matrix Normal (MN) distribution [43], P and R are 
the m × m covariance matrices, and Q and S are the 
(diagonal) T × T covariance matrices. 

Within the framework of the WFMM approach, β(t) 
and b(t) are modeled with the wavelet coefficients 
obtained by applying a DWT to the time series of each 
trial with a discrete matrix version of Eq. (4), as in 
Eq. (5)

Y = XB + ZU + E,          (5)

where Y, X, B, Z, and E are the matrices of the same 
order as in Eq. (4). The matrix U is of order m × T, 
where each row contains a random-effect function on 
the same time interval as the fixed-effect functions, 
corresponding to b(t) in Eq. (4). The rows of U and 
E are assumed to be independently and identically 
distributed matrix variate normal distributions, 
MVN(0,Q) and MVN(0,S), respectively. Both Q and S 
are the T × T discrete-form covariance matrices. The 
wavelet coefficients are obtained by applying a DWT 
projection matrix W′ to each row of Y to provide a row 
vector of the wavelet coefficients d,

d = yW′            (6)

The estimation is done using Markov Chain 
Monte Carlo (MCMC) re-sampling, which is used 
to get posterior samples of the functions β and b, as 
well as the covariance matrices. In broad terms, the 
MCMC procedure proceeds via three steps: (1) Gibbs 
sampling of the fixed-effect function coefficients 
conditioned by the variance components and the data, 
(2) Metropolis-Hasting sampling of the variance 
components conditioned on the fixed-effect functions 
and the data, and when there are random effects in 
the model, and (3) Gibbs sampling from the random-
effect distribution given the fixed effect functions, 
their variances, and the data. Finally, the wavelet 
coefficients are projected back to the data domain with 
an IDWT via W, which is the transpose of the original 
projection matrix. The result of the model is a posterior 
sample of the fixed-effect functions, fixed-effect 

variances, and point-wise posterior credible intervals. 
Applied to the EEG data, the design matrices X and Z 
capture the variables in the experimental task and any 
covariates introduced to the functional response. The 
fixed effects estimated from the model include a set of 
the curves for each of the fixed-effect regressors in the 
model, their variances, and intervals. MCMC samples 
of the covariance matrices Q and S are obtained from 
a 2D IDWT applied to the covariance matrices in the 
wavelet space.

The WFMM analysis allows one to shrink small 
wavelet coefficients in a Bayesian framework. 
Shrinkage (independent mixture) priors are placed on 
β(t), and vague priors are placed on the covariance 
matrices P, Q, R, and S. Morris and Carroll [6] used a 
scheme in which the prior for the wavelet coefficients 
at the scale j and time k for the fixed effect function i,  
Bijk = γijkNormal(0,τij) + (1 – γijk)δ0, where γijk 
Bernoulli(πij), and where δ0 is a delta function located 
at zero. This use of a (mixture) prior results in shrinkage 
of the posterior estimates of the wavelet coefficients 
Bijk. There are two regularization parameters associated 
with this prior, τij and πij, which, in the Morris and 
Caroll approach [6], were specified mechanistically 
with an empirical Bayes procedure.

A Bayesian FDR is calculated by summing the posterior 
samples from the MCMC simulation ([44], section 4), 
assuming an effect size of at the least magnitude δ. For 
the posterior samples of the fixed-effect functions B, 
the point-for-point posterior probabilities of an effect 
exceeding δ are computed. This is done by replacing 
each point of the posterior samples exceeding δ by a 
constant that depends on the number of samples of the 
fixed-effect functions calculated, and by replacing the 
rest set by zero. Then, for some choice of the FDR, 
the time points are sorted in a descending order, and a 
threshold is identified to find the maximum value of the 
response within the FDR.

APPLICATION EXAMPLES

Data. The data for the application example consist of 
EEG trials collected in a previously reported sentence-
processing experiment carried out in Dutch (see [45] 
for further details). In that experiment, subjects read 
sentences presented at the center of a CRT monitor 
in the mode of one word at a time. The data analyzed 
here are from two of the conditions of the experiment, 
comparing trials with a semantic violation vs. a 
control. The contrast between the semantic violation 
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(a critical word, CW) relative to the control was 
expected to yield an effect on the N400 wave form 
[46] within a time interval of approximately 0.3 to 
0.5 sec, and this was confirmed earlier [45]. The task 
for the subjects (n = 20) was to indicate whether the 
sentence was sensible or not after the sentence had 
completed. The EEG response was measured from 
presentation of a CW within the sentence, which in the 
violation sentences was the first word that rendered 
the sentence nonsensical (e.g., trees in The students 
could speak many trees), and in the control sentences 
was the corresponding word in a sensible context 
(e.g., trees in The wind swept through the trees). The 
stimulus items consisted of a list of 90 well-formed 
Dutch sentences, each containing one noun designated 
as a CW, as in the example. The set of 90 violation 
sentences was created by exchanging the CWs of the 
well-formed sentence to create a nonsensical version. 
Each participant saw 45 of the sentences in the control 
version and other 45 sentences from the violation 
version, so that no participant saw the same sentence 
in both versions.

The response time series was taken from the EEG 
data within an interval of –0.2 to 0.8 sec from the onset 
of the CW; these data were averaged over five channels 
that were expected to include the N400 response (these 
included a Cz lead and four other adjacent electrodes 
approximately 1 cm from Cz). A low-pass 4th-order 
Butterworth filter at 30 Hz was applied prior to the 
data analysis, and for each trial the mean of a baseline 
interval from –0.1 to 0.0 sec was subtracted from the 
entire time series for the trial. Artifact trials were 
identified and rejected using a threshold set at ±150 µV.  
The data were sampled during recording at 1 kHz 
and downsampled to 256 Hz for the analysis, so the 
resulting time series was T = 256 time points. Some 
trials were lost because of artifact rejection, leaving 
1652 trials in total, and 41.2 ± 2.2 (M ± s.d.) violation 
trials and 41.4 ± 2.4 control trials per participant, 
on average. To reiterate, the purpose of the present 
analysis is to illustrate how the functional mixed-
effect regression might be applied to an already well-
known response contrast, as well as to illustrate how 
additional regressors can be added.

RESULTS

The data matrix Y was modeled with the functional 
model in Eq. (5). The fixed-effect design matrix X 
included an intercept term for the grand mean ERP 

response, and the contrast between violation and 
control conditions, as well as three additional main 
effect covariates: (i) trial block (13) corresponding 
to three blocks of 30 trials, (ii) critical word length 
ranged from 4 to 15 characters, and (iii) word frequency 
estimated using the log-word form of the frequency 
from the Celex database [47]. Each of the additional 
variables was standardized by subtracting the mean 
and dividing by one standard deviation. Thus, X had 
dimensions 1652 × 5. The random-effect design matrix 
Z consisted of a dummy-coding matrix identifying the 
subject (corresponding to the trials in Y) and had the 
dimension 1652×20.

The WFMM analysis used a Daubechies discrete 
wavelet basis (known as db4 in Matlab notion) with 
J = 8 levels of decomposition, a periodic boundary 
correction in an extended mode, and no compression. 
Using MCMC, 5000 samples of the fixed-effect 
functions were obtained, with a burnin of 1000 
samples. The a level for the FDR was set at 10%, and 
the minimum effect size d was set at 0.1 µV.

Figure 1A shows the grand averaged ERP response 
based on the WFMM analysis. Figure 1B shows that 
the variance function follows the main amplitude 
fluctuation of the grand averaged ERP, with most of 
the variance concentrated from 0.1 to 0.4 sec with a 
low variance from 0.4 to approximately 0.6 sec. The 
within-subject correlation matrix in Fig. 1C shows that 
the time points around the time of the stimulus-related 
N100-P200 complex were in weak positive correlation 
with other time points. This suggests that the stimulus-
related amplitude fluctuation is not strongly related 
to the changes at later times. Also, the time points 
from approximately 0.2 until 0.4 sec more strongly 
positively correlated with each other as a block but 
somewhat negatively correlated with the block from 
0.5 sec until the end of the response interval. This is 
consistent with the main pattern of the grand averaged 
ERP, which appears as a slow oscillatory pattern 
from 0.2 until 0.8 sec. The oscillatory pattern of the 
ERP appears to be reflected in the alternating blocks 
of positive/negative correlations in the correlation 
matrix. The residual error surface in Fig. 1D shows 
broadly positive correlations decreasing as a function 
of time.

The main contribution of the WFMM approach is its 
ability to flexibly model several fixed-effect regressors 
for a response observed in an experiment, including 
credibility intervals for the functional form of each 
effect. Figure 2 shows the response contrasts for the 
covariates included in the WFMM analysis. A 95% 
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significance interval is plotted above and below the 
fixed-effect functions, and time points exceeding the 
FDR are indicated with solid dots. Figure 2A shows 
the negative potential difference between responses 
with respect to the control and violation CWs from 
approximately 0.3 to 0.5 sec after CW onset, consistent 
with the N400 effect expected for this contrast. The 
time points, which exceed the FDR, are all within the 
expected time range. The effect of trial block appears as 
a short-duration negative difference near the end of the 
response interval (Fig. 2B), and the effect associated 
with the word length appears as a greater positive 
potential early in the time series (Fig. 2C). Finally, in 
Fig. 2D, there appears to be no strong evidence of an 
effect of the word frequency on the response, although 
there is a weak trend for a negative-potential response 
at approximately 0.2 sec.

Additional analyses were conducted, including 
regressors that encoded the interaction of the control/
violation contrast with the trial block, word length, 
and frequency, but no differences exceeding the FDR 
were obtained for the additional interactions. Also, a 
model employing crossed random effects for subjects 
and stimulus items was constructed, similar to the 
approach outlined by Baayen et al. [5], but no further 
model improvements were obtained. 

DISCUSSION

Functional mixed-effect modeling based on the discrete 
wavelet transform was used to model the data from a 
sentence-reading experiment. Posterior samples were 
used to provide a Bayesian FDR for functional fixed-

Fig. 1. ERP response to presentation of the critical word of the sentence-processing experiment. A) Grand average as a function of time 
from the functional mixed-effect regression, B) variance of the grand average, C) correlation matrix showing the within-subject covariance 
surface (scale indicates the correlation values), and D) correlation matrix of the residual error surface (scale indicates the correlation 
values).

Р и с. 1. Пов’язаний з подією ЕЕГ-потенціал, викликаний у відповідь на пред’явлення „критичного” слова в умовах дослідження 
змістової обробки речень.
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effect estimates of the ERP contrasts. This analysis 
illustrates how functional mixed-effect analysis can be 
used to perform a Bayesian ERP regression. This result 
is practically relevant for electrophysiology researchers 
because nearly any combination of linear fixed-effect 
functions, including factorial contrasts, analysis of 
covariance, as well as hierarchical or crossed random-
effect functions, can be employed to analyze time-
series data. In addition, the MCMC approach can be 
used to obtain estimates of the variance and covariance 
parameters to further elaborate the regression analysis.

Concerning the application results, the contrast 
between violation and control CWs was obtained 
within the expected time range, supporting the use of 
the WFMM approach to detect ordinary experimental 
effects. The effects of other regressors are consistent with 
the expectations as well, as the effect of the word length 
would be expected to affect early stimulus-related activity, 
while the effect of the trial block would be expected to 

affect later components of the functional response. The 
effect of the word frequency was not observed in this data 
set, but the experiment was not designed to examine the 
effect of the word frequency per se, so the results are not 
necessarily inconsistent with earlier reports on the word 
frequency revealed by linear regression by Hauk and al. 
[28, 29]. For instance, the range of the word frequencies 
used here is not representative of the range used in the 
earlier studies, and also the words were presented in the 
sentence context here.

With respect to EEG analysis in general, there are 
several potentially limiting assumptions of the WFMM 
approach, which might be investigated in future 
research. First, the wavelet transform is assumed to 
denoise the data because it distributes Gaussian noise 
over wavelet coefficients. However, unmodeled EEG 
activity does not primarily consist of Gaussian noise. 
The dominant feature of the EEG power spectrum is the 
approximate 1/f distribution of the power, often with 

Fig. 2. Functional fixed effects calculated from the regression. Coefficient values as the function of time are plotted as a solid line, zero is 
indicated with a thin dotted line, upper and lower 95% quantiles are shown as dashed lines, and time points exceeding the false discovery 
rate are plotted on the mean functions as filled circles. A) Contrast between violation and control, B) trial block, C) word length, and D) 
word-form frequency.

Р и с. 2. Функціональні сталі ефекти, розраховані шляхом регресійного аналізу.
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peaks at certain frequency bands, such as the alpha (8-
12 Hz) range. This activity, if it is modeled as noise, 
would be difficult to separate from the evoked activity 
with the wavelet approach outlined here because it is 
not Gaussian; instead, it would be concentrated on a 
relatively small number of the coefficients. In fact, it 
has been argued that the DWT is especially effective at 
modeling these types of the spectra [48, 49]. Note that 
this limitation is shared by other previous approaches to 
EEG denoising, which have applied wavelet denoising. 
However, it is natural to use the wavelet coefficients 
themselves to investigate the 1/f activity, in order to 
identify and correct modeling errors. In future work, 
the distribution of the DWT coefficients themselves 
could be modeled directly using the same Bayesian 
approach outlined here, similarly to the non-Bayesian 
wavelet analysis presented by Davidson and Indefrey 
[45]. Second, the covariance matrices associated with 
the wavelet coefficients were assumed to be diagonal, 
in order to limit the computational complexity of the 
estimation. Future work might investigate whether 
a structured covariance matrix would improve the 
estimation and inference. Finally, it would be useful 
to explore the effect of the choice of the wavelet 
basis on the results. Several different basis types have 
been used in the EEG-related literature, and, as more 
experience is gained with their statistical properties, 
it would be useful to assess the effect of a particular 
selection of the wavelet basis. Also, it is undoubtedly 
important to establish a rationale for the choice of the 
wavelet basis based on a forward model for the EEG.
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ФУНКЦІОНАЛЬНІ МОДЕЛІ ЕЛЕКТРОФІЗІОЛОГІЧНИХ 
РЕАКЦІЙ З УРАХУВАННЯМ ЗМІШАНИХ ЕФЕКТІВ

1 Інститут досліджень розумових функцій та мозку людини 
ім. Макса Планка, Лейпціг (ФРН) 

Р е з ю м е
Лінійне моделювання з урахуванням змішаних ефектів 
(mixed-effect modeling, MEM) є корисною статистичною 

методикою при інтерпретації даних, які повторно 
реєструються в умовах тестування одного й того самого 
учасника дослідження або використання ідентичного 
порядку стимулів у електро-/психофізіологічних 
експериментах. В огляді описано використання МЕМ при 
аналізі функціональних відповідей (зокрема, пов’язаних 
з подією феноменів, що спостерігалися в електро- або 
магнітоенцефалографічних дослідженнях) із застосуванням 
дискретного вейвлет-перетворення.
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