Особенности структурных и физико-химических превращений, инициируемых высоковольтными электрическими разрядами в композиции порошков Fe—Ti—C

О. Н. Сизоненко, Г. А. Баглюк^{*}, А. А. Мамонова^{*}, Э. И. Тафтай, Е. В. Липян, А. С. Торпаков, А. Д. Зайченко, А. А. Жданов, Н. С. Присташ

Институт импульсных процессов и технологий НАН Украины, Николаев, sizonenko43@rambler.ru *Институт проблем материаловедения им. И. Н. Францевича НАН Украины, Киев, gbag@rambler.ru

Исследованы особенности структурно-фазовых и физико-химических превращений, инициируемых высоковольтными электрическими разрядами в суспензии композиционных порошков Fe—Ti—C в углеводородной жидкости. Установлены закономерности связи параметров обработки с дисперсностью, фактором формы, удельной поверхностью и фазовым составом получаемых порошков. Показано, что электроразрядная обработка порошков приводит к увеличению твердости консолидированного материала.

Ключевые слова: высоковольтный электрический разряд, композиционные порошки, измельчение, давление в канале разряда, фазовый состав.

Известно, что для создания композиционных материалов необходимы порошки с заданным диапазоном размеров и морфологией поверхности. Поэтому одной из важных технологических операций при изготовлении изделий методами порошковой металлургии является подготовка исходных порошковых смесей, от качества которых в значительной степени зависят свойства получаемых материалов [1]. Как правило, подготовку порошков осуществляют механическим измельчением, что способствует их активации и позволяет изменить структуру твердых тел, ускорить процессы диффузии, зародить активные центры на свежеобразованной поверхности и т. д. [2, 3]. Однако традиционные механические методы измельчения порошков до микро- и наноразмеров имеют существенные недостатки, ограничивающие их применимость [4, 5]. В частности, механический размол и перемешивание требуют длительного времени обработки, к тому же происходит окисление порошков и загрязнение шихты материалом инструмента.

Наиболее эффективными методами воздействия на различные дисперсные системы являются физические методы, способствующие изменению физико-химических свойств гетерогенных систем. Один из таких методов — высоковольтный электрический разряд (ЭР) в жидкости [6—10].

Многократные циклические динамические нагрузки при электроразрядном воздействии способствуют тому, что твердые частицы претерпевают сначала упругую, а затем пластическую деформацию до тех пор, пока в каком-либо сечении напряжение не превысит предела прочности материала, в результате чего образуется трещина и происходит раскол материала [11, 12]. При измельчении не только уменьшается размер частиц, но и изменяются кристаллическая структура в поверхностном слое и энергетическое состояние поверхности и может возникать двойной электрический слой, особенно при воздействии на композицию различных веществ. В результате этих процессов изменяется реакционная способность твердых веществ, вследствие чего между ними инициируются химические реакции [11].

Если проводить ЭР обработку порошков в углеводородной жидкости, то, в отличие от обработки в воде, можно избежать окисления частиц обрабатываемого металла и, учитывая, что разложение плазменным каналом углеводородов приводит к синтезу твердофазного наноуглерода, можно обеспечить условия для появления новых соединений карбидов металлов [13—15]. В связи с этим возникла необходимость в постановке данных исследований.

Цель работы — исследование особенностей структурно-фазовых и физико-химических превращений, инициируемых воздействием высоковольтных ЭР в суспензии композиционных порошков Fe—Ti—C в углеводородной жидкости.

Объекты и методы исследования

Электроразрядному воздействию подвергали суспензии композиционных порошков 70% Fe + 25% Ti + 5% C (по массе) в керосине. Исследования проводили на специально разработанном стенде с индуктивностью разрядного контура ~0,7·10⁻⁶ Гн, подробное описание которого приведено в работе [10]. Как известно, предел прочности при растяжении для Fe составляет 0,25 ГПа, а для Ti — 0,34 ГПа [3]. Для достижения таких давлений на фронте волны сжатиярастяжения подбирали параметры разрядного контура, которые обеспечивали пиковые давления в канале разряда 0,5—1 ГПа. Для теоретической оценки электрических, энергетических и гидродинамических характеристик разряда при исследованиях регистрировали осциллограммы разрядного тока и напряжения.

С целью оценки результатов ЭР воздействия выполнен компьютерный гранулометрический анализ порошков до и после обработки по микрофотографиям, полученным на оптическом (Биолам-И) и электронном (РЭММА-102) микроскопах, а также рентгеноструктурный анализ на дифрактометре ДРОН-3.

Результаты экспериментальных исследований

Установлено (рис. 1, 2), что ЭР обработка приводит к существенному изменению размеров частиц композиции порошковой смеси и при удельной энергии воздействия 0,13 МДж/дм³ средний размер частиц уменьшается от ~15 до ~5 мкм. Увеличение энергии до 2,67 МДж/дм³ приводит к существенному уменьшению размера частиц, наблюдается образование значительного количества (более 60% (мас.)) частиц размером меньше 0,7 мкм (рис. 3). Форма частиц изменяется на более округлую, средний фактор формы по Салтыкову $F(F = \frac{4\pi S}{P_2})$, где S — площадь проекции частицы; P

Рис. 1. Распределение частиц порошка Fe—Ti—C по размерам: *а* — исходный порошок (1) и обработанный при удельной энергии воздействия 0,13 (2), 0,67 (3) и 2,67 МДж/дм³ (4); *б* — после обработки при удельной энергии воздействия 0,13 (1), 0,67 (2) и 2,67 МДж/дм³ (3).

Вполне закономерной и прогнозируемой является близкая к линейной зависимость снижения размера частиц порошка от давления в канале разряда и, соответственно, на фронте волны давления (рис. 4).

Электроразрядное воздействие при удельной энергии 0,13 МДж/дм³ приводит к увеличению удельной поверхности порошков в ~8 раз (рис. 5), а повышение удельной энергии до 0,67 МДж/дм³ способствует незначительному ее уменьшению с последующим возрастанием после 2,67 МДж/дм³. Подобная зависимость существует и при проведении механохимического синтеза карбида титана из порошков титана и графита в планетарных мельницах, что объясняется активным образованием зародышей новых фаз [5].

Рентгенофазовый анализ исходных порошков состава 70% Fe + + 25% Ti + 5% C, как и следовало ожидать, показал наличие трех фаз: железа, титана и графита (рис. 6, *a*). В обработанных порошках четко установить фазовый состав сложно, фазы имеют относительно нестехиометрический состав. Это свидетельствует о том, что формирование фаз с наиболее выраженным стехиометрическим составом проходит не до конца либо изменяется фазовый состав.

Отмечается существенное уменьшение интенсивности всех дифракционных максимумов и значительное их уширение, что может быть обусловлено с диспергированием части порошка, негомогенностью вновь образовавшихся соединений, увеличением микронапряжений, вызванных структурными искажениями и дефектами в кристаллическом строении (рис. 6, *б*—*г*).

Рис. 2. Микрофотографии порошка Fe—Ti—C на алюминиевой подложке до (*a*) и после обработки при удельной энергии воздействия 0,13 (*б*), 0,67 (*в*) и 2,67 МДж/дм³ (*г*).

Рис. 4. Зависимость диаметра частиц, соответствующего пику распределения частиц по размерам $D_{\text{пик}}$, от давления в канале разряда P_{k} при $W = 2,67 \text{ MДж/дм}^3$.

Рис. 5. Зависимость изменения удельной поверхности порошка от удельной энергии воздействия.

Уменьшение на рентгенограмме интенсивности интерференционных линий, свидетельствующих о наличии в образцах порошка углерода (рис. 6, *в*, *г*), объясняется тем, что углерод, который имеет малый коэффициент поглощения, в сочетании с сильнопоглощающим α-Fe хорошо отображается только при значительном его содержании.

Таким образом, интенсивное механическое воздействие волн сжатия-растяжения на порошковое тело приводит к его модификации за счет изменения структуры, пластической деформации, разрушения оксидных и адсорбированных слоев на поверхности частиц. Следствием этих процессов является изменение реакционной способности реагирующей смеси, химических превращений росту способствующее инициированию И интенсивности взаимодействия [2, 12]. Рентгенограммы (рис. 6, б-г) свидетельствуют, что при ЭР воздействии в диапазоне исследуемых параметров происходит взаимодействие между компонентами порошковой смеси и наноуглеродом, синтезируемым из жидкой углеводородной среды низкотемпературной плазмой канала разряда, в результате чего образуются карбиды TiC и Fe₃C и интерметаллид Fe₂Ti. Активный наноуглерод под действием волн сжатия-растяжения может проникать как в структуру порошка (с образованием TiC и Fe₃C), так и распределяться на его поверхности. Гидропотоки при ЭР обработке порошков обеспечивают их интенсивное перемешивание.

Также вызывает интерес появление линий модификаций железа, свидетельствующих о перестройке его объемно центрированной кубической решетки при ЭР воздействии.

Поскольку известно, что уровень физико-механических свойств определяется дисперсностью зерен структуры [16], можно было прогнозировать, что ЭР воздействие на порошки Fe—Ti—C будет способствовать увеличению твердости материала после их прессования (при $P \sim 0,65$ ГПа) и спекания в вакууме (при ~1050 °C). Твердость материала исследовали по методике Виккерса и Роквелла. Твердость по Виккерсу (*HV*10) у спеченных образцов из исходного порошка составила 5,8 ГПа, по Роквеллу — от 50 до 52 HRC. После ЭР обработки порошков твердость образцов по Виккерсу возросла и составила 8,8 ГПа, по Роквеллу — от 63 до 64 HRC. Для сравнения, твердость твердых сплавов в зависимости от содержания кобальта в их составе и размера зерен карбидных фаз составляет в среднем 8—12 ГПа по Виккерсу и 73—76 HRC по Роквеллу [4, 17].

Выводы

Результаты исследований позволили установить закономерности связи параметров ЭР воздействия с изменением дисперсности, фактора формы, удельной поверхности и фазового состава порошков 70% Fe + 25% Ti + 5% C.

Синтезированы карбиды TiC, Fe₃C и интерметаллид Fe₂Ti округлой формы ($F \sim 0.95$) с размером частиц 0,7—0,1 мкм.

Удельная поверхность частиц обработанного порошка увеличивается в ~8 раз, при этом наблюдается неравномерность этого процесса, вероятно, из-за активного образования зародышей новых фаз.

Твердость у спеченных образцов после ЭР обработки порошков возросла и составила 8,8 ГПа по Виккерсу (*HV*10) и 63—64 НКС по Роквеллу, что приближает их к вольфрамовым твердым сплавам.

Рис. 6. Рентгенограммы порошка в исходном состоянии (*a*) и после обработки при удельной энергии воздействия 0,13 (*b*), 0,67 (*b*) и 2,67 МДж/дм³ (*c*): 1 — α-Fe; 2 — α-Ti; 3 — графит C; 4 — TiC; 5 — Fe₃C; 6 — Fe₂Ti; 7 — γ-Fe.

- 1. *Тугоплавкие соединения:* (Справ.) / Под ред. Г. В. Самсонова, И. М. Винницкого. М.: Металлургия, 1976. 560 с.
- 2. Болдырев В. В. Использование механохимии в создании "сухих" технологических процессов // Соросовский образовательный журн. 1997. № 12. С. 48—52.
- 3. Гуляев А. П. Металловедение. М.: Металлургия, 1977. 649 с.
- 4. Андриевский Р. А. Порошковое материаловедение. М.: Металлургия, 1991. 207 с.
- 5. Ходаков Г. С. Физика измельчения. М.: Наука, 1972. 308 с.

- Каляцкий И. И., Курец В. И., Цукерман В. А., Филькенштейн Г. А. Основы электроимпульсной дезинтеграции и перспективы ее применения в промышленности // Обогащение руд. — 1980. — № 1. — С. 6—11.
- 7. *Курец В. И., Усов А. Ф., Цукерман В. А.* Электроимпульсная дезинтеграция материалов. Апатиты: Изд-во Кольского научного центра РАН, 2002. 324 с.
- 8. Сизоненко О. Н., Малюшевский П. П., Горовенко Г. Г. Разрядно-импульсная технология дробления и измельчения абразивных материалов // Основные проблемы разрядно-импульсной технологии. К.: Наук. думка, 1980. С. 12—20.
- 9. Deves R., Aspimvall D., Simao J., Lee H. G. Electrical discharge machining and surface alloying. The process, parameters and state of play // Mater. Word. 2003. 11, No. 5. P. 16—18.
- 10. Сизоненко О. Н. и др. Влияние высоковольтного электрического разряда на изменение композиции поверхности дисперсных порошков 60Fe50TiC и свойств спеченных материалов // Вестник национального техн. ун-та "ХПИ": Сб. науч. трудов. Тематический вып. № 39 "Техника и электрофизика высоких напряжений". Харьков, 2009. С. 177—184.
- 11. *Ковтун В. И. и др.* Структурные и фазовые изменения в порошках оксидов меди, кобальта и титана, обработанных ударными волнами // Порошковая металлургия. 2008. № 9/10. С. 149—157.
- 12. *Linde R. K., DeCarli P. S.* Polymorphic behavior of titania under dynamic loading // J. Chem. Phys. 1969. **50**, No. 1. P. 319—325.
- 13. Богуславский Л. З. и др. Электровзрывной метод получения фуллеренов // Электронная обработка материалов. 2002. № 4. С. 30—34.
- 14. Пат. 77370 України. Спосіб одержання порошку синтетичного ультрадисперсного алмазу / О. І. Вовченко, В. І. Городян, Н. І. Кускова, Є. П. Размєнов, І. С. Швець. Опубл. 15.11.2006; Бюл. № 3.
- 15. Сизоненко О. Н., Баглюк Г. А., Мамонова А. А. и др. Влияние электроразрядного воздействия на композицию порошков Fe—Ti—B₄C // Міжвуз. зб. "Наукові нотатки". Луцьк, 2011. Вип. 31. С. 333—343.
- Андриевский Р. А., Глезер А. М. Размерные эффекты в нанокристаллических материалах. II. Механические и физические свойства // Физика металлов и металловедение. — 2000. — 89, № 1. — С. 91—112.
- 17. *Stiglich J. J., Zhengui Y., Sudrshan T. S.* Nano-grained tungsten carbide-cobalt (WC/Co) // Working paper. Fairfax: Materials Modification, Print.