Вторичная структура в рабочем слое электрических контактов из композиционных материалов и их функциональные свойства

Р. В. Минакова, Е. В. Хоменко, Г. Е. Копылова, М. Е. Головкова, А. Н. Веклич*, П. В. Сорока*

Институт проблем материаловедения им. И. Н. Францевича НАН Украины, Киев *Киевский национальный университет имени Тараса Шевченко

Обобщены представления об особенностях вторичной структуры, формирующейся в рабочем слое электрических контактов из композиционных материалов различных составов под влиянием дугового разряда. Установлено, что рост взаимодействия составляющих материала рабочего слоя под влиянием дуги в вакууме (или в защитной среде) способствует однородности вторичной структуры и повышению функциональных свойств контактов.

Ключевые слова: контакты, дуга, электрическая эрозия, вторичная структура, взаимодействие компонентов.

Воздействие дуги на разрывные электрические контакты из композиционных материалов (КМ) на основе меди и тугоплавких металлов вольфрама, молибдена, хрома вызывает образование вторичной структуры в рабочем слое. Ее состояние (химический и фазовый состав, морфология, свойства, которые изменяются с ростом числа коммутационных циклов) определяет срок безотказной работы контактов. Складывающиеся представления об особенностях вторичной структуры существенно отличаются от традиционных, где рассматривается преимущественно роль тугоплавкого каркаса и легкоплавкой составляющей в нем при коммутации тока, действии дугового разряда в различных средах [1].

Цель данной работы — обобщение представлений об особенностях структурных изменений в рабочем слое контактов в резко неравновесных условиях воздействия дуги в различных средах, влиянии вторичной структуры на функциональные свойства контактов.

Объектами исследования являются порошковые КМ в системах Cu—W, Cu—Mo, Cu—Cr с легирующими добавками и вторичная структура, возникающая под влиянием дуги в рабочем слое контактов из этих материалов.

Методы исследования — традиционные методы физического материаловедения, используемые при изучении структуры и свойств. Стендовые и натурные испытания контактов из КМ при изучении их электроэрозионной стойкости.

В таблице приведены составы КМ для электрических контактов, полученные методами порошковой металлургии, и их некоторые свойства. Эти КМ изготавливают преимущественно с использованием жидкой фазы на последней стадии формирования (при капиллярной пропитке или жидкофазном спекании). Если медь, используемая в качестве легкоплавкой составляющей КМ, не спектрально чистая, для снижения краевого угла смачивания твердой фазы жидкой в нее вводится легирующий элемент. В материалах на основе меди и вольфрама им является никель, а в материалах на основе меди и молибдена — преимущественно кобальт. При выборе легирующих элементов исходили из возможностей их конкурентного влияния на взаимодействие вольфрама (молибдена) с кислородом, склонности этих элементов к образованию равновесных сегрегаций на поверхности тугоплавких металлов с энергией связи, сравнимой или большей, чем у кислорода с ними. Только в таком случае легирующие элементы могут способствовать десегрегации кислорода и оказывать влияние на процессы восстановления тугоплавких металлов, смачивания их поверхности легированными расплавами. К таким элементам относятся Ni, Co, Fe, Pd, Ag. Эффективность этих элементов, их содержание в композиции определяли в опытах по растеканию и смачиванию [2, 3]. Установлено, что введение этих элементов снижает краевой угол смачивания и межфазную поверхностную энергию, изменяющуюся в соответствии с их межфазной активностью. Эффективность кобальта, большая, чем у никеля, обусловливает резкое снижение краевого угла смачивания W и Mo расплавами Cu—Co при содержании кобальта 1—2% (мас.), а расплавами Си—Ni — при 5—7% (мас.) никеля. Целесообразное содержание легирующих элементов, уточненное с учетом особенностей их влияния на технологические условия получения КМ, приведено в таблице.

Композиционные материалы для электрических контактов и их некоторые свойства

Марка КМ	Состав, % (мас.)	Плотность, ·10 ³ кг/м ³	Твердость по Бринеллю, МПа	Удельное сопротив- ление, мкОм·см
КМК-Б45 (MB50)	50W—47Cu— 2—4Ni	12,0	1400	0,070
КМК-Б25 (MB70)	70W—28Cu— 1,5—2,5Ni	14,0	2100	0,080
Mo—50Cu (MM50)	50Mo—48Cu— 1,5—2,5Co	9,37	1200	0,019
Mo—30Cu (MM70)	70Mo—29Cu— 0,5—1,5Co	9,6	1300	0,025
Mo—30Cu— 3Co (MM67K3)	67Mo—30Cu— 3Co	9,7	1400	0,026
Cr—70Cu	70Cu—30Cr	8,12	800—1200	0,0300,050

Легирующие элементы в КМ вводятся обычно на стадии изготовления порошков. Например, W—Ni порошок получают при водородном восстановлении смеси ангидрида вольфрама WO_3 и углекислого никеля $NiCO_3$.

Участие в процессе получения W—Ni порошка соединения CO (которое является не только восстановителем, но и проявляет тенденцию присоединения к металлам, в том числе с образованием низкоплавких карбонилов [4]) позволяет ожидать агломерацию порошков на начальных стадиях восстановления и далее образование композиционных частиц и соединений в них. На рис. 1 представлена структура агломерированной частицы W—Ni порошка Мелкие частицы вольфрама, обогащенные никелем, образуют поверхностный слой, а ее наполнителем является фаза на основе никеля.

На рис. 2 изображена структура композиционного материала КМК-Б45 производства завода "Победа труда" (г. Артемовск, Украина). Распределение никеля в структуре свидетельствует о сохранении в композите комплексной структуры частиц W—Ni порошка. Изменение способа введения никеля приводит к его перераспределению и формированию структуры, представленной на рис. 3 (технология освоена ЧП "Власов", г. Запорожье).

Рис. 1. Структура агломерированной частицы W—Ni порошка во вторичных электронах (a) и в рентгеновских лучах никеля (δ) .

Упомянутые КМ подвергали многочисленным стендовым, а также натурным испытаниям в серийных коммутационных аппаратах. Несмотря на существенные различия исходных материалов (меди, КМ на основе вольфрама и меди, молибдена и меди), их структуры и уровня свойств, были установлены качественно повторяющийся характер изменения суммарных объемных

потерь $\Delta V_{\Sigma} = \Delta V_{K} + \Delta V_{A}$ от времени существования дуги и зависимости скорости эрозии от эффективного значения силы тока [5].

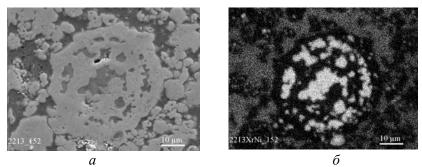


Рис. 2. Структура КМ КМК-Б45 во вторичных электронах (a) и в рентгеновских лучах никеля (b).

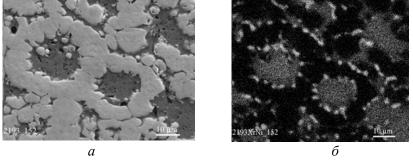


Рис. 3. Структура композиционного W—Ni материала во вторичных электронах (a) и в рентгеновских лучах никеля (δ) .

Разрушение медных контактов (электродов) в диапазоне токов 1—100 кА вначале происходит в результате испарения, далее преимущественно из-за разбрызгивания расплавленной меди. Однако начиная с 20 кА эффективного тока практически вся масса меди, претерпевшая агрегатные превращения, удаляется с поверхности электродов. Коэффициент выброса достигает предельного значения [6]. Характер изменения коэффициентов электропереноса и выброса для электродов из КМ W—Си свидетельствует о том, что вплоть до токов 75 кА превалирующим является процесс испарения меди (или продуктов взаимодействия составляющих со средой). Тугоплавкая составляющая сначала диспергируется при растекании расплава на основе меди и никеля вдоль границ тугоплавких частиц, затем спекается. Под воздействием дуги она в дальнейшем может оплавляться с образованием при охлаждении конгломератов мелкозернистых частиц на основе вольфрама и никеля [7]. Результаты испытания контактов КМК-Б45 контакторов типа КНОА устройства РПН в зависимости от количества операций отключения [8] (рис. 4) согласуются с приведенными данными [6, 7].

Увеличение количества операций переключения контактного устройства существенно изменяет структуру рабочего слоя, приводит к перераспределению составляющих КМ из-за испарения продуктов их взаимодействия со средой, повышения содержания тугоплавкой составляющей, ее дробления, спекания, оплавления, образования неоднородного слоя с пористостью и раковинами.

Форма раковин в части рабочего слоя, обогащенной легкоплавкой составляющей, позволяет предположить возможную привязку основания дугового разряда, обусловленную не только потерей материала в паровой фазе, но и выбросом в твердой фазе, что усиливает разрушение контактов (рис. 5). При работе контактов на воздухе это разрушение будет усугубляться окислением, образованием летучих оксидов и их легкоплавких соединений.

Увеличение влияния разрушения в конденсированной фазе, в частности хрупкого, наблюдается при замене режима гашения дуги в потоке сжатого воздуха на гашение в макете масляного выключателя ВМГ-133 (рис. 6). Хрупкое разрушение, по-видимому, вызвано карбидизацией вольфрама, влиянием этого процесса на отношение коэффициентов аккумуляции тепла тугоплавкой и легкоплавкой составляющих. Увеличение этого отношения от 2 в системе Си—W до 4 в системе Си—WC будет способствовать (в результате горизонтальных перетоков тепла) повышению скорости роста температуры меди и ее интенсивному испарению, вызывающему хрупкое скалывание тугоплавкой составляющей. Еще одной возможной причиной увеличения

износа контактов при коммутации тока в масле является сжатие дуги, большее, чем дуги, свободно горящей на воздухе, приводящее к термоусталостному разрушению. Увеличение роли разрушения в жидкой фазе способствует росту износа контактов при коммутации тока на воздухе.

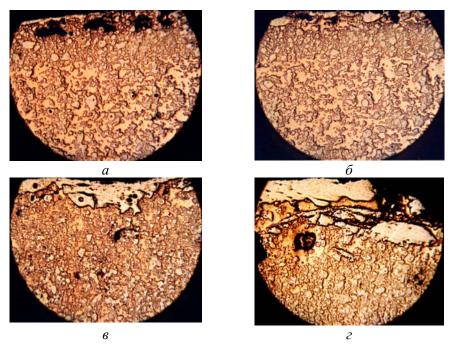


Рис. 4. Структурные изменения в рабочем слое контактов марки КМК-Б45 в зависимости от количества операций отключения: a — 5000; δ — 10 000; ϵ — 20 000; ϵ — 30 000.

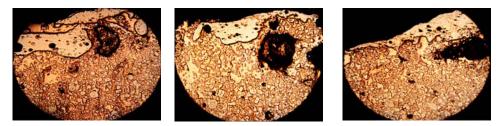


Рис. 5. Особенности дефектов структуры контактов, обусловленных привязкой дугового разряда и выбросом паровой и жидкой фаз.

На рис. 7 представлены результаты сравнительного изучения электроэрозионной стойкости контактов из меди (1), КМ Мо—Со—Си с содержанием меди ~30% (мас.) (2) и КМ W—Ni—Си с 30 (3) и 50% (мас.) (4) меди. Предполагаем, что наблюдаемое различие в скорости эрозии КМ можно объяснить склонностью вторичных структур в рабочем слое контактов из них к разрушению в жидкой фазе.

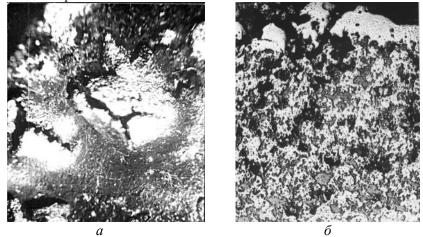


Рис. 6. Хрупкое разрушение поверхности (a) и сечения (δ) рабочего слоя W—Си—Ni контакта при коммутации тока в масле.

В системе Cu—Mo—O этому способствует образование различных молибдатов меди Cu_2MoO_5 , $CuMoO_4$, $Cu_6Mo_4O_{15}$, $Cu_3Mo_2O_9$ и низкоплавких эвтектик с оксидами меди и молибдена ($CuMoO_4$ — MoO_3 , $Cu_6Mo_4O_{15}$ —CuO) [9]. Жидкая фаза сразу покрывает всю поверхность Mo—Co—Cu контактов и способствует формированию в рабочем слое макрогетерогенной слоистой структуры. Влияние паровой фазы обусловлено летучестью MoO_2 .

Композиционные материалы на основе молибдена и меди можно применять в качестве слабо- и средненагруженных контактов коммутационных аппаратов. Среди таких материалов известны КМ марки МДК, промышленно изготавливаемые методом электронно-лучевого высокоскоростного испарения-конденсации и используемые в различной коммутационной технике. Как уже упоминалось, на свойства КМ влияет легирование. Легирующей добавкой, снижающей электроэрозию, является борид лантана LaB_6 . Снижение износа под влиянием борида сопровождается увеличением факельной составляющей эрозии, что определяет уменьшение тока среза. Введение LaB_6 усложняет состав легкоплавкой составляющей. Изучение особенностей распределения лантана в рентгеновских лучах LaL_{α} свидетельствует о том, что дискретный характер распределения частиц LaB_6 изменяется на равномерный, по-видимому, в результате его распада с растворением La в расплаве Cu—Co (рис. 8).

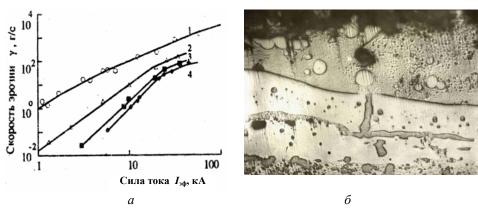


Рис. 7. Влияние силы тока на скорость эрозии меди и КМ в системах Мо—Со—Си и W—Ni—Си на воздухе (*a*) и структурные изменения в рабочем слое Мо—Со—Си контакта (*б*).

а) и структурные изменения в расочем слое мо—со—си контакта (σ)

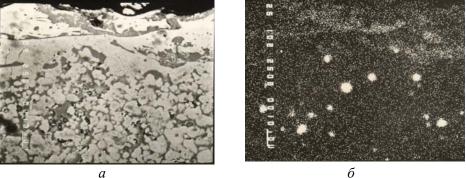


Рис. 8. Распределение La во вторичной структуре и LaB₆ — в исходной: a — во вторичных электронах; δ — в рентгеновских лучах La L_{α} .

Относительно бора было принято, согласно литературным данным [9], что в присутствии окислительной среды LaB₆ разлагается с образованием оксидов La₂O₃ и B₂O₃. Последний обладает большой упругостью паров и покидает расплав. При изменении среды (воздуха на аргон) и некоторых других условий эксперимента [10] изучали влияние импульсного воздействия дугового разряда на поверхность электродов: сила тока импульса составляла 30 A, длительность импульса — 30 мс, количество импульсов — 10—40. При этом режиме существенно изменяется морфология поверхности катода и анода и формируется практически однородная по распределению элементов (молибдена, меди, кобальта, лантана) вторичная структура (рис. 9, 10).

Таким образом, очевидным является существенное влияние на химический состав, морфологию вторичной структуры молибден-медных контактов как среды, так и элементов, которые увеличивают склонность рабочего слоя к формированию низкоплавких эвтектик на основе молибдатов и оксидов составляющих элементов.

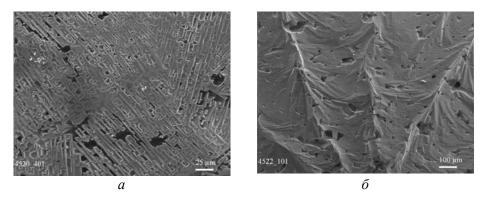


Рис. 9. Вторичная структура рабочего слоя электродов Мо—Си—Со—LaB₆, поверхность во вторичных электронах: a — анод; δ — катод.

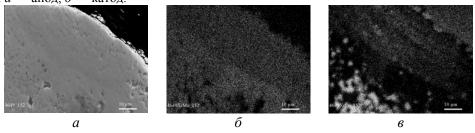


Рис. 10. Вторичная структура рабочего слоя электродов, сечение: a — во вторичных электронах; δ , ϵ — в рентгеновских лучах молибдена и меди.

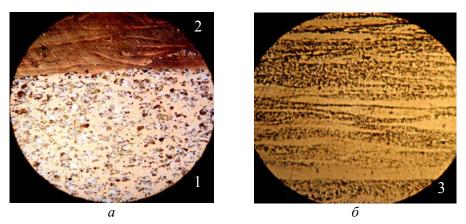


Рис. 11. Сечение Cu—Cr контакта: 1 — исходная структура; 2, 3 — вторичная структура без и после травления.

Взамен воздушных и масляных коммутационных аппаратов для условий, требующих усиленной пожаро-, взрывобезопасности и надежности контактов, разработаны коммутационные аппараты с вакуумными дугогасительными камерами. В качестве контактов в них используются КМ Си—Сг. Чаще это порошковый композиционный материал с легкоплавкой матрицей на основе меди и диспергированными в ней частицами тугоплавкой составляющей на основе хрома с размером частиц до 30 мкм [11].

После обязательной для этого класса коммутационных аппаратов тренировки (кондиционирования) в рабочем слое образуется вторичная структура. Ее особенностью является слоистое строение, обусловленное процессом переноса и осаждения паровой фазы. Композитные слои с различной дисперсностью тугоплавких частиц и пор чередуются (рис. 11). Отличительная особенность этих слоев, по данным рентгеноструктурного анализа, — отсутствие в них термоусталостных напряжений. Эти особенности и создаваемые ими преимущества обусловили промышленное использование коммутационных аппаратов с дугогасительными камерами, оснащенными Си—Сг контактами.

Выволы

Вторичная структура в рабочем слое контактов под воздействием дугового разряда возникает независимо от их состава и назначения.

В рабочем слое контактов из КМ с невзаимодействующими основными структурными составляющими Сu—W(Mo) под влиянием среды (воздух, масло) происходит деградация исходной структуры с образованием вторичной макрогетерогенной. Ее формирование, разрушение и выброс конденсированной (жидкой, твердой) и паровой фаз увеличивает электроэрозионный износ контактов.

Повышение взаимной растворимости основных элементов КМ определяет при работе контактов в вакууме формирование слоистости и дисперсной структуры составляющих этих слоев. Такая структура даже в присутствии пор на границах не теряет своей релаксационной способности и сопротивления термоусталостному разрушению.

Равномерное распределение составляющих, их взаимодействие с образованием сплава эвтектического типа, распределенного по всему рабочему слою, является отличительной особенностью Cu—Co—Mo— LaB_6 контактов при работе в защитной среде.

Проведенный анализ и обобщение особенностей изменения состава и структуры в рабочем слое контактов под воздействием разряда свидетельствуют о том, что рост взаимодействия составляющих элементов контактного КМ не может препятствовать увеличению электроэрозионной стойкости при условии управления структурными особенностями КМ.

- 1. Спеченные материалы для электротехники и электроники: (Справ.) / Под ред. Г. Г. Гнесина. М.: Металлургия, 1981. 343 с.
- 2. *Минакова Р. В., Лесник Н. Д., Флис А. А.* Влияние добавок на адгезионные характеристики и формирование межфазной границы в системе W—Cu // Адгезия расплавов и пайка материалов. 1978. Вып. 3. С. 91—95.
- 3. *Минакова Р. В., Кресанова А. П., Лесник Н. Д.* Структурообразование и свойства порошковых композиций на основе молибдена // Порошковая металлургия. 1988. № 2. С. 48—53.
- 4. Ниженко В. И. Энциклопедия неорганических материалов. Никель. К.: ГРУСЭ, 1977. С. 62—67.
- 5. Ведешенков Н. А., Кресанова А. П., Минакова Р. В. Об особенностях электрической эрозии контактов под воздействием дуги отключения // Электрические контакты. Пути повышения качества и надежности. К.: Ин-т пробл. материаловедения НАН Украины, 1981. С. 18—26.
- 6. *Игнатко В. П., Кухтиков В. А.* Эрозия полусферических и плоских электродов в сильноточной квазистационарной дуге // Электрические контакты (теория и применение). М.: Наука, 1972. С. 66—70.
- 7. *Игнатко В. П., Кресанова А. П., Кухтиков В. А., Минакова Р. В.* Сравнительное исследование эрозионных процессов на медных и металлокерамических электродах в сильноточной квазистационарной дуге // Там же. М.: Наука, 1972. С. 71—74.
- 8. *Иванов А. М., Пироженко А. Н.* Контактные системы устройств РПН // Электрические контакты и электроды. К.: Ин-т пробл. материаловедения НАН Украины, 1998. С. 38—43.
- 9. Бережной А. С. Многокомпонентные системы окислов. К.: Наук. думка, 1970. 544 с.
- 10. *Бабич И. Л., Веклич А. Н., Крячко Л. А. и др.* Влияние вторичной структуры рабочего слоя композиционных электродов на температуру электрической дуги // Электрические контакты и электроды. К.: Ин-т пробл. материаловедения НАН Украины, 2004. С. 105—116.
- 11. *Минакова Р. В., Хоменко Е. В., Добровольский В. Д. и др.* Особенности вторичной структуры в рабочем слое Cr—Cu вакуумных контактов // Там же, 1999. С. 99—111.