УДК 548.3:666.233

В. Ю. Долматов (г. Санкт-Петербург)

К вопросу об элементном составе и кристаллохимических параметрах детонационных наноалмазов

Описан новый способ детонационного синтеза наноалмазов в присутствии сильных восстановителей, усовершенствован метод определения их элементного состава. Новые наноалмазы могут обладать идеальной кристаллической решеткой, аномально высокой чистотой (количество несгораемых примесей падает до 0,07 % (по массе)), высоким содержанием углерода, их выход увеличивается в два раза. Новые наноалмазы имеют один пик окисления кислородом воздуха при ~ 700 °C.

Ключевые слова: детонационный синтез, углерод, наноалмазы, кристаллохимические параметры, кристаллическая решетка.

Введение. Строение детонационных наноалмазов (ДНА) в настоящее время все еще носит дискуссионный характер. Возможно, наиболее близко к познанию строения ДНА подошли профессор А. Я. Вуль с сотр. [1]. Что касается поверхностных функциональных групп, то бесспорным является наличие на поверхности ДНА карбонил- и гидроксилсодержащих групп [2, 3].

Для отнесения структуры образовавшихся ДНА к классической кубической структуре алмаза используют рентгенофазный анализ [4, 5]. Доказывая углеродную природу материала, наиболее часто используют его элементный состав [6, 7], а в совокупности с рентгенофазным анализом косвенно относят полученный материал к алмазам. Элементный состав продукта — это мощное, бесспорное и точное доказательство. Например, в органической химии используют брутто-формулы вещества: конкретному веществу соответствует строго определенная брутто-формула всех входящих в состав молекулы элементов ($C_xH_yN_zO_n$). Метод сжигания любого углеродсодержащего продукта, отшлифованный многими десятилетиями, имеет очень высокую точность определения элементного состава. При таком сжигании природный алмаз, раздробленный до наноразмера, дает практически исключительно углерод, а в случае сжигания ДНА картина совершенно иная, что доказывает особенность этого продукта.

В [6—9] приведен элементный состав ДНА, вызывающий изумление и естественный вопрос — а является ли алмазом такой продукт?

Итак, элементный состав ДНА по представлениям авторов вышеперечисленных работ следующий^{*}: углерод — 75—90 %, водород — 0,8—1,2 %, азот — 1,5—4,5 %, кислород — 4,3—22,7 %. Если азот является типичной приме-

^{*} Элементный состав ДНА, количество летучих и несгораемых примесей приведено в % (по массе).

[©] В. Ю. ДОЛМАТОВ, 2009

сью для алмаза (природного), то слишком большое (до 22,7 %) количество кислорода вызывает серьезное сомнение.

Экспериментальная часть. Подрыв сплава тротил-гексоген, содержащего 40 % (по массе) тротила (ТГ 40), осуществляли в водной оболочке во взрывной камере объемом 1 м³; вес заряда — 0,6 кг; весовое соотношение взрывчатое вещество (ВВ):вода поддерживали как 1:6; среда подрыва — продукты предыдущих детонаций. При этом в воду вводили легкоокисляемые восстановители (гидразин гидрат, уротропин, мочевина, аммиак) при весовом соотношении ВВ:восстановитель как 1:(0,1—10) [10, 11].

Образующуюся алмазосодержащую шихту (АШ, полупродукт синтеза ДНА) очищали до ДНА разбавленной азотной кислотой при температуре 240 °C и давлении около 80·10⁵ Па [12].

Для проведения элементного анализа полученных ДНА была разработана новая методика: навеску образца выдерживали при температуре 150—180 °C под вакуумом 0,01—10,0 Па в течение 3—5 ч, затем обрабатывали при температуре 1050—1200 °C потоком кислорода со скоростью, обеспечивающей его полное сжигание в течение 40—50 с.

Обсуждение результатов. Элементный состав ДНА связан с условиями их образования. Наибольшее влияние оказывают исходный состав ВВ, среда детонационного синтеза и очень большой градиент температуры и давления. Особенно негативно сказывается различная скорость падения температуры и давления во взрывной камере (ВК) — давление падает приблизительно в два раза быстрее, чем температура. Это приводит, в конечном счете, к графитизации (или аморфизации) части ДНА и активной атаке конденсированного углерода (КУ) агрессивными в условиях детонации газами (H₂O, CO₂, N_xO_y), в результате чего часть КУ газифицируется, а оставшийся насыщается по поверхности кислородсодержащими функциональными группами.

Конденсированный углерод в случае присутствия в нем ДНА, называемый АШ, загрязнен металлосодержащими примесями, металлы которых ранее входили в состав стенок ВК (Fe) и средств инициирования взрыва (Cu, Pb). Очистка от этих примесей является основной задачей для последующего эффективного использования ДНА в различных технологиях их применения.

Первичной задачей работы было определение реального состояния элементов в ДНА, полученных по известным технологиям (образцы 1—5, 10— 15, табл. 1).

Из литературных данных [13,14] известно, что при спекании под давлением ДНА ($p \approx 5$ —8 ГПа, $T \approx 1500$ —2000 °C) происходит интенсивная десорбция летучих продуктов, прочно удерживаемых в нанопорах ДНА. Ориентировочно, авторы [13, 14] оценивают количество летучих примесей в ~ 10 %.

Естественно, что до проведения элементного анализа ДНА необходимо установить реальное количество летучих примесей и удалить их.

Для определения реального количества летучих примесей (в том числе воды) в ДНА после азотнокислой очистки (240 °C, $p = (80-100) \cdot 10^5$ Па) продукт предварительно высушили по стандартной заводской технологии при 150 °C до постоянного веса в контакте с атмосферой. Затем порошок воздушно-сухих ДНА поместили в вакуум (4—5 Па) и сушили до постоянного веса при температуре 200 °C в течение 14 ч. В результате было подтверждено, что воздушно-сухие ДНА, полученные и высушенные по стандартной технологии, содержат ~ 10 % летучих примесей.

Номер образца	Производитель, способ получения ДНА, обработка	Элементный состав ДНА без учета несго- раемых примесей, % (по массе)				во несгорае- месей ДНА, о массе)	ние окисляе- углерода (по массе)	НА (содержа- \ в твердой 6 (по массе)	о кристалли- оешетки, Å	нокристалла, м ***
		С	Н	Ν	0	Количесті мых приі % (по	Содержан мого у в ДНА %	Чистота Д ние ДНА среде), %	Парамет; ческой р	Размер мс н
1	ЗАО "Алмазный Центр", детонационный синтез в воде (без восстановителя) без дополнительной обработки	93,3 (89,6)*	1,2 (2,4)*	2,5 (2,2)*	3,0 (5,8)*	0,9	1,6	97,5		4,8
2	Образец 1, дополнительная обработка ДНА гидразингид- ратом при 240 °C	93,3	1,6	2,6	2,5	0,7	1,6	97,7		
3	Образец 1, дополнительная обработка аммиаком при 240 °C	94,5 (90,5)*	1,2 (2,4)*	2,5 (2,6)*	1,8 (4,5)*	1,3	1,6	97,1	3,565**	4,8
4	Образец 3, дополнительная обработка гидразингидратом при 240 °C	97,6 (93,1)*	0,2 (3,0)*	2,1 (2,5)*	0,1 (1,4)*	0,94	1,7	97,36	3,558	
5	Образец 3, дополнительная обработка уротропином при 240 °C	96,0 (91,7)*	1,4 (2,5)*	2,5 (2,3)*	0,1 (3,5)*	1,2	1,8	97,0		
6	ЗАО "Алмазный Центр", детонационный синтез в водном растворе растворителя гидразина	95,2	0,7	2,3	1,6	0,45	1,0	98,55		
7	ЗАО "Алмазный Центр", детонационный синтез в водном растворе растворителя уротропина	96,0	0,4	2,6	0,7	0,07	0,9	99,03	3,584**	5,9
8	ЗАО "Алмазный Центр", детонационный синтез в водном растворе растворителя мочевины	94,3	1,6	2,7	0,8	0,6	1,4	98,0	3,5667**	5,3
9	ЗАО "Алмазный Центр", детонационный синтез в водном растворе растворителя аммиака	92,7	2,4	2,9	1,3	0,7	0,9	98,4		5,5
10	нПО "Алтай", г. Бийск, дето- национный синтез в газовой среде	90,7	4,8	2,2	2,3	4,1	3,5	92,4		
11	Комбинат "Электрохимпри- бор", г. Лесной, детонацион- ный синтез в газовой среде					2,2	3,4	94,3	3,570**	

Таблица 1. Элементный состав и содержание примесей в ДНА различного происхождения

www.ism.kiev.ua; www.rql.kiev.ua/almaz_j

Таблица 1. (Продолжение)

12	НПО "Синта", г. Минск, детонационный синтез в газовой среде					1,8	1,1	97,1	3,573**
13	ЗАО "АЛИТ", Украина, детонационный синтез при водяном орошении, пр-во 2003 г., передан "AMATI	91,4	0,5	1,8	6,3	2,8	0,9	96,3	
14	International LLC", США ЗАО "АЛИТ", Украина, детонационный синтез при водяном орошении, азотная очистка, 2007 г.					0,34	1,12	98,54	3,565**
15	Фирма "Шенчженьская промышленная компания" КНР, передан "AMATI Interna- tional LLC", США, 2003 г.	93,4	0,4	1,8	4,4	0,26	2,5	97,24	3,5667**

* Элементный состав ДНА, определенный стандартным образом (без специального удаления летучих примесей при нагревании под вакуумом).

**Данные профессора Г. С. Юрьева (ИНХ, г. Новосибирск).

*** Данные профессора А. Я. Вуля (ФТИ им. А. Ф. Иоффе, г. С.-Петербург).

При проведении анализа на элементный состав ДНА были резко подняты температура отжига этих продуктов в среде кислорода (до 1200 °C) и время выдержки (до 50 с). Необходимость этого была вызвана достаточно высокой стойкостью ДНА к сжиганию и неполнотой сжигания, приведенной во всех предшествующих работах. Так, в известных патентах НПО "Алтай" [8, 15] не удаляли летучие примеси, а условия сжигания ДНА соответствовали сжиганию органических соединений (~ 850—900 °C, 4—5 с). Это привело к сильному искажению данных.

Из табл. 1 (образцы 1, 3—5) видно, что занижение данных по содержанию основного элемента — углерода в ДНА, полученных по известным методикам, составило ~4 %, а содержание кислорода, напротив, было завышено в 2—20 раз.

Реальное содержание углерода в ДНА производства НПО "Алтай" (образец 10, самый "грязный" продукт) превышало его максимальное значение, а кислорода, напротив, оказалось меньше, чем его должно быть согласно [8].

Использование восстановителей в виде водного раствора для бронировки заряда ВВ привело к множеству положительных эффектов. Газообразные окислители (CO₂, H₂O, N_xO_y) связываются, в первую очередь, с легко окисляющимися восстановителями (в нашем случае — гидразином (образец 6), уротропином (образец 7), мочевиной (образец 8) и аммиаком (образец 9), а не с достаточно трудно окисляемым углеродом, особенно, с ДНА.

Из табл. 1 (образцы 6—9) следует, что использование восстановителя прогонозируемо подняло количество углерода в кристаллах ДНА до 96 %. Количество кислорода составило лишь 0,6—1,6 %. Количество азота в кристаллах ДНА находится на уровне ~ 2,5 % и мало зависит от условий синтеза. Скорее всего, азот достаточно равномерно распределен по кристаллу ДНА.

Выход ДНА увеличивается приблизительно в два раза (с обычных ~ 5 до 10—11 %), что обеспечивается "мягкостью" условий подрыва ВВ — сбере-

жением частиц ДНА от атаки агрессивными газами. Мишенью атаки становятся вводимые восстановители. Кроме того, часть восстановителя распадается при высоких температурах, обеспечивая быстрейшее понижение остаточной температуры в ВК после завершения процесса детонационного синтеза и сохраняя от графитизации ДНА.

Химическая азотнокислая очистка ДНА (образцы 6, 8, 9) приводит к небольшому количеству несгораемых примесей 0,45—0,7 %, что делает ее пригодной для большинства технологий применения наноалмазов. В случае использования уротропина количество несгораемых примесей аномально мало (0,07 %). Причина в том, что уротропин, помимо всего, является достаточно сильным комплексообразователем, и несгораемые металлсодержащие примеси находятся не как обычно в виде карбидов или оксидов, а в виде сложных комплексных соединений, легко растворяющихся при очистке даже слабой азотной кислотой (при высоких температурах и давлении). ДНА, полученные в присутствии уротропина, можно использовать во всех технологиях применения наноалмазов.

Улучшение условий синтеза сказалось и на кристаллической структуре наноалмаза. Указанные в табл. 1 параметры кристаллической решетки ДНА определены согласно экспериментальной дифракционной картине каждого образца по положению дифракционных отражений (111), (220), (311). Идеальные параметры (a = 3,5667) были получены только для образцов 8 (детонационный синтез в присутствии мочевины) и 15 (Китай, условия синтеза неизвестны) — полное тождество с натуральными алмазами [16—21].

Для остальных образцов (3, 7, 11, 12, 14) параметры решетки также удовлетворительны, такие ДНА имеют в кристаллической решетке расстояния между атомами, которые отличаются от аналогичных межатомных расстояний в кристаллической решетке натурального алмаза, но число атомов, окружающих любой атом в решетке, не отличается от аналогичного окружения в натуральном алмазе.

ДНА, полученные в присутствии восстановителей, в основном дают дифракционную картину, у которой отражение (220), как и отражения (111) и (311), находится в положении, соответствующем натуральному алмазу. У всех других производителей (даже у образца 15) положение отражения (220) смещено в малые дифракционные углы, что указывает на искажение кристаллической решетки, т. е. на тетрагональную решетку.

Из сопоставления образцов 1, 3 (стандартный способ получения) и 7—9 (с использованием восстановителей) (см. табл. 1) видно, что новые условия синтеза изменили средний размер монокристаллов — при использовании восстановителя происходит его увеличение в зависимости от природы восстановителя. Природа этого явления не совсем ясна, все существующие механизмы образования ДНА [22] необходимо корректировать. Дело в том, что восстановители по любому из существующих механизмов [22] не могут участвовать в самом детонационном процессе, находясь за внешней поверхностью заряда. Процесс образования ДНА во фронте детонационной волны (в зоне или за зоной химпика) предусматривает вовлечение в процесс образования кристаллов ДНА только элементов исходных ВВ. Восстановитель вступает в процесс (даже с учетом неидеальности классического взрывного процесса) только на стадии турбулизации (перемешивания) продуктов детонации, когда кристаллы ДНА уже сформировались.

В табл. 1 представлены ДНА, производимые одним и тем же производителем (образцы 1—5) и имеющие значительные отличия под воздействием об-

работки. Так, воздействие гидразингидратом на образец 1 (получен подрывом ТГ 40/60 в воде, очищен HNO₃ и выделен вымораживанием) при 240 °C не привело к изменениям ни элементного состава, ни чистоты продукта — модификация не удалась (образец 2). А воздействие того же гидразингидрата на образец 3 (получен подрывом ТГ 40/60 в воде, очищен HNO₃ и обработан NH₄OH при 240 °C), напротив, привело к существенному изменению элементного состава и большей чистоте ДНА по несгораемым примесям (образец 4). Воздействие водного раствора уротропина на образец 3 (при 240 °C) также существенно изменило элементный состав ДНА (образец 5).

Из сопоставления ДНА различных производителей (см. табл. 1) видно, что лучшие результаты по элементному составу и чистоте продукта наблюдается у образца 7 (ЗАО "Алмазный Центр"), хорошие результаты по чистоте ДНА обнаружены в образцах китайского (образец 15) и украинского (образец 14) производства, худшие — у ДНА производства НПО "Алтай", г. Бийск (образец 10) и комбината "Электрохимприбор", г. Лесной (образец 11).

Результаты исследования термоокисления кислородом воздуха наноалмазов, полученных различными производителями и по различным технологиям, представлены в табл. 2. Показано, что качественные ДНА и алмазы марки ACM 0,1/0 практически одинаково себя ведут — тот же диапазон эндо- и экзоэффектов, близкая температура окончательного сгорания. Температура максимального окисления несколько отличается, качественные ДНА оказались более стойкими по этому параметру. Все это указывает на высокое качество ДНА.

№ ⊓/⊓	ДНА*	Диапазон эндо- эффекта, °С	Диапазон мед- ленного экзоэф- фекта, °С	Диапазон быстро- го экзоэффекта, °С	Температура максимального окисления, °С	Температура окончания полно- го сгорания об- разца, °С	Примечание
1	Образец 1	140—200	200—520	520—750	660	750	
	(УДА-СФ)						
2	Образец 6	40—250	250—510	510—750	720	750	
	(восстановитель гидразингидрат)						
3	Образец 7	—	80—500	500—760	660	760	
	(восстановитель уротропин)						
4	Образец 8	40—200	200—540	540—750	700	750	
	(восстановитель мочевина)						
5	Образец 9	40—200	200—550	550—760	720	760	
	(восстановитель аммиак)						
6	Образец 10	60—120	120—510	510—700	650		До 1000 °С
	(НПО "Алтай")						выгорело
							60 % ДНА
7	Алмазы статического синтеза	40—200	200—510	510—780	620	780	
	ACM 0,1/0						

Таблица 2. Параметры окисления ДНА кислородом воздуха до 1000 °С (дериватограф, скорость нагрева 10 град/мин)

* Образцы 1, 6—10 из табл. 1.

ДНА производства НПО "Алтай" ведут себя иначе. При увеличении температуры до 1000 °С их полностью сжечь не удалось, диапазоны эндо- и экзоэффектов также отличаются от соответствующих данных других производителей. Скорее всего, это связано с очень низкой чистотой этих ДНА и ингибирующим влиянием примесей.

Наблюдаемый эндоэффект в диапазоне 40—200 °C связан с десорбцией адсорбированных газов, воды и других летучих примесей (см. табл. 2, пп. 1, 2, 4, 5, 7). Первый достаточно медленный экзоэффект (200—(~ 525) °C) связан с деструкцией поверхностных функциональных групп и газификацией остатка неалмазного углерода на поверхности алмазного ядра при взаимодействии с кислородом воздуха.

При температуре ~ 525 °C начинается взаимодействие алмазного ядра частицы ДНА с кислородом воздуха, заканчивающееся полным сгоранием ДНА при ~ 760 °C.

У ДНА высокого качества процесс окисления идет плавно, без изломов на кривой ДТА, интенсивный экзоэффект начинается уже при ~ 525 °C с единственным максимумом при ~ 700 °C и полным выгоранием при ~ 760 °C.

Выводы

Разработаны новый способ детонационного синтеза ДНА в водной среде в присутствии активных восстановителей и новая методика элементного анализа ДНА, позволившая уточнить реальный элементный состав ДНА.

Новый способ синтеза ДНА позволил поднять содержание углерода с ~ 93 до 96 %, понизить содержание кислорода в 2—4 раза, получить бездефектные кристаллы ДНА, изменить размер монокристалла ДНА в зависимости от условий синтеза, увеличить выход ДНА в два раза, понизить содержание несгораемых примесей в 10—20 раз (до 0,07 % (по массе)).

Исследован процесс окисления новых ДНА кислородом воздуха — обнаружен один отчетливо выраженный максимум при ~ 700 °C, связанный с пиком окисления алмазного ядра.

Показано практически тождество эндо- и экзоэффектов новых ДНА и наноалмазов статического синтеза, что говорит о высоком качестве полученных ДНА.

- 1. Алексенский А. Е., Байдакова М. В., Вуль А. Я., Сиклицкий В. И. Структура алмазного кластера // Физика твердого тела. 1999. **41**, вып. 4. С. 740—743.
- 2. Богатырева Г. П., Волошин В. И., Маринич М. А. и др. Поверхностные и электрофизические свойства наноалмаза детонационного синтеза // Сверхтв. материалы. — 1999. — № 6. — С. 42—46.
- 3. Кулакова И. И., Долматов В. Ю., Губаревич Т. М., Руденко А. П. Химические свойства ультрадисперсных детонационных алмазов // Там же. — 2000. — № 1. — С. 46—53.
- Shames A. I., Panich A. M., Osawa M. et al. Defects and impurities in nanodiamonds: EPR, NMR and TEM study // J. Phys. Chem. Sol. — 2002. — 63, N 11. — P. 1993—2001.
- Vereshchagin A. L., Yur'ev G. S. Structure of detonation diamond nanoparticles // Inorg. Mater. — 2003. — 39, N 3. — P. 247—253.
- Верещагин А. Л., Комаров В. Ф., Мастихин М. М. Исследование свойств алмазной фазы детонационного синтеза // V Всесоюз. совещание по детонации, Красноярск, 5—12 авг. 1991 г.: Сб. докл. — Красноярск, 1991. — Т. 1. — С. 99—103.
- Губаревич Т. М., Кулагина Л. С., Ларионова И. С. Особенности элементного состава углеродных продуктов детонационного синтеза // V Всесоюзное совещание по детонации, Красноярск, 5—12 авг. 1991 г.: Сб. докл. — Красноярск, 1991. — Т. 1. — С. 130— 134.
- Pat. 5861349 US, B 01 J 3/06, B 01 J 3/08, C 01 B 31/06. Synthetic diamond-containing material and method of obtaining if from / A. L. Vereschagin, E. A. Petrov, G. V. Sakovich et al. — Publ. 19.01.99.

www.ism.kiev.ua; www.rql.kiev.ua/almaz j

- 9. Пат. 2051092 РФ, кл. С 01 В 31/06. Алмазосодержащее вещество и способ его получения / А. Л. Верещагин, Е. А. Петров, Г. В. Сакович и др. Заявл. 25.12.91; Опубл. 27.12.95.
- Пат. 2348580 РФ, МПК С 01 В 31/06. Наноалмаз и способ его получения / В. Ю. Долматов. — Заявл. 30.12.2005; Опубл. 10.03.95.
- Пат 2007118528, МПК СО 1В 31/06 Алмаз-углеродный материал и способ его получения / В. Ю. Долматов. — Заявл. 30.12.2005; Опубл. 27.11.2008.
- Пат. 96103974 РФ, МПК С 01 В 31/0. Способ выделения синтетических ультрадисперсных алмазов / В. Ю. Долматов, В. Г. Сущев, В. А. Марчуков и др. — Заявл. 05.03.96; Опубл. 06.10.98.
- Шульженко А. А., Бочечка А. А., Гаргин В. Г. и др. Влияние десорбции газов на структуру и свойства поликристаллов, спеченных из нанометричных алмазных порошков // Сверхтв. материалы. — 1998. — № 4. — С. 46—52.
- 14. Ножкина А. В., Колчеманов Н. А., Карданов А. А., Детков П. Я. Физико-химические свойства алмазов динамического синтеза // Там же. 2000. № 1. С. 78—84.
- 15. Pat. 5916955 USA, MIIK B 01 J 3/08, C 01 B 31/00, C 01 B 31/06. Diamond-carbon matirial and method for producing fhereof / A. L. Vereschagin, E. A. Petrov, G. V. Sakovich et al. Publ. 29.01.99.
- Dolmatov V. Yu., Yuriev G. S., Veretennikova M. V. SR Structure analysis of new detonation nanodiamonds and method of their production // Abst. Book of Int. Conf. of Carbon, World Conf. on Carbon, Nagano, Japan, 13—18 July, 2008. — P. 188.
- Yurjev G. S., Dolmatov V. Yu., Kosov A. V. X-ray Diffraction Analysis of Nanodiamonds: spatial Structure Computer Models // Proc. of 3rd Int. Symp. "Detonation Nanodiamonds: Technology, Properties and Applications, St.-Petersburg, Russia, 1—4 July, 2008. — P. 149—151.
- Dolmatov V. Yu., Yurjev G. S. Computer modeling spherical hybrid nanoparticles and calculation of their theoretical diffraction patterns // Program Book of 2nd conf. on NDNC 2008 "New Diamond & Nano carbons", Taipei, Taiwan, 26—29 May, 2008. Р. 329.
 Юрьев Г. С., Долматов В. Ю., Косов А. В. Рентгеноструктурный анализ детонацион-
- 19. Юрьев Г. С., Долматов В. Ю., Косов А. В. Рентгеноструктурный анализ детонационных наноалмазов с использованием синхротронного излучения: определение параметров кристаллической решетки, размера нанокристаллов и компьютерное моделирование структуры // Породоразрушающий и металлообрабатывающий инструмент техника и технология его применения: Сб. науч. трудов. Киев: Ин-т свехтвердых материалов им. В. Н. Бакуля НАН Украины. 2008. Вып. 11. С. 261—267.
- 20. Долматов В. Ю., Юрьев Г. С. Определение параметров кристаллической решетки, размера и формы синтезированных детонационных наноалмазов методом рентгеноструктурного анализа с использованием синхротронного излучения и компьютерного моделирования // Междунар. форум по нанотехнологиям "Rusnanotech", Москва, 3—5 дек. 2008 г.: Сб. тр. — Москва, 2008. — С. 222.
- 21. Юрьев Г. С., Долматов В. Ю. Компьютерная сборка наночастиц на основе наноалмаза и теоретический расчет дифракционных картин для рентгеноструктурного анализа // Междунар. форум по нанотехнологиям "Rusnanotech", Москва, 3—5 дек. 2008 г.: Сб. тр. — Москва, 2008. — С. 224.
- 22. Долматов В. Ю. О механизме детонационного синтеза наноалмазов // Сверхтв. материалы. 2008. № 4. С. 25—34.

ЗАО "Алмазный Центр"

Поступила 06.02.09