Инструмент, порошки, пасты

УДК 621.921.34-492.2:539.215

Г. П. Богатырева, Г. А. Петасюк, Г. А. Базалий, В. С. Шамраева (г. Киев)

К вопросу однородности алмазных микропорошков по морфометрическим характеристикам

Приведены результаты исследования характеристик исходных порошков и продуктов их разделения методом флотации, анализа адекватности средних значений морфометрических характеристик и оценки однородности порошков по системно-критериальному методу. Показано, что в результате сортировки существенно повышается однородность порошков по размерным характеристикам и показателю формы. Установлено, что наибольшей однородностью обладают продукты флотации, чем и объясняется их более высокая абразивная способность. Доказана целесообразность использования флотационного метода разделения как инструмента повышения однородности алмазных микропорошков по морфометрическим характеристикам и эффективность разработанного пакета компьютерно-аналитических методов количественного анализа этих характеристик.

Ключевые слова: алмазные микропорошки, морфометрические характеристики, однородность порошков, продукты флотации.

Введение. Проблема получения однородных по размерным и морфометрическим характеристикам алмазных микропорошков в настоящее время все еще остается нерешенной. Это связано как с несовершенством технологических процессов получения таких порошков, так и с отсутствием надежных методов адекватной количественной оценки степени их однородности.

С другой стороны, промышленность предъявляет все более жесткие требования к качеству порошков. Так, например, при изготовлении инструмента, применяемого для обработки внутренних поверхностей малого диаметра, требуются узкоклассифицированные порошки, т.е. порошки одного размера и желательно изометричной формы, не содержащие крупных и мелких зерен.

Существующие методы контроля алмазных порошков по ДСТУ 3292—95 неэффективны, либо совсем непригодны для проведения сравнительного количественного анализа их качества по различным характеристикам: разме-

© Г. П. БОГАТЫРЕВА, Г. А. ПЕТАСЮК, Г. А. БАЗАЛИЙ, В. С. ШАМРАЕВА, 2009

ру зерен, их площади, развитости поверхности, форме. В связи с этим в Институте сверхтвердых материалов им. В. Н. Бакуля НАН Украины проводят работы как по совершенствованию технологии изготовления порошков, так и по разработке новых методов высокоинформативной оценки их морфометрических характеристик.

Целью настоящей работы является исследование процесса разделения микропорошков методом флотации, количественный анализ характеристик исходных порошков и продуктов их разделения, изучение адекватности значений морфометрических характеристик порошков и оценки их однородности по системно-критериальному методу.

Методика экспериментов. Исследования проведены на алмазных микропорошках марки ACM 40/28. Флотационное разделение осуществляли в растворе соли Мора с использованием в качестве собирателя и пенообразователя жирной кислоты ряда C₇—C₉ [1].

Адсорбционно-структурные характеристики микропорошков определяли на основании изотерм низкотемпературной адсорбции азота (метод БЭТ) [2] — рассчитывали величину удельной поверхности порошков $S_{\text{БЭТ}}$ и общую пористость V_p . Адсорбционный (A) и удельный адсорбционный (A') потенциалы, скрытую теплоту адсорбции азота E, учитывающую одновременно активность поверхностных центров и их число, определяли по формулам

$$A = \frac{RTV_p}{p/p_s}; \tag{1}$$

$$A' = \frac{A}{S_{\text{БЭТ}}};$$
(2)

$$E = RTV_{\rm M} \ln C_{\rm EET} \,, \tag{3}$$

где $V_{\rm M}$ — объем монослоя азота на поверхности образца; p/p_s — относительное давление (p_s — давление насыщения); $C_{\rm БЭТ}$ — коэффициент БЭТ, характеризующий физическую связь адсорбата с поверхностью адсорбента; R — газовая постоянная.

Гранулометрические характеристики определяли на лазерном гранулометре "Seishin LMS-30", абразивную способность, массовую долю примесей, ситовой состав — по методикам ДСТУ 3292—95, морфометрические характеристики — на приборе "DiaInspect.OSM" фирмы "Vollstädt Diamant GmbH" [3]. Этот прибор позволяет в автоматическом режиме определять больше 20 характеристик абразивных порошков по результатам измерения пробы в количестве до 1999 зерен включительно. При выполнении настоящей работы порошки диагностировали по следующим характеристикам: общей площади проекции зерна, периметрам истинного (фактического) и выпуклого его контуров, максимальному и минимальному диаметрам Feret, форм-факторам выпуклого и фактического изображения проекции зерна, эллиптичности (симметричности), Feret-удлинению, шероховатости зерен (табл. 1).

Поскольку эти характеристики относительно новые в сфере диагностики порошков сверхтвердых материалов, приводим краткое описание их физической сущности.

За показатель максимального (минимального) диаметра Feret принимают максимальное (минимальное) расстояние между двумя касательными к контуру проекции зерна, которые параллельные между собой (рис. 1).

Feret-удлинение (характеризует удлиненность зерна) определяют по формуле

$$F_{\rm ygn} = \frac{F_{\rm max}}{F_{\rm min}} \,. \tag{4}$$

Таблица 1. Морфометрические характеристики, определяемые на приборе "Dialnspect.OSM" непосредственно и расчетные

	Харак	теристика				
определяемая на при непосредственно	боре	расчетная*				
Минимальный диаметр Feret, мкм	F_{\min}	Периметр истинного изображения, мкм	p_{μ}			
Максимальный диаметр Feret, мкм	$F_{\rm max}$	Периметр выпуклого изображения, мкм	$p_{\scriptscriptstyle \mathrm{B}}$			
Компактность (форм-фактор истинного изображения)	Си	Удельный периметр, мкм ⁻¹	$P_{\rm yg}$			
Выпуклость (форм-фактор выпуклого изображения)	$C_{\scriptscriptstyle \rm B}$	Средний размер зерна, мкм	$d_{\rm c}$			
Эллиптичность	El	Эквивалентный диаметр зерна, мкм	$d_{\scriptscriptstyle \Im}$			
Feret-удлинение (аналог коэффициента формы по ДСТУ—3292)	$F_{ m yдл}$					
Шероховатость (Roughness)	Rg					
Общая площадь проекции частицы, мкм ²	A_{0}					

^{*} Вычисляют по результатам пост-DiaInspect-обработки данных диагностики порошка.

Рис. 1. Проекция абстрактного зерна: общая площадь проекции зерна (A_o), периметр выпуклого (p_B) и истинного (p_u) изображения проекции зерна, диаметр Feret максимальный (F_{max}) и минимальный (F_{min}).

Компактность (форм-фактор истинного изображения) и выпуклость (форм-фактор выпуклого изображения) описывают форму зерна и их вычисляют по формулам (5) и (6) соответственно:

$$C_{\rm H} = \frac{p_{\rm H}^2}{4\pi A_{\rm o}}\,;\tag{5}$$

$$C_{\rm\scriptscriptstyle B} = \frac{p_{\rm\scriptscriptstyle B}^2}{4\pi A_{\rm\scriptscriptstyle O}},\tag{6}$$

где p_{μ} и p_{B} — периметры фактического и выпуклого изображения зерна соответственно, A_{0} — площадь проекции фактического его изображения, $\pi = 3,14159...$ — математическая константа.

Поскольку периметры $p_{\rm H}$ и $p_{\rm B}$ не внесены разработчиками прибора "DiaInspect.OSM" в итоговую xls-таблицу, выдаваемую пользователю по завершении диагностики порошка, то их находят косвенно из формул (5), (6) при известных $C_{\rm H}$, $C_{\rm B}$ и $A_{\rm o}$.

Эллиптичность характеризует симметрию проекции, ее вычисляют по зависимости

$$El = \sqrt{\frac{J_{\text{max}}}{J_{\text{min}}}}, \qquad (7)$$

где J_{max} , J_{min} — соответственно инвариантные комплексы осевых моментов инерции J_x , J_y относительно осей X, Y прямоугольной системы координат и центробежного момента инерции J_{xy} . Эти инвариантные комплексы выражают через указанные моменты зависимостями [4]

$$J_{\text{max}} = 0.5 \left[J_x + J_y + \sqrt{(J_x - J_y)^2 + 4J_{xy}^2} \right];$$

$$J_{\text{min}} = 0.5 \left[J_x + J_y - \sqrt{(J_x - J_y)^2 + 4J_{xy}^2} \right].$$
(8)

Шероховатость, характеризующую гладкость контура проекции, определяют по зависимости

$$Rg = \frac{p_{\rm H}}{p_{\rm B}}.$$
 (9)

Удельный периметр, как и шероховатость, характеризует гладкость контура проекции и представляет собой отношение фактического периметра проекции зерна к ее площади:

$$P_{\rm yg} = \frac{p_{\rm H}}{p_{\rm B}} \,. \tag{10}$$

Средний размер зерна d_{c} и его эквивалентный диаметр d_{3} вычисляют по зависимостям

$$d_{\rm c} = \frac{F_{\rm max} + F_{\rm min}}{2}; \tag{11}$$

$$d_{\mathfrak{I}} = 2\sqrt{\frac{A_{\mathfrak{o}}}{\pi}} \,. \tag{12}$$

Перечисленные характеристики описывают величину зерен ($F_{\text{max}}, F_{\text{min}}, d_{\text{c}}, d_{\text{3}}$), их форму ($C_{\text{и}}, F_{\text{удл}}, El$) и топографию поверхности ($P_{\text{уд}}, Rg$).

Кроме того, на основании данных, полученных в результате диагностики, вычислена внешняя удельная поверхность порошков с использованием разработанного в Институте сверхтвердых материалов им. В. Н. Бакуля НАН Украины экстраполяционно-геометрического метода [5], который относится к группе методов, основанных на геометрических измерениях. В его основе лежит 3D-моделирование площади поверхности зерен порошка и их объема. Исходными данными для такого способа измерения служат упоминавшиеся

74

выше диаметры Feret, периметр и площадь проекции зерен, а также их высота. Высоту зерен определяли на приборе "DiaInspect.OSM" по методике, описанной в [5]. Стабильность значений DiaInspect-характеристик и однородность по ним порошка оценивали по методикам [6, 7].

Результаты и обсуждение. Процесс флотационного разделения основан на различиях энергетического состояния поверхности частиц алмаза. При этом, как показано в предыдущих работах авторов [8], частицы алмаза с более гладкой (менее энергетической) поверхностью адсорбируют аполярные димеры жирной кислоты за счет сил Ван-дер-Ваальса, частицы алмаза с развитой дефектной поверхностью (более энергетической) — полярные димеры за счет "водородной связи". Вследствие этого более гладкие частицы попадают в пенный продукт флотационного разделения, а шероховатые — в камерный. Присутствие соли Мора увеличивает селективность действия жирной кислоты за счет адсорбции ионов железа на шероховатой поверхности частиц алмаза, что еще более способствует адсорбции полярных димеров и ионов жирной кислоты.

В результате проведения флотационного разделения стандартного алмазного порошка марки ACM 40/28 в пенный продукт выделено 72,5 % алмаза, в камерный — 27,5 %. В табл. 2 приведены характеристики качества полученных образцов порошка, которые были определены по существующим методикам ДСТУ 3292—95 и на лазерном гранулометре.

Таблица 2. Характеристики качества образцов (пенного и камерного продуктов флотации) алмазного порошка зернистостью 40/28

	Соде	ержание ф	ракций, %		Доля	Абразив	Коэффи-
Образец			DOMON/U/TOU	<i>d</i> _с , мкм	примесей,	ная спо-	циент
ооразец	крупная	основная	ная		% (по	собность	формы
					массе)	COONCOLD	Kφ
Пенный	5	75	20	28,05	0,45	5,98	1,28
Камерный	5	70	25	28,10	0,55	5,49	1,29

На рис. 2 приведены изотермы адсорбции азота, полученные методом БЭТ, на поверхности образцов алмазного порошка зернистостью 40/28 пенного и камерного продуктов флотации, в табл. 3 — их адсорбционноструктурные характеристики, рассчитанные на основании изотерм.

Таблица 3. Адсорбционно-структурные характеристики образцов (пенного и камерного продуктов флотации) алмазного порошка зернистостью 40/28

Образец	<i>S</i> _{БЭТ,} м ² /г	А, Дж/г	<i>А'</i> , Дж/м ²	<i>Е</i> , Дж/г	С _{БЭТ} , отн.ед.	<i>V</i> _ρ , 10 ^{−5} мл/г
Пенный	0,170	27,5	161,8	2,189	34,400	41,44
Камерный	0,265	48,5	183,0	4,374	91,426	73,20

Распределение адсорбционного потенциала на поверхности исходного порошка и продуктов флотации (рис. 3) отражает энергетическую активность всей поверхности и ее отдельных участков.

Рис. 2. Изотермы адсорбции азота на поверхности образцов алмазного порошка зернистостью 40/28 камерного (1) и пенного (2) продуктов флотации.

Рис. 3. Распределение адсорбционного потенциала на поверхности исходного алмазного порошка ACM 40/28 (*a*), пенного (*б*) и камерного (*в*) продуктов флотации.

www.ism.kiev.ua; www.rql.kiev.ua/almaz_j

В табл. 4 приведены гранулометрические характеристики образцов алмазного порошка марки 40/28 (исходного и продуктов флотации), полученные на лазерном гранулометре. Они касаются среднего размера зерен d_c , эквивалентного их диаметра d_3 , отношения $S_{\text{геом}}$ площади поверхности к объему зерна как шара диаметром d_3 , а также отношения $S'_{\text{геом}} = S_{\text{геом}}/\rho$, где ρ — плотность синтетического алмаза. Из анализа представленных данных видно, что при одинаковых геометрических размерах (d_c , $S_{\text{геом}}$) у камерного продукта флотации все адсорбционно-структурные характеристики значительно выше, чем у пенного.

Таблица 4. Гранулометрические характеристики образцов алмазного порошка зернистостью 40/28 исходного (стандартный марки АСМ) и продуктов флотации

Образец Выход,	BUXOD		<i>d</i> _с , мкм		c	<u><u></u></u>	4	
	быход, %	менее менее		менее	З _{геом} , м ² /см ³	о _{геом} , м ² /г	и _э , мкм	
	70	10 %	50 %	90 %		141 /1		
Исходный	100,0	19,561	28,150	40,851	0,220	0,063	27	
Пенный	72,5	19,485	28,051	40,721	0,221	0,063	27	
Камерный	27,5	19,495	28,101	40,831	0,221	0,063	27	

Так, значения $S_{\text{БЭТ}}$, A, E пенного продукта флотации в 1,7—2,0 раза, а величина C в 2,7 раза ниже, чем камерного. Учитывая, что значение удельного адсорбционного потенциала A' камерного продукта несколько выше, можно утверждать, что и связь адсорбата с адсорбентом сильнее, и число активных центров значительно больше.

Подтверждением этого вывода служит распределение адсорбционного потенциала алмазного порошка марки ACM 40/28 и продуктов его флотации (см. рис. 3). Из рисунка видно, что более 80 % поверхности пенного продукта характеризуется значениями адсорбционного потенциала 10—40 Дж/г, в то время как камерный имеет более 50 % активной поверхности с A = 50—100 Дж/г.

Эффективность разделительных процессов оценивают обычно по степени извлечения (распределения є, %) разделяемых компонентов в конечные продукты и рассчитывают по зависимости

$$\varepsilon = \frac{\gamma_n \alpha_{in}}{\alpha_{i \text{ MCX}}}, \qquad (13)$$

где γ_n — выход продукта разделения, %; α_{in} — содержание компонента *i* в этом продукте, %; $\alpha_{i \text{ исх}}$ — содержание компонента *i* в материале, подлежащем разделению, %.

В нашем случае γ_{Π} и γ_{κ} — выход пенного и камерного продуктов флотации (72,5 и 27,5 % соответственно), $\alpha_{i\Pi}$, $\alpha_{i\kappa}$ — содержание зерен пенного и камерного продуктов с величиной адсорбционного потенциала A_i в пенном и камерном продукте соответственно, $\alpha_{iисx}$ — содержание зерен с величиной адсорбционного потенциала A_i в исходном порошке марки ACM 40/28. Из результатов расчетов ε (в % от общего количества в исходном порошке) следует, что основная (до 80 %) масса порошков с низкоэнергетической поверхностью ($A_i < 40$ Дж/г) извлечена в пенный продукт флотации и все 100 % зерен с $A_i > 70$ Дж/г — в камерный (рис. 4).

Исходя из того, что активными центрами на поверхности алмазов при адсорбции азота являются, в основном, дефекты поверхности в виде выступов,

шероховатостей, ямок травления, выходов включений, то поверхность пенного и камерного продуктов должна отличаться топографией.

Рис. 4. Распределение участков поверхности порошка с различной величиной адсорбционного потенциала по поверхности пенного (□) и камерного (■) продуктов флотации.

Однако существующие методы анализа (см. табл. 2, 4) не дают возможности зафиксировать эти различия. В связи с этим были проведены измерения морфометрических характеристик исследуемых образцов алмазных порошков на приборе "DiaInspect.OSM".

В ходе анализа было установлено распределение среднего диаметра зерен исходного микропорошка марки ACM 40/28 и продуктов флотации, определены основные морфометрические характеристики и произведена количественная оценка адекватности полученных значений (табл. 5, рис. 5).

	Исходный			Ка	мерный	1	Пенный			
Характе-	Зна-	Показатели		Зна-	Показатели		Зна-	Показатели		
ристика		адеква	тности		адеква	тности	чение	адеква	тности	
чение	чение	u	İст	чение	и	i _{ст}		u	i _{ст}	
F_{\min}	21,16	0,512	0,148	27,96	0,666	0,305	28,51	0,688	0,364	
F_{\max}	30,07	0,499	0,142	39,48	0,641	0,296	39,96	0,654	0,347	
$F_{ m yдл}$	1,44	0,451	0,366	1,43	0,364	0,391	1,42	0,362	0,376	
K_φ по ДСТУ	1,27	0,460	0,389	1,29	0,418	0,450	1,28	0,417	0,478	
3292—95										
$d_{\rm c}$, мкм	25,62	0,552	0,148	33,72	0,698	0,305	34,23	0,736	0,362	
$d_{\scriptscriptstyle \Im}$, мкм	24,00	0,554	0,151	31,39	0,707	0,314	31,96	0,740	0,371	
$C_{\scriptscriptstyle \rm H}$	1,3329	0,6497	0,4281	1,3442	0,5383	0,4413	1,3339	0,5875	0,5620	
El	1,38	0,399	0,261	1,41	0,299	0,296	1,39	0,312	0,321	
Rg	1,0604	0,713	0,852	1,0586	0,737	0,848	1,0574	0,761	0,842	
$p_{\scriptscriptstyle \rm H}$, мкм	87,2	0,506	0,145	114,35	0,616	0,289	116,00	0,664	0,333	
$A_{\rm o}$, мкм ²	568,0	0,326	0,027	816,0	0,538	0,127	822,0	0,587	0,211	

Таблица 5. Результаты определения и оценки характеристик микропорошков АСМ 40/28

$\gamma \gamma \gamma \gamma \gamma \tau \iota S I \iota \Lambda \iota C \gamma \iota \Lambda \iota G \tau \iota \Lambda \iota G \iota \Lambda \iota C \gamma \iota \Lambda \iota G \iota \Lambda \iota G \iota \Lambda \iota G \iota \Lambda \iota G \iota I \iota I \iota G \iota L I \iota G \iota I \iota I \iota G \iota L I \iota G \iota I \iota I \iota G \iota I \iota I \iota G \iota I \iota I \iota$	www.ism.kiev.ua;	www.rql.kiev.ua/almaz	İ
--	------------------	-----------------------	---

$P_{\rm yg}$, 1/мкм	0,3088	0,450	0,105	0,1687	0,448	0,103	0,1510	0,448	0,124
$U \mathrm{c} F_{\mathrm{ygn}}$		0,4	158		0,5	522		0,5	546
$U \mathrm{c}\mathrm{K}_{\mathrm{\Phi}}$		0,4	160		0,5	529		0,5	554
Внешняя	389,3			190,22			164,71		
удельная									
поверхность,									
м ² /кг									
Абразивная	5,15			5,49			5,98		
способность									

Рис. 5. Гистограммы распределения среднего диаметра зерен исходного микропорошка марки ACM 40/28 (*a*) и порошков, полученных методом флотационного разделения (камерного (*б*) и пенного (*в*) продуктов) по размерным интервалам его значений.

В табл. 5 приведены также показатели адекватности значений исследуемых характеристик по критериям стабильности $i_{\rm cr}$ и однородности u, обобщенный показатель однородности U в двух вариантах, значения внешней удельной поверхности и абразивной способности каждого из трех образцов порошка.

Анализ полученных результатов свидетельствует, что по морфометрическим характеристикам продукты флотации значительно отличаются от исходного порошка по таким показателям, как средний диаметр d_c , эллипсность El, удельный периметр P_{ya} , а также по показателям однородности F_{yan} и K_{ϕ} . Эти отличия и обеспечивают более высокие значения абразивной способности пенного и камерного продуктов флотации. Разница морфометрических характеристик пенного и камерного продуктов менее существенна. Однако такие показатели, как El и P_{ya} , свидетельствующие о форме зерен и развитости поверхности, у камерного продукта выше. Эти результаты хорошо согласуются с адсорбционно-структурными характеристиками — адсорбционным и удельным адсорбционным потенциалами, значениями E и $C_{БЭТ}$, учитывающими активность поверхностных центров и их число.

В результате сортировки существенно повысилась и однородность порошка по размерным характеристикам и коэффициенту формы K_{ϕ} (см. табл. 5, рис. 5). Причем наибольшей однородностью обладает пенный продукт флотации, что и объясняет его более высокую абразивную способность.

Выводы

Показано, что у пенного продукта флотации значения $S_{\text{БЭТ}}$, A, E в 1,7—2,0 раза, а величина $C_{\text{БЭТ}}$ в 2,7 раза ниже, чем у камерного. Основная масса (до 80 %) порошков с низкоэнергетической поверхностью (A < 40 Дж/г) извлечена в пенный продукт флотации и все 100 % зерен с A > 70 Дж/г — в камерный продукт.

Оценка однородности порошков по системно-критериальному методу показала, что в результате сортировки существенно повысилась их однородность по размерным характеристикам и показателю формы. Поверхность пенного и камерного продуктов отличается не только морфологией, но и топографией.

Установлено, что продукты флотационного разделения обладают большей однородностью и высокой абразивной способностью.

Полученные данные подтверждают целесообразность использования флотационного метода разделения как инструмента повышения однородности алмазных микропорошков по морфометрическим характеристикам, а также эффективность разработанного пакета компьютерно-аналитических методов количественного анализа этих характеристик.

- 1. Богатырева Г. П. Сортировка алмазов по прочности флотацией // Синт. алмазы. 1972. Вып. 3. С. 23—25.
- 2. Грег С., Синг К. Адсорбция, удельная поверхность, пористость / Пер. с англ. под ред. К. В. Чмутова. М.: Мир, 1970. 408 с.
- 3. *List E., Frenzel J., Vollstadt H.* A new system for single particle strength testing of grinding powders // Industrial Diamond Review. 2006. N 1. P. 42—47.
- 4. Сопротивление материалов / Под общ. Ред. Г. С. Писаренко. Киев: Вища школа, 1979. 696 с.
- 5. Петасюк Г. А., Богатырева Г. П. Экстраполяционно-аналитический метод определения удельной поверхности порошков сверхтвердых материалов // Сверхтв. материалы. 2007. № 6. С. 65—76.
- 6. Новиков Н. В., Богатырева Г. П., Петасюк Г. А. К вопросу повышения информативности морфологических характеристик порошков из сверхтвердых материалов,

определяемых на видео-компьютерных диагностических комплексах // Там же. — 2005. — № 3. — С. 73—85. 7. *Новиков Н. В., Богатырева Г. П., Никитин Ю. И., Петасюк Г. А.* Методика определения

- 7. Новиков Н. В., Богатырева Г. П., Никитин Ю. И., Петасюк Г. А. Методика определения показателей однородности порошков синтетического алмаза на основе системнокритериального подхода // Інструментальний світ. — 2006. — № 3 (31). — С. 4—6.
- Богатырева Г. П., Гатилова Е. Г. О механизме взаимодействия жирных кислот С₇—С₉ с поверхностью синтетических алмазов // Синт. алмазы. — 1972. — Вып. 6. — С. 39—42.

Ин-т сверхтвердых материалов им. В. Н. Бакуля НАН Украины

Поступила 01.12.08