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Morse-Bott functions on manifolds
with semi-free circle action

Let W 2n be a closed manifold of dimension ≥ 6 with semi-free circle having
finitely many fixed points. We study S1-invariant Morse-Bott functions on
W 2n. The aim of this paper is to obtain exact values of minimal numbers
of singular circles of some indexes of S1-invariant Morse-Bott functions on
W 2n.
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1. S1-invariant Morse-Bott functions

Let W 2n be a closed smooth manifold. Suppose that W 2n

admits a smooth semi-free circle action with finitely many fixed
points. It is known that every isolated fixed point p of a semi-free
S1-action has the following important property: near such a point
the action is equivalent to a certain linear S1 = SO(2)-action on
R2n. More precisely, for every isolated fixed point p there exist an
open invariant neighborhood U of p and a diffeomorphism h from
U to an open unit disk D in Cn centered at origin such that h
conjugates the given S1-action on U to the S1-action on Cn with
weight (1, . . . , 1). We will use both complex, (z1, . . . , zn), and real
coordinates (x1, y1, . . . , xn, yn) on Cn = R2n with zi = xi+

√
−1yi.

The pair (U, h) will be called a standard chart at the point p.
Let f : W 2n → R be a smooth S1-invariant function on the mani-
fold W 2n. Denote by Σf the set of singular points of the function
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f . It is clear that the set of isolated singular points Σf (pi) ⊂ Σf

of f coincides with the set of fixed points W S1
.

A point p ∈ W S1
is nondegenerate if the Hessian of the

function f at p is nondegenerate. For a nondegenerate fixed point
p there exist a standard chart (U, h) such that on U the function
f is given by the following formula:

f = f(p) − |z1|2 − . . .− |zλ|2 + |zλ+1|2 + . . .+ |zn|2.
Notice that the index of nondegenerate fixed point p is always
even.

Denote by Σf (S
1) the set singular points of the function f that

are disconnected union of circles. These circles will be called sin-

gular.
A circle s ∈ Σf(S

1) is called nondegenerate if there is an

S1-invariant neighborhood U of s on which S1 acts freely and such
that the point π(s) is nondegenerate for the function

π∗(f) : U/S1 → R,

induced on U/S1 by the natural map π : U → U/S1. An invari-
ant version of Morse lemma says that there exist an S1-invariant
neighborhood U of the circle s and coordinates (x1, . . . , x2n−1) on
U/S1 such that the function π∗(f) has the following presentation:

π∗(f) = π∗(f(π(s)))− |x1|2 − . . .− |xν |2 + |xν+1|2 + . . .+ |x2n−1|2.
By definition ν is the index of singular circle s.

Definition 1. A smooth S1-invariant function f : W 2n → R on
a manifold W 2n with a semi-free circle action which has isolated
fixed points is called an S1-invariant Morse-Bott function if each
connected component of the singular set Σf is either a nondegen-
erate fixed point or a nondegenerate critical circle, [3].

Definition 2. Assume that W 2n is the closed manifold with
a smooth semi-free circle action which has isolated fixed points
p1, . . . , pk. For any fixed point pi there exists a standard chart
(Ui, hi) such that each Ui is diffeomorphic to the unit disk D2n in
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Cn and that Ui are pairwise disjoint. Take any arbitrary integer

λi = 0, 1, . . . , n and define the following function on fi : Ui → R

by

fi = fi(pi) − |z1|2 − . . .− |zλi
|2 + |zλi+1|2 + . . . + |zn|2.

Theorem 1. Every smooth semi-free circle action on a closed
manifold with isolated fixed points p1, . . . , pk has an S1-invariant
Morse-Bott function f such that f = fi on Ui.

Proof. From results of paper [2] it follows that functions fi can be
extended from Ui to W 2n \⋃Ui. �

Theorem 2. The number of fixed points of any smooth semi-free
circle action on W 2n with isolated fixed points is always even and
equal to the Euler characteristic, χ(W 2n), of the manifold W 2n.

Proof. By Theorem 1 we construct on U1 the function

f1 = f1(p1) + |z1|2 + . . .+ |zn|2,
on Uj , (j ≥ 2) the function

fj = fj(pi) − |z1|2 − . . .− |zn|2

and extend such functions to S1-invariant Morse-Bott function f
on W 2n \⋃Ui. Since the manifold CPn is non-cobordant to zero
it follows that the number of fixed points of any smooth semi-free
circle action on W 2n with isolated fixed points is equal to the Euler
characteristic χ(W 2n) = 2k of W 2n. �

Definition 3. Let f be an S1-invariant Morse-Bott function for
smooth semi-free circle action with isolated fixed points p1, . . . , p2k

on a closed manifold W 2n. Suppose that the index of a critical
point pi of f is λi. The state of f is the collection of numbers
λ1, λ2, . . . , λ2k, which we will be denoted by Stf (λi).

Remark 1. From Theorem 1 it follows that for every smooth
semi-free circle action on a closed manifold W 2n with isolated fixed
points p1, . . . , p2k and any collection numbers λ1, λ2, . . . , λ2k, such
that 0 ≤ λi ≤ 2n there exists an S1-invariant Morse-Bott functions
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f on W 2n with state Stf (λi). Such a collection of numbers will be
denoted by St(λi) and called a state.

Definition 4. Let W 2n be a closed smooth manifold with smooth
semi-free circle action which has finitely many fixed points. The
S1-equivariant Morse number Mν

S1(W
2n, St(λi)) of index

ν of a state St(λi) of W 2n is the minimum number of singular
circles of index ν taken over all S1-invariant Morse-Bott functions
on W 2n with state St(λi).

The S1-equivariant Morse number Mν
S1(W

2n) of index ν

of W 2n is the minimum number of Mν
S1(W

2n, St(λi)) taken over
all states.

The S1-equivariant Morse number MS1(W 2n, St(λi)) of

a state St(λi) is the minimum number of singular circles of all
indices taken over all S1-invariant Morse-Bott functions on W 2n

with state St(λi).
The S1-equivariant Morse number MS1(W 2n) of W 2n is

the minimum number of MS1(W 2n, St(λi)) taken over all states.

There is an unsolved problem: for a manifold W 2n with a semi-
free circle action which has finitely many fixed points find ex-

act values of the numbers Mν
S1(W

2n, St(λi)), Mν
S1(W

2n),

MS1(W 2n, St(λi)), and MS1(W 2n).

Definition 5. An S1-invariant Morse-Bott function f on the
manifold W 2n with semi-free circle action which has finitely many
fixed points is

minimal for index ν of a state St(λi) if the number of
singular circles of f of index ν is equal to Mν

S1(W
2n, St(λi));

minimal for index ν if the number of singular circles of f of
index ν is equal to Mν

S1(W
2n);

minimal for state St(λi) if the number of all singular circles
of f is equal to MS1(W 2n, St(λi));

minimal if the number of all singular circles of f is equal to
MS1(W 2n).
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Theorem 3. Let W 2n (2n > 5) be a closed smooth simply-
connected manifold admits a smooth semi-free circle action with
isolated fixed points p1, . . . , p2k. Then on the manifold W 2n for the
state St(0, . . . , 0︸ ︷︷ ︸

l

, 2n, . . . , 2n︸ ︷︷ ︸
2k−l

) there exists a minimal (minimal for

index ν) S1-invariant Morse-Bott function g for the state

St(0, . . . , 0︸ ︷︷ ︸
l

, 2n, . . . , 2n︸ ︷︷ ︸
2k−l

)

and

MS1(W 2n, St(0, . . . , 0︸ ︷︷ ︸
l

, 2n, . . . , 2n︸ ︷︷ ︸
2k−l

)) =

=
n−1∑

i=1

µ(Hi((W
2n/S1) \ (pl+1 ∪ . . . ∪ p2k), p1, . . . , pl,Z)+

+
n−2∑

i=2

µ(Tors(Hi((W
2n/S1) \ (pl+1 ∪ . . . ∪ p2k), p1, . . . , pl,Z),

(
Mν

S1

(
W 2n, St(0, . . . , 0︸ ︷︷ ︸

l

, 2n, . . . , 2n︸ ︷︷ ︸
2k−l

)
)

=

= µ
(
Hν((W

2n/S1) \ (pl+1 ∪ . . . ∪ p2k), p1, . . . , pl,Z)
)
+

+ µ
(
Tors(Hν−1((W

2n/S1) \ (pl+1 ∪ . . . ∪ p2k), p1, . . . , pl,Z)
))
,

where 0 ≤ l ≤ 2k (µ(H) – minimal number of generators of group
H).

Proof. Choose an invariant neighborhood Ui of the point pi diffeo-
morphic to the unit disc D2n ⊂ Cn and set U =

⋃
i Ui. Consider

the manifold V 2n = (W 2n \U)/S1. It is clear that its boundary is
a disconnected union of complex projective spaces

∂V 2n = CP 2n−2
1 ∪ . . . ∪ CP 2n−2

k .
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The set W 2n/S1 is simply-connected. It is easy to see using van
Kampen theorem that (W 2n \ U)/S1 is simply-connected as well.
From S. Smale’s theorem [4] is follows that on (W 2n \U)/S1 there
exists a minimal Morse function which we used to construct an
S1-invariant Morse-Bott function g for state

St(0, . . . , 0︸ ︷︷ ︸
l

, 2n, . . . , 2n︸ ︷︷ ︸
2k−l

)

on the manifold W 2n. The values of

MS1

(
W 2n, St(0, . . . , 0︸ ︷︷ ︸

l

, 2n, . . . , 2n︸ ︷︷ ︸
2k−l

)
)

and
Mν

S1

(
W 2n, St(0, . . . , 0︸ ︷︷ ︸

l

, 2n, . . . , 2n︸ ︷︷ ︸
2k−l

)
)

follow from S. Smale’s theorem and simple homology calcu-
lation. �

Remark 2. Using diagrams technique, [1], one can give estimates
for equivariant Morse number for other states. This will be made
in forthcoming paper.
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