V. V. Sharko

Institute of Mathematics of NAS of Ukraine, Tereshchenkivs'ka st. 3, Kyiv, 01601 Ukraine E-mail: sharko@imath.kiev.ua

Morse-Bott functions on manifolds with semi-free circle action

Let W^{2n} be a closed manifold of dimension ≥ 6 with semi-free circle having finitely many fixed points. We study S^1 -invariant Morse-Bott functions on W^{2n} . The aim of this paper is to obtain exact values of minimal numbers of singular circles of some indexes of S^1 -invariant Morse-Bott functions on W^{2n} .

Keywords: Semi-free circle action, manifold, Morse-Bott function, Morse number.

1. S^1 -invariant Morse-Bott functions

Let W^{2n} be a closed smooth manifold. Suppose that W^{2n} admits a smooth semi-free circle action with finitely many fixed points. It is known that every isolated fixed point p of a semi-free S^1 -action has the following important property: near such a point the action is equivalent to a certain linear $S^1 = SO(2)$ -action on \mathbb{R}^{2n} . More precisely, for every isolated fixed point p there exist an open invariant neighborhood U of p and a diffeomorphism h from U to an open unit disk D in \mathbb{C}^n centered at origin such that hconjugates the given S^1 -action on U to the S^1 -action on \mathbb{C}^n with weight $(1, \ldots, 1)$. We will use both complex, (z_1, \ldots, z_n) , and real coordinates $(x_1, y_1, \ldots, x_n, y_n)$ on $\mathbb{C}^n = \mathbb{R}^{2n}$ with $z_i = x_i + \sqrt{-1}y_i$. The pair (U, h) will be called a **standard chart** at the point p. Let $f: W^{2n} \to \mathbb{R}$ be a smooth S^1 -invariant function on the manifold W^{2n} . Denote by Σ_f the set of singular points of the function

© V. V. Sharko, 2009

f. It is clear that the set of isolated singular points $\Sigma_f(p_i) \subset \Sigma_f$ of f coincides with the set of fixed points W^{S^1} .

A point $p \in W^{S^1}$ is nondegenerate if the Hessian of the function f at p is nondegenerate. For a nondegenerate fixed point p there exist a standard chart (U, h) such that on U the function f is given by the following formula:

$$f = f(p) - |z_1|^2 - \ldots - |z_\lambda|^2 + |z_{\lambda+1}|^2 + \ldots + |z_n|^2.$$

Notice that the index of nondegenerate fixed point p is always even.

Denote by $\Sigma_f(S^1)$ the set singular points of the function f that are disconnected union of circles. These circles will be called **singular**.

A circle $s \in \Sigma f(S^1)$ is called nondegenerate if there is an S^1 -invariant neighborhood U of s on which S^1 acts freely and such that the point $\pi(s)$ is nondegenerate for the function

$$\pi_*(f): U/S^1 \to \mathbb{R},$$

induced on U/S^1 by the natural map $\pi : U \to U/S^1$. An invariant version of Morse lemma says that there exist an S^1 -invariant neighborhood U of the circle s and coordinates (x_1, \ldots, x_{2n-1}) on U/S^1 such that the function $\pi_*(f)$ has the following presentation:

$$\pi_*(f) = \pi_*(f(\pi(s))) - |x_1|^2 - \ldots - |x_\nu|^2 + |x_{\nu+1}|^2 + \ldots + |x_{2n-1}|^2.$$

By definition ν is the **index** of singular circle s.

Definition 1. A smooth S^1 -invariant function $f: W^{2n} \to \mathbb{R}$ on a manifold W^{2n} with a semi-free circle action which has isolated fixed points is called an S^1 -invariant Morse-Bott function if each connected component of the singular set Σ_f is either a nondegenerate fixed point or a nondegenerate critical circle, [3].

Definition 2. Assume that W^{2n} is the closed manifold with a smooth semi-free circle action which has isolated fixed points p_1, \ldots, p_k . For any fixed point p_i there exists a standard chart (U_i, h_i) such that each U_i is diffeomorphic to the unit disk D^{2n} in \mathbb{C}^n and that U_i are pairwise disjoint. Take any **arbitrary integer** $\lambda_i = 0, 1, \ldots, n$ and define the following function on $f_i : U_i \to \mathbb{R}$ by

$$f_i = f_i(p_i) - |z_1|^2 - \dots - |z_{\lambda_i}|^2 + |z_{\lambda_i+1}|^2 + \dots + |z_n|^2$$

Theorem 1. Every smooth semi-free circle action on a closed manifold with isolated fixed points p_1, \ldots, p_k has an S^1 -invariant Morse-Bott function f such that $f = f_i$ on U_i .

Proof. From results of paper [2] it follows that functions f_i can be extended from U_i to $W^{2n} \setminus \bigcup U_i$.

Theorem 2. The number of fixed points of any smooth semi-free circle action on W^{2n} with isolated fixed points is always even and equal to the Euler characteristic, $\chi(W^{2n})$, of the manifold W^{2n} .

Proof. By Theorem 1 we construct on U_1 the function

$$f_1 = f_1(p_1) + |z_1|^2 + \ldots + |z_n|^2,$$

on U_i , $(j \ge 2)$ the function

$$f_j = f_j(p_i) - |z_1|^2 - \ldots - |z_n|^2$$

and extend such functions to S^1 -invariant Morse-Bott function f on $W^{2n} \setminus \bigcup U_i$. Since the manifold CP^n is non-cobordant to zero it follows that the number of fixed points of any smooth semi-free circle action on W^{2n} with isolated fixed points is equal to the Euler characteristic $\chi(W^{2n}) = 2k$ of W^{2n} .

Definition 3. Let f be an S^1 -invariant Morse-Bott function for smooth semi-free circle action with isolated fixed points p_1, \ldots, p_{2k} on a closed manifold W^{2n} . Suppose that the index of a critical point p_i of f is λ_i . The state of f is the collection of numbers $\lambda_1, \lambda_2, \ldots, \lambda_{2k}$, which we will be denoted by $St_f(\lambda_i)$.

Remark 1. From Theorem 1 it follows that for every smooth semi-free circle action on a closed manifold W^{2n} with isolated fixed points p_1, \ldots, p_{2k} and any collection numbers $\lambda_1, \lambda_2, \ldots, \lambda_{2k}$, such that $0 \leq \lambda_i \leq 2n$ there exists an S^1 -invariant Morse-Bott functions f on W^{2n} with state $St_f(\lambda_i)$. Such a collection of numbers will be denoted by $St(\lambda_i)$ and called a **state**.

Definition 4. Let W^{2n} be a closed smooth manifold with smooth semi-free circle action which has finitely many fixed points. The S^1 -equivariant Morse number $\mathcal{M}_{S^1}^{\nu}(W^{2n}, St(\lambda_i))$ of index ν of a state $St(\lambda_i)$ of W^{2n} is the minimum number of singular circles of index ν taken over all S^1 -invariant Morse-Bott functions on W^{2n} with state $St(\lambda_i)$.

The S^1 -equivariant Morse number $\mathcal{M}_{S^1}^{\nu}(W^{2n})$ of index ν of W^{2n} is the minimum number of $\mathcal{M}_{S^1}^{\nu}(W^{2n}, St(\lambda_i))$ taken over all states.

The S^1 -equivariant Morse number $\mathcal{M}_{S^1}(W^{2n}, St(\lambda_i))$ of a state $St(\lambda_i)$ is the minimum number of singular circles of all indices taken over all S^1 -invariant Morse-Bott functions on W^{2n} with state $St(\lambda_i)$.

The S¹-equivariant Morse number $\mathcal{M}_{S^1}(W^{2n})$ of W^{2n} is the minimum number of $\mathcal{M}_{S^1}(W^{2n}, St(\lambda_i))$ taken over all states.

There is an unsolved problem: for a manifold W^{2n} with a semifree circle action which has finitely many fixed points find exact values of the numbers $\mathcal{M}_{S^1}^{\nu}(W^{2n}, St(\lambda_i)), \ \mathcal{M}_{S^1}^{\nu}(W^{2n}), \ \mathcal{M}_{S^1}(W^{2n}, St(\lambda_i)), \ \mathcal{M}_{S^1}^{\nu}(W^{2n})$.

Definition 5. An S^1 -invariant Morse-Bott function f on the manifold W^{2n} with semi-free circle action which has finitely many fixed points is

minimal for index ν of a state $St(\lambda_i)$ if the number of singular circles of f of index ν is equal to $\mathcal{M}_{S^1}^{\nu}(W^{2n}, St(\lambda_i));$

minimal for index ν if the number of singular circles of f of index ν is equal to $\mathcal{M}_{S^1}^{\nu}(W^{2n})$;

minimal for state $St(\lambda_i)$ if the number of all singular circles of f is equal to $\mathcal{M}_{S^1}(W^{2n}, St(\lambda_i));$

minimal if the number of all singular circles of f is equal to $\mathcal{M}_{S^1}(W^{2n})$.

Theorem 3. Let W^{2n} (2n > 5) be a closed smooth simplyconnected manifold admits a smooth semi-free circle action with isolated fixed points p_1, \ldots, p_{2k} . Then on the manifold W^{2n} for the state $St(\underbrace{0,\ldots,0}_{l},\underbrace{2n,\ldots,2n}_{2k-l})$ there exists a minimal (minimal for

index ν) S¹-invariant Morse-Bott function g for the state

$$St(\underbrace{0,\ldots,0}_{l},\underbrace{2n,\ldots,2n}_{2k-l})$$

and

$$\mathcal{M}_{S^{1}}(W^{2n}, St(\underbrace{0, \dots, 0}_{l}, \underbrace{2n, \dots, 2n}_{2k-l})) = \\ = \sum_{i=1}^{n-1} \mu(H_{i}((W^{2n}/S^{1}) \setminus (p_{l+1} \cup \dots \cup p_{2k}), p_{1}, \dots, p_{l}, \mathbb{Z}) + \\ + \sum_{i=2}^{n-2} \mu(Tors(H_{i}((W^{2n}/S^{1}) \setminus (p_{l+1} \cup \dots \cup p_{2k}), p_{1}, \dots, p_{l}, \mathbb{Z}))$$

$$\left(\mathcal{M}_{S^{1}}^{\nu} \left(W^{2n}, St(\underbrace{0, \dots, 0}_{l}, \underbrace{2n, \dots, 2n}_{2k-l}) \right) = \\ = \mu \left(H_{\nu}((W^{2n}/S^{1}) \setminus (p_{l+1} \cup \dots \cup p_{2k}), p_{1}, \dots, p_{l}, \mathbb{Z}) \right) + \\ + \mu \left(Tors(H_{\nu-1}((W^{2n}/S^{1}) \setminus (p_{l+1} \cup \dots \cup p_{2k}), p_{1}, \dots, p_{l}, \mathbb{Z}) \right) \right)$$

where $0 \le l \le 2k \ (\mu(H) - minimal number of generators of group H)$.

Proof. Choose an invariant neighborhood U_i of the point p_i diffeomorphic to the unit disc $D^{2n} \subset \mathbb{C}^n$ and set $U = \bigcup_i U_i$. Consider the manifold $V^{2n} = (W^{2n} \setminus U)/S^1$. It is clear that its boundary is a disconnected union of complex projective spaces

$$\partial V^{2n} = \mathbb{C}P_1^{2n-2} \cup \ldots \cup \mathbb{C}P_k^{2n-2}.$$

The set W^{2n}/S^1 is simply-connected. It is easy to see using van Kampen theorem that $(W^{2n} \setminus U)/S^1$ is simply-connected as well. From S. Smale's theorem [4] is follows that on $(W^{2n} \setminus U)/S^1$ there exists a minimal Morse function which we used to construct an S^1 -invariant Morse-Bott function g for state

$$St(\underbrace{0,\ldots,0}_{l},\underbrace{2n,\ldots,2n}_{2k-l})$$

on the manifold W^{2n} . The values of

$$\mathcal{M}_{S^1}(W^{2n}, St(\underbrace{0,\ldots,0}_{l},\underbrace{2n,\ldots,2n}_{2k-l}))$$

and

$$\mathcal{M}_{S^1}^{\nu}\left(W^{2n}, St(\underbrace{0,\ldots,0}_{l},\underbrace{2n,\ldots,2n}_{2k-l})\right)$$

follow from S. Smale's theorem and simple homology calculation. $\hfill \Box$

Remark 2. Using diagrams technique, [1], one can give estimates for equivariant Morse number for other states. This will be made in forthcoming paper.

References

- V. V. Sharko. Functions on Manifolds: Algebraic and topological aspects, Translations of Mathematical Monographs, 131, American Mathematical Society, 1993.
- [2] A. Jankowski, R. Rubinsztein. Functions with non-degenerate critical points on manifolds with boundary // Comment. Math. Prace Mat. – 1972. – V. 16. – PP. 99–112.
- [3] M. Kogan. Existence of perfect Morse functions on spaces with semifree circle action // Journal of Symplectic Geometry. – 2003. – V. 1. – PP. 829–850.
- [4] S. Smale. On the structure of manifolds // Amer. Journal of Math. 1962. – V. 84. – PP. 387-399.