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On conjugate pseudo-harmonic
functions

We prove the following theorem. Let U be a pseudo-harmonic function
on a surface M?. For a real valued continuous function V : M? — R to
be a conjugate pseudo-harmonic function of U on M? it is necessary and
sufficient that V is open on level sets of U.
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Let M? be a surface, i.e. a 2-dimensional and separable mani-
fold, U : M? — R be a real-valued function on M?. Denote also
by

D = {(z,y) e R?|2® + ¢* < 1}

the open unit disk in the plane.
Definition 1 (see [1,2]). A function U is called pseudo-harmonic
in a point p € M? if there exist a neighbourhood N of p on M?
and a homeomorphism T : D — N such that T(0,0) = p and a
function
u=UoT:D — R?

is harmonic and not identically constant.

A neighbourhood N is called simple neighbourhood of p.

We can even choose N and T from previous definition to comply
with the equality

w(z) =UoT(z) =Rez"+U(p), z=z+iyeD,
for a certain n = n(p) € N (see [2]).
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Definition 2 (see [1,2]). A function U is called pseudo-harmonic
on M? if it is pseudo-harmonic in each point p € M?>.

Let U : M? — R be a pseudo-harmonic function on M? and
V : M? — R be a real valued function.

Definition 3 (see [1]). A function V is called a conjugate pseudo-
harmonic function of U in a point p € M? if there exist a neigh-
bourhood N of p on M? and a homeomorphism T : D — N such
that T(0,0) = p and

u=UoT:D—R?> and v=VoT:D — R?
are conjugate harmonic functions.

We can choose N and T from previous definition in such way
that

u(z)=UoT(z2) =Rez"+U(p),
v(z)=VoT(z)=Imz"+V(p), z=x+iyeD,
for a certain n = n(p) € N (see [2]).

Definition 4 (see [1]). A function V is called a conjugate pseudo-
harmonic function of U on M? if it is a conjugate pseudo-harmonic
function of U in every p € M?>.

Definition 5. Let U and V' be continuous real valued functions
on a surface M?. We say that V is open on level sets of U if for
every ¢ € U(M?) a mapping

Vig-1( : U ) =R
is open on the space U~1(c) in the topology induced from M?.

Theorem 1. Let U be a pseudo-harmonic function on M?. For
a real valued continuous function V : M? — R to be a conjugate
pseudo-harmonic function of U on M? it is necessary and suffi-
ctent that V' is open on level sets of U.

Let us remind following definition.
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Definition 6 (see [3]). A mapping G : M7 — M3 of a surface
M? to a surface M2 is called interior if it complies with conditions:
1) G is open, i. e. an image of any open subset of M% is
open in M22;
2) for everyp € M3 its full preimage G~(p) does not contain
any nondegenerate continuum (closed connected subset of
M2).
In order to prove theorem 1 we need following

Lemma 1. Let U be a pseudo-harmonic function on M?. Let a
real valued continuous function V' be open on level sets of U.
Then the mapping F : M? — C,

F(p)=U(p)+iV(p), pe M
s nterior.

First we will verify one auxiliary statement. Denote I = [0, 1],
I=(0,1)=1\{0,1}.

Proposition 1. In the condition of Lemma 1 the following state-
ment holds true.

Let~y : I — M? be a simple continuous curve and v(I) C U~(c)
for a certain ¢ € R. If the set v(I) is open in U~Y(c) in the
topology induced from M?, then the function Vo~ : I — R is
strictly monotone.

Proof. Suppose that contrary to the statement of Proposition the
equality Vovy(7) = Voy(re) is valid for certain 7,7 € I, 71 < To.
Since the function V o+ is continuous and a set [y, 72] is com-
pact, then following values
di = min Von~(t),
tE[T1,T2}
dy = max Vo~(t),
tE[T1,T2}
are well defined. Let us fix s1, s9 € [11, 72] such that d; = Vo~y(s;),
i=1,2.
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We designate W = (71, 72). It is obviously the open subset of 1.
Let us consider first the case d; = do. It is clear that

[71,72] € (Vo) (dy)

in this case. So the open subset (W) of the level set U~1(c) is
mapped by V onto a one-point set {d;} which is not open in R
and V is not open on level sets of U.

Assume now that dy # da. Since V ovy(r1) = V o y(m) due to
our previous supposition, then either s; or ss is contained in W.

Let s; € W (the case sy € W is considered similarly). Then
Vory(W) C [d1,+00) and the open subset v(W) of the level set
U~Y(c) can not be mapped by V to an open subset of R since its
image containes the frontier point d; = V o~(s1). So, in this case
V' is not open on level sets of U.

The contradiction obtained shows that our initial supposition
is false and the function V o+ is strictly monotone on I. 0

Proof of Lemma 1. Let p € M? and @ be an open neighbourhood
of p.

We are going to show that the set F'(Q)) containes a neigbour-
hood of F'(p). At the same time we shall show that p is an isolated
point of a level set F~1(F(p)).

Without loss of generality we can assume that U(p) = V(p) = 0.

Let N be a simple neighbourhood of p and T': D — N be a
homeomorphism such that for a certain n € N the folloving equal-
ity holds true u(z) = UoT'(z) = Re 2", z € D (see Definition 1 and
the subsequent remark). It is clear that without losing generality
we can regard that N is small enough to be contained in Q.

Observe that for an arbitrary level set I' of U an intersection
I'NT(D) =T NN is open in I'. Consequently, since T' is home-
omorphism then a mapping v =V oT : D — R is open on level
setsof u=UoT : D — R (see Definition 5).

Let us consider two possibilities.

Case 1. Zero is a regular point of the smooth function u =
UoT,i e. n=1and u(z) =Rez, z€ D.



On conjugate pseudo-harmonic functions 509

In this case

u™ (w(0) = u ' (U(p) =T~ (U (U(p))) = {0} x (~1,1).
According to Proposition 1 the function v is strictly monotone on
every segment which is contained in this interval, so it is strictly
monotone on {0} x (—1,1). Consequently, for points z; =0 — /2
and zo = 0+41/2 the following inequality holds true v(z1)-v(z2) < 0.

Let us note that from previous it follows that V' is monotone
on the arc 3 = T({0} x (-=1,1)) = U YU(p)) N N. And since
F~YF(p))NN C Bthen F~Y(F(p))NN = {p} and p is an isolated
point of its level set F'~1(F(p)).

Let di = v(z1) < 0 and d2 = v(z2) > 0 (The case d; > 0 and
dy < 0 is considered similarly). Denote

1
€= §min(|d1|, |da]) > 0.
Function v is continuous, so there exists § > 0 such that following
implications are fulfilled
lz—z1| <d = |v(z) —di| <€,
|z — 22| <0 = |v(z) —do| <e.

Let us examine a neighbourhood W = (—6,0) x (—=1/2,1/2) of
0, which is depicted on Figure 13. It can be easily seen that for
every = € (—6,0) following relations are valid

U(.I—I—Zy):l‘, yE(—E,E),
v(x —1i/2) <wv(z1) +e< —2e+¢e=—¢,
v +1i/2) >v(z) —e>2e—c=¢.

From two last lines and from the continuity of v on a segment
{z} x [-1/2,1/2] it follows that v({z} x [-1/2,1/2]) D (—¢,¢).
Therefore

FoT({x} x [-1/2,1/2]) D {a} x (—¢,e), x€ (=4,9).
Since T(W) C N C @ by the choise of N, then
0=F(p) € (=6,0) x (—e,e) CFoT(W)C F(Q).
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FIGURE 13

Case 2. Zero is a saddle point of u = UoT, i. e. u(z) = Re 2",
z € D for a certain n > 1.
In this case
2n—1
u N u(0) =T U UE)) = {0yu | w.
k=0

where 7, = {z € D | z = a - exp(mi(k — 1/2)/n), a € (0,1)},
k=1,....2n— 1.
As above, applying Proposition 1 we conclude that function

v=VoT
is strictly monotone on each arc v;, £k = 1,...,2n — 1. Since v is
continuous and 0 is a boundary point for each 7, then

v(z) # v(0)

for all 2 € U, . Therefore, 0 = (F o T)"Y(F o T(0)) and
F~YF(p)) N N = {p}, i. e. p is the isolated point if its level
set F~1(F(p).
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Let us designate by
Ry, = {Z €D|z=ae® ac0,1), pe [w(k—Ql/Q)’ w(kzm)} }7
k=0,....2n—1

sectors on which disk D is divided by the level set u~!(u(0)).
We also denote

Dy={z€ D] Rez <0},
D, ={z¢e€ D| Rez > 0}.

Consider map ® : D — D given by the formula ®(z) = 2",
z € D. It is easy to see that for every k € {0,...,2n—1} depending
on its parity sector Ry is mapped homeomorphically by & either
onto D; or onto D,. Let a mapping @y : Ry — D, is given by
relation

@k:{q)‘Rk’ if k = 2m, k=0,...,2n—1,
Invo®|p,, ifk=2m+1,

where Inv : D — D is defined by formula Inv(z) = —z, z € D.
Evidently, all ®; are homeomorphisms.

We consider now inverse mappings ¢r = <I>,:1 : D, — D,
k =0,...,2n — 1. By construction all of these mappings are
embeddings. Moreover, it is easy to see that

Rez, when k = 2m,
uk(z) = wopr(z) = {—Rez, when Kk =2m + 1.
Let us fix k € {0,...,2n—1}. It is clear that ¢} homeomorphi-
cally maps a domain
D.={zeD| Rez >0}
onto a domain

Ry, = {z eD ! z=ae¥, ac(0,1), p€ (ﬂ(kgl/m, ﬂ(kzlﬂ))},

so with the help of argument similar to the observation preceding
to case 1 we conclude that the mapping v = v o gpka : D, — R
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is open on level sets of the function ux = u o ¢y b, lo?r — R.
As above, applying Proposition 1 we conclude that function vy is
strictly monotone on each arc

ae =t (Gg(c+0i) = {z € D, | Rez=c}, ce(0,1).

We already know that the function v is strictly monotone on the
arcs v, and s, where s = k+1 (mod 2n). Therefore the function
v = v o g : D — R is strictly monotone on the arcs

a_ =@ () ={2 € D, | Rez =0 and Imz < 0},
ar =@ (vs) ={2 €D, | Rez=0and Imz > 0}.
Let us verify that vy is strictly monotone on the arc
apg=a_U{0}Uay = ugl(uk(O)) ={z€ D, | Rez=0}.

Since v (0) = v(0) = V(p) = 0 according to our initial assump-
tions and 0 is the boundary point both for a_ and «., then vy is
of fixed sign on each of these two arcs.

So we have two possibilities:

e cither vy has the same sign on a_ and a, then vg|,, has
a local extremum in 0;

e or v has different signs on a_ and a, then vy, is strictly
monotone on «gq.

Suppose that vg has the same sign on a— and a.
We will assume that v is negative both on a_ and a4. The
case when vy, is positive on a_ and o is considered similarly.
Denote 21 =0—1i/2 € a_, 20 =0+1i/2 € ay. Let
£ = min(jun (1)l [on(2))) > 0,
From the continuity of vy it follows that there exists 5> 0 to
comply with the following implications

|z — 21| <8 = |vp(z) — vp(z1)] < €,
(1) |2 — 29| < 6 = |vp(2) — vp(22)] < €,
2] = |2 = 0] < & = [vk(2) — vk(0)] = |ve(2)] < &
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Let ¢ € (0,6). Then the point wy = ¢ + i0 is situated on the
curve a, between points w; = ¢ —i/2 and wy = c+1i/2. It follows
from (1) that vi(wy) < =€, vi(we) < —€ and vi(wg) € (—£,0).
But these three correlations can not hold true simultaneously since
vk is strictly monotone on a. as we already know.

The contradiction obtained shows us that v; has different signs
on a— and 4. So, vy is strictly monotone on ay.

Now, repeating argument from case 1 we find such g5 > 0 and
0, > 0 that the set

Wi = (0.6 x (~4.)
meets the relations
FoTop(Wi) D [0,0,) X (—eg,e), if k=2m,
® FoTop(Wi) D (=0k,0] X (—ep,er), ifk=2m+1.

Let us denote W), = SOk(Wk)u

2n—1
W = W, 0= min 6, >0, = min g >0.
U ko k=0,...2n—1 "~ ’ k=0, 2n—1 "
k=0
V&
Q[
as,
29 'Yk+1
Wi, Pk Wi
0 ¢ D, D

21

FIGURE 14



514 Yevgen Polulyakh

It is easy to show that W is an open neighbourhood of 0 in D.
From (2) and from our initial assumptions it follows that

F(Q) D F(N) D FoT(W) D (=4,6) x (—¢,¢).

So, we have proved that for an arbitrary point p € M? and
its open neighbourhood @ a set F'(Q)) contains a neighourhood of
F(p). Hence the mapping F : M? — C is open.

At the same time we have shown that an arbitrary p € M? is
an isolated point of its level set F~'(F(p)). It is easy to see now
that any level set F~!(F(p)) can not contain a nondegenerate
continuum.

Consequently, the map F' is interior. O

Proof of Theorem 1. Necessity. Let U,V : M? — R be conjugate
pseudoharmonic functions on M? (see Definitions 3 and 4).

Obviously, V is continuous on M?. Suppose that contrary to the
statement of Theorem there exists such ¢ € R that V is not open on
the level set I'. = U~ '(c) C M?,i. e. amap V., = V|p, : T, — R
is not open on I'.. in the topology induced from M?2.

Let us verify that V. has a local extremum in some p € T..

Note that the space I'; is locally arcwise connected, i. e. for
every point a € I'. and its open neighbourhood @) there exists a
neighbourhood Q C Q of a such that every two points by, by € Q
can be connected by a continuous curve in (). This is a straight-
forward corollary of the remark subsequent to Definition 1.

Since the map V. is not open by our supposition, then there
exists an open subset O of I'; such that its image R = V,(O) is
not open in R. Therefore there is a point d € R\ Int R. Fix
pe V. d)no.

Let us show that p is a point of local extremum of V.. Fix a
neighbourhood O CO of p such that every two points by, by € O
can be connected by a continuous curve [, 5, : I — I'c which
meets relations 5(0) = by, 5(1) = be and B(I) C O. It is clear that
an image of a path-connected set under a continuous mapping is
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path-connected, therefore following inclusions are valid

(Ve(b1), Ve(ba)) C Ve(I) if V(1) < Ve(ba),
(Ve(ba), Ve(b1)) C Ve(I) if Ve(bz) > Ve(br).

Evidently, p is not an interior point of V,(O) since it is not the

~

interior point of V.(O) by construction and V,.(O) C V,(O). Then
there does not exist a pair of points by, by € O such that

Ve(b1) < Ve(p) < Ve(b2)

and either V(b) < V(p) for all b € O or V(b) > V(p) for all b € O,
i. e. p is the point of local extremum of V..

Now, since V is the conjugate pseudo-harmonic function of U
in the point p (see Definition 3), we can take by definition a neigh-
bourhood N of p in M? and a homeomorphism T : D — N such
that amap f: D — C

f(z) =u(z)+iv(z), ze€D
is holomorphic on D. Here
u=UoT:D—R
and
v=VoTlT:D—R.

It is clear that without loss of generality we can choose N so
small that either V(b) = V,(b) < V.(p) = V(p) for every b € NNT'.
or V(b) > V(p) for all be NNT..

Let for definiteness p is the local maximum of V, and

V(b) <V(p)

for every b € N NI'.. The case when p is the local minimum of V,
is considered similarly.
On one hand it follows from what we said above that

{U®)} x (V(p), +00)) N f(D) = @
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since w1 (U(p)) = T~ T.N N) and v(z) = V(T (z)) < V(p) for
all z € T~YT.N N) by construction. Therefore a point

Up) +iV(p) = f(T7'(p))

is not the interior point of a set f(D).

On the other hand it is known that the holomorphic map f is
open, so the point f(T!(p)) must be the interior point of the
domain f(D).

The contradiction obtained shows that our initial assumption is
false and V is open on level sets of U.

Sufficiency. Let U be a pseudo-harmonic function on M? and
a continuous function V : M? — R be open on level sets of U.

From Lemma 1 it follows that the mapping F' : M? — C, F(p) =
U(p) + iV (p), p € M? is interior.

Let p € M? and N is a simple neighbourhood of p in M?2. Then
there exists a homeomorphism T : D — N. It is straightforward
that for the open set N a mapping Fy = F|y : N — C is in-
terior and its composition Fy oT = FoT : D — C with the
homeomorfism 7" is also an interior mapping.

Now from Stoilov theorem it follows that there exists a complex
structure on D such that the mapping F'oT is holomorphic in this
complex structure (see [3]). But from the uniformization theorem
(see [4]) it follows that a simple-connected domain has a unique
complex structure. So the mapping F o T is holomorphic on D in
the standard complex structure. Thus the functions

u=Re(FoT)=UoT
and
v=Im(FoT)=VoT

are conjugate harmonic functions on D. Consequently, V is a
conjugate pseudo-harmonic function of U in the point p.

From arbitrariness in the choise of p € M? it follows that V is
a conjugate pseudo-harmonic function of U on M?2. g
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Corollary 1. Let U,V : M? — R be conjugate pseudoharmonic
functions on M?.

Then there exists a complex structure on M? with respect to
which U and V are conjugate harmonic functions on M?.

Proof. This statement follows from Theorem 1, Lemma 1 and the
Stoilov theorem which says that there exists a complex structure
on M? such that the interior mapping F(p) = U(p) +iV (p), p €
M? is holomorphic in this complex structure (see [3]). O

REFERENCES

[1] T6kiY., A topological characterization of pseudo-harmonic functions, Os-
aka Math. Journ. — 1951 — V.3, N 1. — P. 101-122.

[2] Morse M., Topological methods in the theory of functions of a complex
variable. — Princeton, 1947.

[3] C. Cmounos, Jlekuuu O TOMOJOrMYECKUX MPHIWIAX TEOPUH AHAJMTH-

geckux (yukuit. — M.: Hayka, 1964. — 228 c.

Forster O., Lectures on Riemann Surfaces. // Springer Graduate Texts

in Math. — 1981. — V. 81.

4



