Збірник праць Ін-ту математики НАН України

2009, т.6, №2, 474-477

UDC 512.5/512.6

V. M. Bondarenko

Institute of Mathematics, NAS, Kyiv
E-mail: vit-bond@imath.kiev.ua
Yu. M. Pereguda
Korolyov military Institute of national aviation University, Zhytomyr

On P-numbers of quadratic forms

In this paper we introduce P-numbers of quadratic forms over \mathbb{R} and study their properties.

In this paper, by a quadratic form we mean a quadratic form over the field of real numbers \mathbb{R}

$$
f(z)=f\left(z_{1}, \ldots, z_{n}\right)=\sum_{i=1}^{n} f_{i} z_{i}^{2}+\sum_{i<j} f_{i j} z_{i} z_{j}
$$

The set of all such form is denoted by \mathcal{R}, and the set of all $f(z) \in \mathcal{R}$ with $f_{1}, \ldots, f_{n}=1$ is denoted by \mathcal{R}_{0}.

Let $f(z) \in \mathcal{R}_{0}$ and $s \in\{1, \ldots, n\}$. We introduce the notion of the s-deformation of $f(z)$ as follows:

$$
f^{(s)}(z, a)=f^{(s)}\left(z_{1}, \ldots, z_{n}, a\right)=a z_{s}^{2}+\sum_{i \neq s} z_{i}^{2}+\sum_{i<j} f_{i j} z_{i} z_{j}
$$

where a is a parameter. Denote by $F_{+}^{(s)}$ the set of all $b \in \mathbb{R}$ such that the form $f^{(s)}(z, b)$ is positive definite, and put

$$
F_{-}^{(s)}=\mathbb{R} \backslash F_{+}^{(s)}
$$

In other words, $b \in F_{-}^{(s)}$ iff there exists a nonzero vector

$$
r=\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{R}^{n}
$$

(c) V. M. Bondarenko, Yu. M. Pereguda, 2009
such that $f^{(s)}\left(r_{1}, \ldots, r_{n}, b\right) \leq 0$. Further, put

$$
m_{f}^{(s)}=\sup \mathrm{F}_{-}^{(\mathrm{s})} \in \mathbb{R} \cup \infty
$$

(since $x \in F_{-}^{(s)}$ implies $y \in F_{-}^{(s)}$ for any $y<x$, this supremum is a limit point). We call $m_{f}^{(s)}$ the s-th P-number of $f(z)$.

Proposition 1. Let $f\left(z_{1}, \ldots, z_{n}\right) \in \mathcal{R}_{0}$. Then

1) $m_{f}^{(s)} \geq 0$;
2) $m_{f}^{(s)}=\infty$ if the form
$f_{-s}\left(z_{1}, \ldots, z_{s-1}, z_{s+1}, \ldots, z_{n}\right)=f\left(z_{1}, \ldots, z_{s-1}, 0, z_{s+1}, \ldots, z_{n}\right)$
is not positive definite.
Both these assertions follow easily from the definitions.
Theorem 1. Let $f\left(z_{1}, \ldots, z_{n}\right) \in \mathcal{R}_{0}$ and let $m_{f}^{(s)} \neq \infty$. Then
3) $m_{f}^{(s)} \in F_{-}^{(s)}$, and consequently $m_{f}^{(s)}$ is the greatest number of $F_{-}^{(s)}$.
4) the form $f^{(s)}\left(z, m_{f}^{(s)}\right)$ is non-negative definite;

Proof. 1) We may assume, without loss of generality, that $s=n$. Consider the matrix $S(a)$ of the quadratic form $f^{(n)}(z, a)$:

$$
S(a)=\frac{1}{2}\left(\begin{array}{ccccc}
2 & f_{12} & \ldots & f_{1, n-1} & f_{1 n} \\
f_{12} & 2 & \ldots & f_{2, n-1} & f_{2 n} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
f_{1, n-1} & f_{2, n-1} & \cdots & 2 & f_{n-1, n} \\
f_{1 n} & f_{2 n} & \ldots & f_{n-1, n} & 2 a
\end{array}\right) .
$$

Demote by $\Delta_{k}, k=1, \ldots, n-1$, the principal $k \times k$ minor of $S(a)$ and by $\Delta_{i n}$ the $(n-1) \times(n-1)$ minor of $S(a)$ which is obtained from $S(a)$ by deleting i th arrow and nth column. The determinant
of $S(a)$ is denoted by $\Delta(a)$. Then by the well-known formula,

$$
\begin{aligned}
& \Delta(a)=1 / 2\left[(-1)^{n+1} f_{1 n} \Delta_{1 n}+(-1)^{n+2} f_{2 n} \Delta_{2 n}+\cdots\right. \\
&\left.\cdots+(-1)^{2 n-1} f_{n-1, n} \Delta_{n-1,1 n}\right]+a \Delta_{n-1}
\end{aligned}
$$

whence

$$
\begin{equation*}
\Delta(a)=a \Delta_{n-1}+N \tag{*}
\end{equation*}
$$

where $N=1 / 2\left[(-1)^{n+1} f_{1 n} \Delta_{1 n}+(-1)^{n+2} f_{2 n} \Delta_{2 n}+\cdots+(-1)^{2 n-1}\right.$ $\left.f_{n-1, n} \Delta_{n-1,1 n}\right]$.

By assertion 2) of Proposition 1 the form $f_{-n}\left(z_{1}, \ldots, z_{n-1}\right)$ is positive definite (since $m_{f}^{(n)} \neq \infty$). From Silvestr's criterion of positive definiteness of quadratic forms it follows that

$$
\Delta_{1}>0, \ldots, \Delta_{n-1}>0
$$

Further, from this criterion it follows that $f(z, a)$ is positive definite if $\Delta(a)>0$, and is not positive definite if $\Delta(a) \leq 0$. Consequently (see (*))

$$
\begin{aligned}
F_{-}^{(n)} & =\{b \in \mathbb{R} \mid \Delta(b) \leq 0\} \\
& =\left\{b \in \mathbb{R} \mid b \Delta_{n-1} \leq-N\right\} \\
& =\left\{b \in \mathbb{R} \mid b \leq-N / \Delta_{n-1}\right\}
\end{aligned}
$$

So $m_{f}^{(n)}=-N / \Delta_{n-1} \in F_{-}^{(n)}$, as claimed.
2) The first proof. Suppose that $f^{(s)}\left(z, m_{f}^{(s)}\right)$ is not nonnegative definite. Then there is a vector $r=\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{R}^{n}$ such that $f^{(s)}\left(r, m_{f}^{(s)}\right)=\alpha<0$. Fix $0<\varepsilon<-\alpha$. By continuity of $f(z, a)$, there exist $\delta_{i}>0$ for $i=1, \ldots, n$ and $\delta>0$ such that

$$
\left|f^{(s)}\left(r_{1}+\mu_{1}, \ldots, r_{n}+\mu_{n}, m_{f}^{(s)}+\mu\right)-f^{(s)}\left(r_{1}, \ldots, r_{n}, m_{f}^{(s)}\right)\right|<\varepsilon
$$

whenever $\left|\mu_{i}\right|<\delta_{i}$ for $i=1, \ldots, n$ and $|\mu|<\delta$. Put $\mu_{i}=0$ for $i=1, \ldots, n$ and fix $0<\mu_{0}<\delta$. Then

$$
\left|f^{(s)}\left(r_{1}, \ldots, r_{n}, m_{f}^{(s)}+\mu_{0}\right)-\alpha\right|<\varepsilon
$$

It follows that $f^{(s)}\left(r_{1}, \ldots, r_{n}, m_{f}^{(s)}+\mu_{0}\right)-\alpha<\varepsilon$, whence

$$
f^{(s)}\left(r_{1}, \ldots, r_{n}, m_{f}^{(s)}+\mu_{0}\right)<\varepsilon+\alpha<0 .
$$

So $m_{f}^{(s)}+\mu_{0} \in F_{-}^{(s)}$, a contradiction to the definition of $m_{f}^{(s)}$.
The second proof. Let $s=n$. It follows from the proof of assertion 1) (of this theorem) that $\delta\left(m_{f}^{(n)}\right)=0$. Since

$$
\Delta_{1}>0, \quad \ldots, \quad \Delta_{n-1}>0
$$

the form $f^{(n)}\left(z, m_{f}^{(n)}\right)$ is non-negative definite (see, for example, [1, P.322]).

References

[1] V. V. Voevodin Linear algebra. Moskow: Nauka, 1980, 400p. (in Russian).

