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On P-numbers of quadratic forms

In this paper we introduce P-numbers of quadratic forms over R and study
their properties.

In this paper, by a quadratic form we mean a quadratic form
over the field of real numbers R

f(z)=f(z1,...,2n) = Zfiz? + Zfijzizj.
i=1 i<j
The set of all such form is denoted by R, and the set of all f(z) € R
with f1,..., fn, = 1 is denoted by Rg.
Let f(z) € Rp and s € {1,...,n}. We introduce the notion of
the s-deformation of f(z) as follows:

F(za) = fO(z1,..., 2n,0) = az® + sz + Zfijzizj,
i#£s 1<j
where a is a parameter. Denote by Ff) the set of all b € R such
that the form f(*)(z,b) is positive definite, and put
FO =R\ FY.

In other words, b € F (%) iff there exists a nonzero vector

r=(ry,...,m) €R"
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such that f®)(rq,...,ry,b) <0. Further, put

mgf) = sup F® e RU oo

(s)

limit point). We call mgf) the s-th P-number of f(z).

(s)

(since x € F”/ implies y € F*/ for any y < z, this supremum is a

Proposition 1. Let f(z1,...,2,) € Ro. Then

1) m{ >0;
2) mgf) = oo if the form

ffs(zlu cee 728717 Zs+17 AR 7Zn) = f(Zlu cee 72871707 ZS+17 AR azn)
s not positive definite.
Both these assertions follow easily from the definitions.

Theorem 1. Let f(z1,...,2,) € R and let mgf) #+ 00. Then

1) m;s) € FES), and consequently m;s) is the greatest number of

P,
2) the form f(s)(z,mgf)) is non-negative definite;

Proof. 1) We may assume, without loss of generality, that s = n.
Consider the matrix S(a) of the quadratic form £ (z,a):

2 f12 R fl,nfl fln

1 f12 2 oo Jone1 o fon

S(a) = =
fin-1 fop—1 ... 2 fa-1m

fin fon .- fnfl,n 2a

Demote by Ak, k =1,...,n—1, the principal k& x k minor of S(a)
and by A;y, the (n — 1) x (n — 1) minor of S(a) which is obtained
from S(a) by deleting ith arrow and nth column. The determinant
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of S(a) is denoted by A(a). Then by the well-known formula,

Aa) =1/2[(=1)" frnArp + (=1)"" fon Ay + - -
o (D)2 i n An 1 1a] + al o,
whence
Ala) =alAp—1+ N (%)
where N = 1/2[(=1)"" fi, Ay 4 (=1)" "2 fon Agy 4+ - - + (—1)21

fn—l,nAn—l,ln]-
By assertion 2) of Proposition 1 the form f_,(z1,...,2,-1) is

positive definite (since mgcn) # 00). From Silvestr’s criterion of
positive definiteness of quadratic forms it follows that

A1>O,...,An,1>0.

Further, from this criterion it follows that f(z,a) is positive defi-
nite if A(a) > 0, and is not positive definite if A(a) < 0. Conse-
quently (see (x))

F = {(beR|A®) <0}
= {beR[bA, 1 <N}
— {(beR|b< -N/A,_,}).

So m;n) =-—-N/A,_; € an), as claimed.

2) The first proof. Suppose that f(s)(z,mgf)) is not non-
negative definite. Then there is a vector r = (ry,...,r,) € R"

such that () (r, mgf)) =a < 0. Fix 0 < ¢ < —a. By continuity
of f(z,a), there exist ; > 0 fori =1,...,n and § > 0 such that

‘f(S)(Tl+/~L1>"'7rn+un7m§f)+:u)_f(S)(Tla"'arnvm;S)” <eg
whenever |u;| < d; for i = 1,...,n and |p| < 0. Put pu; = 0 for
t=1,...,n and fix 0 < pg < 9. Then

(s)

|f(s)(’f‘1,...,?”n,m +,UO)_OZ‘<€.
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It follows that f()(ry,... 7, mgf) + po) — a < &, whence

f(s)(m,...,rn,mgf)—i-uo) <e+a<0.

So mgf) + po € FES), a contradiction to the definition of m;s).

The second proof. Let s = n. It follows from the proof of
assertion 1) (of this theorem) that (5(m§cn)) = 0. Since

Ay >0, ..., A,_1>0,
the form (" (z, m(n)) is non-negative definite (see, for example, [1,
P.322]). O
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