Д.Н.Тогобицкая, А.Ф.Хамхотько, Д.А.Степаненко

СВЯЗЬ ВЯЗКОСТИ И ТЕМПЕРАТУРЫ КРИСТАЛЛИЗАЦИИ ДОМЕННЫХ ШЛАКОВ С ИХ МИНЕРАЛОГИЧЕСКИМ СОСТАВОМ

Показано влияние структуры и соответствующего минералогического состава доменных шлаков на их вязкость и температуру кристаллизации. Получена температурная зависимость вязкости доменных шлаков с учетом суммарного содержания минералов простой структуры. Обоснована важность учета соотношения Al₂O₃/MgO для оценки технологических свойств доменных шлаков с точки зрения их минералогии.

шлак, химический состав, структура, вязкость, температура кристаллизации, связь, минералогический состав.

Введение. В процессе доменной плавки физико-химические свойства шлака в значительной мере определяют качество выплавляемого чугуна, интенсивность плавки, тем самым оказывая влияние на расход различных энергоносителей.

Как известно, учет структуры шлака является определяющим фактором при оценке его физико-химических свойств. Оперативный анализ структуры жидких доменных шлаков в темпе с процессом на сегодняшний день неосуществим в силу отсутствия необходимого оборудования и методики. Представление о шлаках в жидком состоянии в значительной степени уясняется после изучения их минералогического состава в твердом состоянии.

Целью настоящей работы является, изучение влияния структуры доменных шлаков на формирование их технологических свойств с учетом минералогического состава.

Изложение основных материалов исследования.

Многочисленными исследованиями, обобщение которых выполнено, в частности, Васильевым В.Е. [1], показано, что вязкость шлаковых расплавов находится в непосредственной зависимости от сложности и размеров составляющих его ионов, соответствующих химическому составу шлака. В то же время о сложности молекул алюмосиликатов, входящих в шлаковые системы, можно судить, исходя из их минералогического состава (табл.1).

Кремнезем (SiO₂) в шлаках находится обычно в виде тридимита, имеющего гексагональную структуру из тетраэдров, в центре которых находится кремний, а по вершинам – атомы кислорода. Кремнекислородные тетраэдры связаны между собой вершинами и образуют сложный каркас из ассоциированных молекул в виде колец и винтов. Подвижность связей в таких молекулах и подвижность самих ассоциированных молекул низкая, и поэтому вязкость расплавленного кремнезема даже при существенном перегреве над температурой плавления чрезвычайно высока.

ļ																			
анным $[1, 2]^{(1)}$	Вязкость, Па.с,	при $T_{\rm nn}$ +50 ⁰ C	$3,9.10^{6}$		2,5	0,38		0,24		0,27		0,23		$0,23^{(2)}$		0,12	$\leq 0, 1^{(3)}$	$\leq 0, 1^{(3)}$	HOACHOCH HHHBCA
лаков по да	$T_{\rm nn}$, $^0{ m C}$		1723		1550	1391		1540		1590		1458		1464 разла-	гается	1498	2130	2135	DOD MOJILITIC
енных ш	$\rho^{(4)}$		0,500		0,625	0,667		0,667		0,714		0,714		0,714		0,750	0,750	0,750	а аолоци
ца 1. Структура и вязкость минералогических составляющих доме	Структура		Каркас из ассоциированных	молекул (кольца, винты)	Kapkac (Si ₂ Al ₂ O ₈)	изьоцен двойные цепочки	$(SiO_3) \propto$	Тройное кольцо	$(SiO_3)_3$	Изолированные сдвоенные	тетраэдры [(SiAl)O ₇]	Изолированные сдвоенные	тетраэдры (Si ₂ O ₇)	Изолированные сдвоенные	тетраэдры (Si ₂ O ₇)	Единичные теграэдры (SiO ₃)	Единичные теграэдры (SiO ₃)	Единичные тетраэдры (AlO ₃)	и агшиненов анионвнаетооо анао
	рмула	ионная			$Ca[Al_2Si_2O_8]$	$CaMg[Si_2O_6]$		Ca[SiO ₃]		$Ca_2{Al[(SiAl)O_7]}$		$Ca_2 \{Mg[(Si_2O_7])\}$		$Ca_3[Si_2O_7]$		CaMg[SiO ₄]	$Ca_2[SiO_4]$	$Mg[Al_2O_4]$	ENTRY CONTRACTOR
	Φoj	молекулярная	$(SiO_2)_x$		CaO·Al ₂ O ₃ ·2SiO ₂	CaO·MgO·2SiO ₂		$CaO \cdot SiO_2$		2CaO·Al ₂ O ₃ ·SiO ₂		2CaO·MgO·2SiO ₂		$3CaO \cdot 2SiO_2$		CaO-MgO-SiO ₂	$2CaO \cdot SiO_2$	MgO·Al ₂ O ₃	r. 1) Channaintia nar
Табли	Название		Кремнезем		Анортит	Диопсид		Псевдо-	волластонит	Геленит		Окерманит		Ранкинит		Монтичеллит	Ларнит	Шпинель	Понуление

Примечания: 1) Сравнение вязкости минералогических составляющих доменных шлаков в жидком состоянии производилось	а одинаковом перегреве на 50°С над их температурами плавления [1]. 2) Ранкинит разлагается при температуре плавления, в	зи с чем данные о его вязкости отсутствуют. О величине вязкости ранкинита судили по соединению с аналогичным анионом –	рманиту. 3) Данные о вязкости ларнита отсутствуют в связи с его тугоплавкостью. В связи с этим вязкость ларнита ориентиро-	но оценили экстраполяцией данных о вязкости расплавов системы CaO-SiO ₂ по данным, приведенным в работе [2]. Аналогич-	м образом по данным [2] оценили вязкость шпинели MgO-Al ₂ O ₃ . 4) ρ – показатель стехиометрии системы, равный отношению	сел катионов к анионам [3].
--	---	--	--	---	--	-----------------------------

По данным, приведенным в табл.1, вязкость SiO₂ при $T_{пл}$ +50[°]C может быть оценена величиной 3,9·10⁶ Па·с.Анортит (Ca[Si₂Al₂O₈]) является наиболее сложным алюмосиликатом в шлаках. Его структуру можно представить как образованную из кремнекислородной решетки кварца (SiO₂), в которой два атома кремния замещены алюминием и через каждые два ряда в общей схеме включены молекулы CaO. Вязкость анортита наивысшая из силикатов, входящих в состав шлаков, а именно 2,5 Па·с при перегреве на 50[°]C над температурой плавления 1550[°]C. Однако она существенно ниже вязкости кремнезема, что связано с сильным разрушающим воздействием на связи Si–O катионообразующего окисла CaO, количество которого в анортите составляет 25 % (моль.).

Еще более разрушены связи Si–O в диопсиде, в котором под воздействием 50% (моль.) CaO+MgO образуются длинные двойные цепочки кремнезема, соединенные между собой окисью кальция и окисью магния одновременно. Вязкость диопсида при перегреве на 50°C над $T_{пл}$ составляет 0,38 Па·с, что в 6,6 раз меньше вязкости анортита (табл.1).

По количеству катионообразующего оксида (CaO) с диопсидом аналогичен псевдоволластонит. Его структура представлена строенными кольцами (SiO₃)₃, которые проще, чем у диопсида. Соответственно вязкость псевдоволластонита примерно в 1,5 раза меньше вязкости диопсида и составляет 0,24 Па·с. Минералы геленит, окерманит и ранкинит образуют в расплавах шлаков еще более простую структуру в виде сдвоенных тетраэдров (Si₂O₇) или [(SiAl)O₇], что обеспечивает вязкость на уровне 0,23–0,27 Па·с. Наиболее простые молекулы и, соответственно, анионы из единичных тетраэдров (SiO₃) имеют минералы монтичеллит и ларнит, в связи, с чем вязкость их расплавов самая низкая – 0,1–0,12 Па·с. Такое же строение и низкую вязкость имеет магнезиальная шпинель Mg[AlO₄], образующая в расплаве тетраэдры (AlO₃).

В обобщенном виде зависимость вязкости минералогических составляющих доменных шлаков от их структуры показана на рис. 1. Как видно из рис.1, с увеличением показателя ρ , а следовательно количества катионов-модификаторов в структуре шлаков, прочный кремнийалюмокислородный каркас разрыхляется, размеры молекул и кремнийалюмокислородных анионов уменьшаются, и вязкость их расплавов понижается, что соответствует принятым взглядам на механизм вязкого течения шлаковых расплавов, изложенных в работах [1, 4].

Обращает на себя внимание тот факт, что минимальная величина $\rho=0,5$ присуща чистому кремнезему SiO₂, в котором катион кремния является сеткообразователем, а катионы-модификаторы, разрыхляющие кремнекислородный каркас, отсутствуют. Вязкость кремнезема в расплавленном состоянии настолько высока, что даже при перегреве его над $T_{пл}$ на 700–800⁰C (до 2400–2500⁰C), едва осуществимом на грани технических возможностей эксперимента, ее величина достигает около 1000 Па·с [2].

Лишь при достижении значения ρ =0,625 у анортита, который присутствует в кислых доменных шлаках и содержит 25 % (мол.) окисла катиона-модификатора (CaO), вязкость снижается до едва приемлемой для доменных шлаков величина 2,5 Па·с.

Рис.1. Зависимость вязкости минералогических составляющих доменных шлаков от соотношения катионов к анионам в их структуре

При повышении количества катионов до величины $\rho = 0,667$ и наличии достаточного количества MgO образуется минерал диопсид (CaO·MgO·2SiO₂) с еще более низкой вязкостью 0,38 Па·с. Вязкость 0,23–0,27 Па·с, которая на прак-

тике считается оптимальной при выпуске шлаков из доменной печи, присуща доменным шлакам с $\rho = 0,7-0,714$. Основными минералогическими составляющими таких шлаков являются геленит и окерманит, образующие твердый раствор – мелилит, а также ранкинит (3CaO·2SiO₂) со стехиометрией $\rho = 0,714$, разлагающийся при 1464⁰C на псевдоволластонит (CaO·SiO₂) с $\rho = 0,667$ и ларнит (2CaO·SiO₂) с $\rho = 0,75$.

Для более четкого представления о связи минералогического состава доменных шлаков с их вязкостью целесообразно проанализировать экспериментальные данные о реальных доменных шлаках, например, представленны в работах Жило Н.Л. и Большаковой Л.И. [5, 6]. В этих работах изучены натуральные и полусинтетические доменные шлаки Магнитогорского металлургического комбината в широком диапазоне сочетания и соотношения компонентов (мас. %): SiO₂=31,82–45,63; CaO=33,5–45,65; MgO=4–13; Al₂O₃=11,28–14,47; FeO=0,18–0,26; MnO=0,07–0,11; S=0,85–1,2; CaO/SiO₂=0,8–1,3; (CaO+MgO)/SiO₂=0,89–1,71; ρ = 0,668–0,74.

Соответственно химическому составу в широком диапазоне изменяется минералогический состав шлаков и вязкость их расплавов, особенно вблизи температур ликвидуса. Это свидетельствует о представительности выбранного массива экспериментальных данных для оценки связи минералогического состава доменных шлаков с их вязкостью и построения соответствующих прогнозных моделей. Нами в соответствии с ранее изложенными данными о вязкости минералов, входящих в состав доменных шлаков, в качестве основного фактора, уменьшающего вязкость, принят параметр M, характеризующий суммарное содержание минералов простой структуры, образующих в расплавах единичные [SiO₄], сдвоенные [Si₂O₇] и [(Si, Al)O₇] тетраэдры, которые и обеспечивают высокую текучесть расплавов:

М, мол. %=мелилит (геленит+окерманит)+монтичеллит+мервинит (1)

Анализ с этой позиции экспериментальных данных, позволил получить достаточно точные зависимости вязкости шлаковых расплавов от параметра M в широком температурном диапазоне: от существенного перегрева над температурой ликвидус (T_n), когда развиваются процессы диссоциации и упрощения анионных группировок, до температуры солидус (T_c), когда строение и минералогический состав шлака приближается к характерному для твердого состояния (рис.2, табл.2).

М = геленит + окерманит + мервинит + монтичеллит

Рис.2. Зависимость вязкости доменных шлаков от минералогического состава

Таблица 2.	Зависимость	вязкости	шлаков	от их	минералогического	соста-
ва при разл	ичных темпер	ратурах				

Темпера-	Коэфф lgŋ=	ициенты ура =А₀+А₁·М+А	авнения А ₂ ·M ²	R	μ	Номер
тура, ⁰ С	A ₀	A ₁	A ₂			уравнения
1500	-0,36887	-0,00109	-0,00002	0,88	24	(2)
1450	-0,20212	-0,0026	-0,00001	0,86	20	(3)
1400	-0,00289	-0,00476	0,000005	0,84	17	(4)
1350	0,18101	-0,00547	0,000005	0,89	21	(5)
1300	0,41512	-0,00695	0,00001	0,83	14	(6)

Примечания: *R* – коэффициент корреляции, *µ* – критерий надежности.

Учитывая известную температурную зависимость вязкости расплавов по уравнению Френкеля $\left(\lg \eta = A + \frac{B}{T} \right)$ экспериментальные данные обобщены нами уравнением:

$$\lg \eta (\Pi a \cdot c) = -4,05895 - 0,00461 \cdot M + 5,68857 \cdot \frac{1000}{T},$$

$$R = 0,958; \quad \mu = 155.$$
(7)

Это уравнение позволяет с более высокой точностью прогнозировать вязкость доменных шлаков в зависимости от их минералогического состава и температуры.

В целом выполненные исследования связи вязкости доменных шлаков с их минералогическим составом, показали, что вязкость жидких шлаков хорошо согласуется с представлением о сохранении в диапазоне температур ликвидус – солидус и некотором перегреве выше T_{π} минералогических соединений и соответствующих им анионных группировок, характерных для твердого состояния. Снижение вязкости шлаковых расплавов обусловлено повышением в их составе количества минералов простой структуры в виде единичных и сдвоенных кремний–алюмокислородных тетраэдров.

Для оценки связи температуры кристаллизации с минералогическим составом по экспериментальным данным [7] в системе CaO–MgO–SiO₂– Al₂O₃ был сформирован массив из 253 составов синтетических доменных шлаков в диапазоне температур T=1225–1610⁰С и стехиометрией ρ =0,579–0,901, охватывающей все возможные шлаки от «кислых» до «основных». В качестве первичной фазы в указанном диапазоне кристаллизуются минералы: анортит, пироксен, волластонит, форстерит, ранкинит, мервинит, монтичеллит, мелилит, ларнит (рис.3).

Из рис.3 видно, что с увеличением соотношения катионов к анионам (ρ) шлаковых расплавов от 0,58 до 0,8 их температура начала кристаллизации (T_n) возрастает от 1225⁰С до 1610⁰С. Низкие величины T_n от 1225⁰С до 1400⁰С в диапазоне ρ от 0,58 до 0,68 соответствуют шлакам, в которых при охлаждении ниже этой температуры в качестве первичной кристаллической фазы выпадают кислые минералы: анортит, пироксен и волластонит с соотношением суммы молекул оксидов (CaO+MgO), ослабляющих кремний–алюмокислородный каркас, к сумме молекул каркасообразующих оксидов (SiO₂+Al₂O₃) от 1/3 до 1/1. Высокие величины T_n от 1400⁰С до 1610⁰С в диапазоне ρ от 0,71 до 0,8 соответствуют шлакам, в которых в качестве первичной кристаллической фазы выпадают основные минералы: ларнит и мервинит с соотношением (CaO+MgO)/(SiO₂+Al₂O₃)=2/1.

Минерал мелилит является преобладающим в доменных шлаках. Он по данным [7] выпадает в качестве первичной кристаллической фазы в диапазоне $\rho = 0,66-0,75$ и соответственно $T_n=1234 - 1549^{\circ}$ C с равномерным распределением точек на рис.3. Более легкоплавкие шлаки с $T_n=1234-1360^{\circ}$ C соответствуют диапазону $\rho=0,66-0,7$, а тугоплавкие шлаки с $T_n=1360-1549^{\circ}$ C – диапазону $\rho=0,7-0,75$. Объясняется это сложным составом мелилита, который является твердым раствором относительно тугоплавкого геленита (2CaO·Al₂O₃·SiO₂) ($T_n=1590^{\circ}$ C) и более легкоплавкого окерманита (2CaO·MgO·2SiO₂) ($T_n=1454^{\circ}$ C) с соотношением (CaO+MgO)/(SiO₂+Al₂O₃) соответственно 2/2 и 3/2. Диаграмма состояния системы геленит – окерманит представлена на рис.4 по данным [8].

Рис. 4. Диаграмма состояния системы геленит – окерманит

Из диаграммы следует, что в данной системе образуется эвтектика с температурой плавления $T_{\rm n} \approx 1390^{0}$ С при содержании окерманита

около 73% по массе. Строгое математическое описание представленных данных позволило получить уравнение для расчета с высокой точностью температуры плавления мелилита в зависимости от соотношения его составляющих: геленита и окерманита:

$$T_n = 1595, 5 - 5,70874 \cdot O_K + 0,04213 \cdot O_K^2,$$

$$R = 0,992; \ \mu = 179,8; \ S_{\kappa e} = 0,6\%,$$
(8)

где $T_{\rm m}$ – температура плавления мелилита, ⁰С;

Ок – содержание окерманита в мелилите, мас. %;

R – коэффициент корреляции; μ – критерий надежности; $S_{\kappa B}$ – остаточное среднеквадратичное отклонение, %.

В зависимости от соотношения геленита и окерманита в мелилите температура плавления последнего изменяется в диапазоне 200° С, то есть от 1590° С для чистого геленита до 1390° С для эвтектической смеси. Следовательно, будет изменяться и T_{n} доменных шлаков в зависимости от их состава. При повышенном содержании в шлаках $Al_{2}O_{3}$ и низком содержании или отсутствии MgO мелилит состоит преимущественно из более тугоплавкого геленита, а при достаточном содержании MgO и пониженном содержании Al_2O_3 основу мелилита составляет более легкоплавкий окерманит или еще более легкоплавкая эвтектика.

Эвтектическое соотношение геленита и окерманита в мелилите в свою очередь соответствует Al₂O₃/MgO≈1,1. Это соотношение обеспечивает минимальную температуру кристаллизации доменных шлаков заводов Украины и было рекомендовано нами для корректировки шлакового режима доменной плавки с целью повышения качества чугуна [9].

Заключение. Обобщены материалы о структуре и свойствах основных минералов доменных шлаков. Получена зависимость для оценки влияния минералогического состава доменных шлаков, на основе параметра, характеризующего суммарное содержание минералов простой структуры, на их вязкость с учетом температуры.

На основе экспериментальных данных показана связь химического и минералогического состава шлаков с их температурой кристаллизации. Получено уравнение для расчета температуры плавления мелилита, как преобладающего минерала доменных шлаков, в зависимости от соотношения его составляющих: геленита и окерманита.

Обоснована важность учета соотношения Al₂O₃/MgO для оценки технологических свойств доменных шлаков с точки зрения их минералогии.

- 3. Приходько Э.В. Металлохимия многокомпонентных систем. М.: Металлургия. –1995. –320 с.
- 4. *Свойства* жидких доменных шлаков. / В.Г.Воскобойников, Н.Е.Дунаев, А.Г.Михалевич и др. –М.: Металлургия. –1985. –184 с.

^{1.} Васильев В.Е. Доменная плавка на устойчивых шлаках. –Киев.: Государственное издательство технической литературы УССР, 1956. – 260 с.

^{2.} Атлас шлаков. Пер. с нем. Жмойдина Г.И. –М.: Металлургия. –1985. –553с.

- Жило Н.Л., Большакова Л.И. Влияние минералогического состава доменных шлаков на их физические свойства //Изв.АН СССР. Металлургия и гонное дело. –1964. –№4. –С.40–46.
- Жило Н.Л., Большакова Л.И. Связь структуры закристаллизованных доменных шлаков с физическими свойствами их расплавов. // Изв. АН СССР. Металлы. –1966. –№3. –С.67–72.
- 7. Osborn E.F., Devries R.C., Gee K.H. and Kraner H.M. // J.Metals. –1954. –V.6. №1. –P.33–45.
- Белянкин Д.С., Иванов Б.В., Лапин В.В. Петрография технического камня. М.: Изд.АН СССР. –1952. –584с.
- 9. Сокуренко А.В. и др. Способ ведения доменной плавки. Пат. Украины №62589А, МПК 7 С21В5/00. 15.12.2003. Бюл. №12. 4.136 с.

Статья рекомендована к печати докт. техн. наук, проф. Э.В. Приходько

Д.М. Тогобицька, А.Ф. Хамхотько, Д.О. Степаненко

Зв'язок в'язкості та температури кристалізації доменних шлаків з їх мінералогічним складом

Показано вплив структури і відповідного мінералогічного складу доменних шлаків на їх в'язкість та температуру кристалізації. Отримана температурна залежність в'язкості доменних шлаків з урахуванням загального вмісту мінералів простої структури. Обгрунтовано важливість врахування співвідношення Al₂O₃/MgO для оцінки технологічних властивостей доменних шлаків з точки зору їх мінералогії.