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Geodesic Webs and PDE Systems of
Euler Equations

We find necessary and sufficient conditions for the foliation defined by level
sets of a function f(x1, . . . , xn) to be totally geodesic in a torsion-free con-
nection and apply them to find the conditions for d-webs of hypersurfaces
to be geodesic, and in the case of flat connections, for d-webs (d ≥ n + 1)
of hypersurfaces to be hyperplanar webs. These conditions are systems of
generalized Euler equations, and for flat connections we give an explicit
construction of their solutions.
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1. Introduction

In this paper we study necessary and sufficient conditions for
the foliation defined by level sets of a function to be totally geo-
desic in a torsion-free connection on a manifold and find necessary
and sufficient conditions for webs of hypersurfaces to be geodesic.
These conditions has the form of a second-order PDE system for
web functions. The system has an infinite pseudogroup of sym-
metries and the factorization of the system with respect to the
pseudogroup leads us to a first-order PDE system. In the pla-
nar case (cf. [1]), the system coincides with the classical Euler
equation and therefore can be solved in a constructive way. We
provide a method to solve the system in arbitrary dimension and
flat connection.
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2. Geodesic Foliations and Flex Equations

Let Mn be a smooth manifold of dimension n. Let vector fields
∂1, . . . , ∂n form a basis in the tangent bundle, and let ω1, . . . , ωn

be the dual basis. Then

[∂i, ∂j ] =
∑

k

ckij∂k

for some functions ckij ∈ C∞ (M) , and

dωk +
∑

i<j

ckijω
i ∧ ωj = 0.

Let ∇ be a linear connection in the tangent bundle, and let Γkij be
the Christoffel symbols of second type. Then

∇i (∂j) =
∑

k

Γkij∂k,

where ∇i
def
= ∇∂i

, and

∇i

(
ωk
)

= −
∑

j

Γkijω
j.

In [1] we proved the following result.

Theorem 1. The foliation defined by the level sets of a function
f(x1, . . . , xn) is totally geodesic in a torsion-free connection ∇ if
and only if the function f satisfies the following system of PDEs:

∂i (fi)

fifi
− ∂i (fj) + ∂j (fi)

fifj
+
∂j (fj)

fjfj
=

=
∑

k

(
Γkii

fk
fifi

+ Γkjj
fk
fjfj

− (Γkij + Γkji)
fk
fifj

)
(1)

for all i < j, i, j = 1, . . . , n; here fi =
∂f

∂xi
.
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We call such a system a flex system.
Note that conditions (1) can be used to obtain necessary and

sufficient conditions for a d-web formed by the level sets of the
functions fα(x1, . . . , xn), α = 1, . . . , d, to be a geodesic d-web,
i.e., to have the leaves of all its foliations to be totally geodesic:
one should apply conditions (1) to the all web functions fα, α =
1, . . . , d

2.1. Geodesic Webs on Manifolds of Constant Curvature.

In what follows, we shall use the following definition.

Definition 1. We call by (Flex f)ij the following function:

(Flex f)ij = f2
j fii − 2fifjfij + f2

i fjj,

where i, j = 1, . . . , n, fi =
∂f

∂xi
and fij =

∂2f

∂xi∂xj
.

It is easy to see that (Flex f)ij = (Flex f)ji, and (Flex f)ii = 0.

Proposition 1. Let (Rn, g) be a manifold of constant curvature
with the metric tensor

g =
dx2

1 + · · · + dx2
n(

1 + κ
(
x2

1 + · · · + x2
n

))2 ,

where κ is a constant. Then the level sets of a function

f(x1, . . . , xn)

are geodesics of the metric g if and only if the function f satisfies
the following PDE system:

(2) (Flex f)ij =
2κ
(
f2
i + f2

j

)

1 + κ
(
x2

1 + · · · + x2
n

)
∑

k

xkfk

for all i, j.

Proof. To prove formula (2), first note that the components of the
metric tensor g are

gii = b2, gij = 0, i 6= j,



Hyperplanar Webs and Euler Equations 279

where

b =
1

1 + κ
(
x2

1 + · · · + x2
n

) .

It follows that

gii = g−1
ii , g

ij = 0, i 6= j.

We compute Γijk using the classical formula

(3) Γkij =
1

2
gkl
(
∂gli
∂xj

+
∂glj
∂xi

− ∂gij
∂xl

)

and get

Γkii = 2κxkb, k 6= i; Γiii = −2κxib; Γkij = 0, i, j 6= k, i 6= j;

Γiij = −2κxjb, i 6= j; Γjij = −2κxib, i 6= j.

Substituting these values of Γijk into the right-hand side of for-

mula (1), we get formula (2). �

Note that if n = 2, then PDE system (2) reduces to the single
equation

Flex f =
2κ (x1f1 + x2f2)

(
f2
1 + f2

2

)

1 + κ
(
x2

1 + x2
2

) ,

where Flex f = (Flex f)12.
This formula coincides with the corresponding formula in [1].
We rewrite formula (2) as follows:

(4)
(Flex f)ij
f2
i + f2

j

= 2κb
∑

k

xkfk.

The left-hand side of equation (4) does not depend on i and j.
Thus we have

(Flex f)ij
f2
i + f2

j

=
(Flex f)kl
f2
k + f2

l

for any i, j, k, and l.
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It follows that if

(5) (Flex f)ij = 0

for some fixed i and j, then (5) holds for any i and j.
In other words, one has the following result.

Theorem 2. Let W be a geodesic d-web on the manifold (Rn, g)

given by web-functions
{
f1, . . . , fd

}
such that (fak )2+(fal )2 6= 0 for

all a = 1, . . . , d and k, l = 1, 2, . . . , n. Assume that the intersection
of W with the plane (xi0 , xj0) , for given i0 and j0, is a linear
planar d-web. Then the intersection of W with arbitrary planes
(xi, xj) are linear webs too.

2.2. Geodesic Webs on Hypersurfaces in Rn.

Proposition 2. Let (M,g) ⊂ Rn be a hypersurface defined by
an equation xn = u (x1, . . . , xn−1) with the induced metric g and
the Levi-Civita connection ∇. Then the foliation defined by the
level sets of a function f (x1, . . . , xn−1) is totally geodesic in the
connection ∇ if and only if the function f satisfies the following
system of PDEs:

(6) (Flex f)ij =
u1f1 + · · · + un−1fn−1

1 + u2
1 + · · · + u2

n−1

(f2
j uii−2fifjuij+f

2
i ujj).

Proof. To prove formula (6), note that the metric induced by a
surface xn = u(x1, . . . , xn−1) is

g = ds2 =
n−1∑

k=1

(1 + u2
k)dx

2
k + 2

n−1∑

i,j=1(i6=j)
uiujdxidxj .

Thus the metric tensor g has the following matrix:

(gij) =




1 + u2
1 u1u2 . . . u1un−1

u2u1 1 + u2
2 . . . u2un−1

...
...

. . .
...

u1 un−1u2 . . . 1 + u2
n−1



,
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and the inverse tensor g−1 has the matrix

(gij) =
1

1 +

n−1∑

k=1

(1 + u2
k)

×

×




n−1∑

k=2

(1 + u2
k) −u1u2 . . . −u1un−1

−u2u1

n−1∑

k=1(k 6=2)

(1 + u2
k) . . . −u2un−1

...
...

. . .
...

−un−1u1 −un−1u2 . . .
n−2∑

k=1

(1 + u2
k)




.

Computing Γijk by formula (3), we find that

Γkij =
ukuij

1 +
n−1∑

k=1

(1 + u2
k)

.

Applying these formulas to the right-hand side of (1), we get for-
mula (6). �

We rewrite equation (6) in the form

(7)
(Flex f)ij

f2
j uii − 2fifjuij + f2

i ujj
=
u1f1 + · · · + unfn
1 + u2

1 + · · · + u2
n

.

It follows that the left-hand side of (7) does not depend on i
and j, i.e., we have

(Flex f)ij
f2
j uii − 2fifjuij + f2

i ujj
=

(Flex f)kl
f2
l ukk − 2fkflukl + f2

kull

for any i, j, k and l. This means that if

(Flex f)ij = 0
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for some fixed i and j, then

(Flex f)kl = 0

for any k and l.
In other words, we have a result similar to the result in Theo-

rem 2.

Theorem 3. Let W be a geodesic d-web on the hypersurface
(M,g) given by web functions

{
f1, . . . , fd

}
such that

(
faj
)2
uii − 2fai f

a
j uij + (fai )2 ujj 6= 0,

for all a = 1, . . . , d and k, l = 1, 2, . . . , n. Assume that the intersec-
tion of W with the plane (xi0 , xj0) , for given i0 and j0, is a linear
planar d-web. Then the intersection of W with arbitrary planes
(xi, xj) are linear webs too.

3. Hyperplanar Webs

In this section we consider hyperplanar geodesic webs in Rn

endowed with a flat linear connection ∇.
In what follows, we shall use coordinates x1, . . . , xn in which

the Christoffel symbols Γijk of ∇ vanish.
The following theorem gives us a criterion for a web of hyper-

surfaces to be hyperplanar.

Theorem 4. Suppose that a d-web of hypersurfaces, d ≥ n + 1,
is given locally by web functions fα(x1, . . . , xn), α = 1, ..., d. Then
the web is hyperplanar if and only if the web functions satisfy the
following PDE system:

(8) (Flex f)st = 0,

for all s < t = 1, . . . , n.

Proof. For the proof, one should apply Theorem 1 to all foliations
of the web. �
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In order to integrate the above PDEs system, we introduce the
functions

As =
fs
fs+1

, s = 1, . . . , n − 1,

and the vector fields

Xs =
∂

∂xs
−As

∂

∂xs+1
, s = 1, . . . , n− 1.

Then the system can be written as

Xs (At) = 0,

where s, t = 1, . . . , n− 1.
Note that

[Xs,Xt] = 0

if the function f is a solution of (8).
Hence, the vector fields X1, . . . ,Xn−1 generate a completely in-

tegrable (n− 1)-dimensional distribution, and the functions

A1, . . . , An−1

are the first integrals of this distribution.
Moreover, the definition of the functions As shows that

Xs(f) = 0, s = 1, . . . , n − 1,

also.
As a result, we get that

As = Φs (f) , s = 1, . . . , n− 1,

for some functions Φs.
In these terms, we get the following system of equations for f :

∂f

∂xs
= Φs (f)

∂f

∂xs+1
, s = 1, . . . , n− 1,

or

(9)
∂f

∂xs
= Ψs (f)

∂f

∂xn
, s = 1, . . . , n− 1,
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where Ψn−1 = Φn−1, and

Ψs = Φn−1 · · ·Φs

for s = 1, . . . , n− 2.
This system is a sequence of the Euler-type equations and there-

fore can be integrated. Keeping in mind that a solution of the
single Euler-type equation

∂f

∂xs
= Ψs (f)

∂f

∂xn

is given by the implicit equation

f = u0 (xn + Ψs (f)xs) ,

where u0(xn) is an initial condition, when xs = 0, and Ψs is an
arbitrary nonvanishing function, we get solutions f of system (8)
in the form:

f = u0 (xn + Ψn−1 (f)xn−1 + · · · + Ψ1 (f)x1) ,

where u0(xn) is an initial condition, when

x1 = · · · = xn−1 = 0,

and Ψs are arbitrary nonvanishing functions.
Thus, we have proved the following result.

Theorem 5. Web functions of hyperplanar webs have the form

(10) f = u0 (xn + Ψn−1 (f)xn−1 + · · · + Ψ1 (f)x1) ,

where u0(xn) are initial conditions, when x1 = · · · = xn−1 =
0, and Ψs are arbitrary nonvanishing functions.

Example 15. Assume that n = 3,

f1(x1, x2, x3) = x1, f2(x1, x2, x3) = x2, f3(x1, x2, x3) = x3,

and take u0 = x3, Ψ1(f4) = f2
4 , Ψ2(f4) = f4 in (10). Then we get

the hyperplanar 4-web with the remaining web function

f4 =
x2 − 1 ±

√
(x2 − 1)2 − 4x1x3

2x1
.
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It follows that the level surfaces f4 = C of this function are defined
by the equation

x1(C
2x1 − Cx2 + x3 + C) = 0,

i.e., they form a one-parameter family of 2-planes

C2x1 − Cx2 + x3 + C = 0.

Differentiating the last equation with respect to C and excluding C,
we find that the envelope of this family is defined by the equation

(x2)
2 − 4x1x3 − 2x2 + 1 = 0.

Therefore, the envelope is the second-degree cone.

Example 16. Assume that n = 3,

f1(x1, x2, x3) = x1, f2(x1, x2, x3) = x2, f3(x1, x2, x3) = x3,

and take u0 = x3,Ψ1(f4) = 1,Ψ2(f4) = f2
4 in (10). Then we get

the linear 4-web with the remaining web function

f4 =

(
1 ±

√
1 − 4x2(x1 + x3)

2x2

)2

.

The level surfaces f4 = C2 of this function are defined by the
equation

x2(x1 + C2x2 + x3 − C) = 0,

i.e., they form a one-parameter family of 2-planes

x1 + C2x2 + x3 − C = 0.

Differentiating the last equation with respect to C and excluding C,
we find that the envelope of this family is defined by the equation

4x1x2 + 4x2x3 − 1 = 0.

Therefore, the envelope is the hyperbolic cylinder.

In the next example no one foliation of a web W3 coincides
with a foliation of coordinate lines, i.e., all four web functions are
unknown.



286 V. V. Goldberg, V. V. Lychagin

Example 17. Assume that n = 3 and take

Description 1.

(i) u01 = x3, Ψ1(f1) = f2
1 , Ψ2(f1) = f1;

(ii) u02 = x3, Ψ1(f2) = 1, Ψ2(f2) = f2
2 ;

(iii) u03 = x2
3, Ψ1(f3) = f3, Ψ2(f3) = 1;

(iv) u04 = x3, Ψ1(f4) = Ψ2(f4) = f4.

in (10). Then we get the linear 4-web with the web functions

f1 =
x2 − 1 ±

√
(x2 − 1)2 − 4x1x3

2x1
,

f2 =

(
1 ±

√
1 − 4x2(x1 + x3)

2x2

)2

(see Examples 15 and 16) and

f3 =

(
1 ±

√
1 − 4x1(x2 + x3)

2x1

)2

,

f4 =
x3

1 − x1 − x2
.

It follows that the leaves of the foliation X1 are tangent 2-planes
to the second-degree cone

(x2)
2 − 4x1x3 − 2x2 + 1 = 0

(cf. Example 15 and 16), the leaves of the foliation X2 and X3 are
tangent 2-planes to the hyperbolic cylinders

4x1x2 + 4x2x3 − 1 = 0 and 4x1x2 + 4x1x3 − 1 = 0

(cf. Example 16), and the leaves of the foliation X4 are 2-planes
of the one-parameter family of parallel 2-planes

Cx1 +Cx2 + x3 = 1,

where C is an arbitrary constant.
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