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Geodesic Webs and PDE Systems of
Euler Equations

We find necessary and sufficient conditions for the foliation defined by level
sets of a function f(z1,...,zn) to be totally geodesic in a torsion-free con-
nection and apply them to find the conditions for d-webs of hypersurfaces
to be geodesic, and in the case of flat connections, for d-webs (d > n + 1)
of hypersurfaces to be hyperplanar webs. These conditions are systems of
generalized Euler equations, and for flat connections we give an explicit
construction of their solutions.
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1. INTRODUCTION

In this paper we study necessary and sufficient conditions for
the foliation defined by level sets of a function to be totally geo-
desic in a torsion-free connection on a manifold and find necessary
and sufficient conditions for webs of hypersurfaces to be geodesic.
These conditions has the form of a second-order PDE system for
web functions. The system has an infinite pseudogroup of sym-
metries and the factorization of the system with respect to the
pseudogroup leads us to a first-order PDE system. In the pla-
nar case (cf. [1]), the system coincides with the classical Euler
equation and therefore can be solved in a constructive way. We
provide a method to solve the system in arbitrary dimension and
flat connection.
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2. GEODESIC FOLIATIONS AND FLEX EQUATIONS

Let M™ be a smooth manifold of dimension n. Let vector fields
O1,...,0, form a basis in the tangent bundle, and let w!, ..., w"
be the dual basis. Then

[@‘, OJ] = Z Cf]ak
k
for some functions ci-“j € C>® (M), and
dw® + Zcfjwi Aw! = 0.
1<j

Let V be a linear connection in the tangent bundle, and let Ffj be
the Christoffel symbols of second type. Then

Vi(05) => Tk,
k
where V; & Vg, and
Vi (wF) ==Y
J
In [1] we proved the following result.

Theorem 1. The foliation defined by the level sets of a function
f(x1,...,xy,) is totally geodesic in a torsion-free connection V if
and only if the function f satisfies the following system of PDEs:

9 (fi) 9i(f;) +9;(fi) n 9; (f3) _

fifi fifi Il

_ LI S fk)
W ‘%(P“fifi BRI A

of

foralli < j,i,7=1,...,n; here f; = .
813
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We call such a system a flex system.

Note that conditions (1) can be used to obtain necessary and
sufficient conditions for a d-web formed by the level sets of the
functions fu(x1,...,2,),a = 1,...,d, to be a geodesic d-web,
i.e., to have the leaves of all its foliations to be totally geodesic:
one should apply conditions (1) to the all web functions f,,a =
1,...,d

2.1. Geodesic Webs on Manifolds of Constant Curvature.
In what follows, we shall use the following definition.

Definition 1. We call by (Flex f);; the following function:
(Flex f)ij = f7fii — 2fififij + 2 i

of O

8$i and fzg N axlﬁx]

It is easy to see that (Flex f);; = (Flex f);i, and (Flex f);; = 0.

where i,5 =1,...,n, fi=

Proposition 1. Let (R™,g) be a manifold of constant curvature
with the metric tensor

dof + -+ da?
(1+k 22+ - +a2))°
where Kk is a constant. Then the level sets of a function
flxy,. ... xp)

are geodesics of the metric g if and only if the function f satisfies
the following PDE system:

2K (fz2 + ff)

(2) (Flex f)ij = Y Py zk:xkfk

for all i, 3.

Proof. To prove formula (2), first note that the components of the
metric tensor g are

gii = b%, gi; =0, i# ],
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where

1
Cl+w(ad 4 +a?)

It follows that
9" =g5' 97 =0, i#].
We compute I %), using the classical formula

1 Ogui | Ogi;  0gij
kLo i 99
®) by = 29 <8xj * ozt Ot

and get
TF = 2kab, k #i; Ty = —2ka;b; T =0, 4,5 # k, i # J;
Tl = —2ka;b, i # j; T, = —2kab, i # ]

Substituting these values of F;k into the right-hand side of for-
mula (1), we get formula (2). O

Note that if n = 2, then PDE system (2) reduces to the single
equation

K (l‘lfl + $2f2) (f12 + f22)

2
Fl =
ex f 1+f1(:1:%+x%)

i

where Flex f = (Flex f)12
This formula coincides with the corresponding formula in [1].
We rewrite formula (2) as follows:

(4) (?151 f;] 2kb Z .I‘kfk

The left-hand side of equation (4) does not depend on i and j.
Thus we have

(Flex f)” _ (Flex f)kl
412 fi+ 17

for any i, 7, k, and (.
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It follows that if
(5) (Flex f)” =0
for some fixed i and j, then (5) holds for any i and j.

In other words, one has the following result.

Theorem 2. Let W be a geodesic d-web on the manifold (R™, g)
given by web-functions { f*, ..., f*} such that (f,?)2—|-(fla)2 # 0 for
alla=1,...,d and k,1 = 1,2,...,n. Assume that the intersection
of W with the plane (x;,,xj,), for given ig and jo, is a linear
planar d-web. Then the intersection of W with arbitrary planes
(xi, ) are linear webs too.

2.2. Geodesic Webs on Hypersurfaces in R".
Proposition 2. Let (M,g) C R™ be a hypersurface defined by

an equation x, = u(x1,...,Ty—1) with the induced metric g and
the Levi-Civita connection V. Then the foliation defined by the
level sets of a function f(x1,...,2n—1) is totally geodesic in the

connection V if and only if the function f satisfies the following
system of PDFEs:

(6) (Flex f);; = urfr+-- Fun1fa

T+ud+-+ud

(fFws—2fi fjuig+ [Fug;).

Proof. To prove formula (6), note that the metric induced by a
surface z, = u(xy,...,Ty_1) is

n—1 n—1
g=ds* = Z(l + ui)dry + 2 Z wjujdx;dr;.
k=1 i,j=1(i#7)

Thus the metric tensor g has the following matrix:
1+ U% ujug [P UL Up—1
uU2Uq 1+ U% P UQ2Up—1

(9:5) = : : - : ’

U1 Up_1Ug ... 1 —|—u%_1
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and the inverse tensor ¢g~! has the matrix

(97) = ! X

n—1
1+ > (1+up)
k=1

n—1
Z(l + u%) — U1 U . —UTUp—1
k=2
n—1
—UgU1 Z (1+ ui) co. —UQUp—1
x k=1(k#2)
n—2
—Up—1U1 —Up—1U2 c. Z(l + uz)
k=1

Computing Fé-k by formula (3), we find that

U U g

ko
14> (1+uf)
k=1

Applying these formulas to the right-hand side of (1), we get for-
mula (6). O

We rewrite equation (6) in the form
fRuii = 2fi fjuig + fRuj;  1+uf+ - +ul

It follows that the left-hand side of (7) does not depend on i
and 7, i.e., we have

(Flex f)q _ (Flex f)i

fPui —2fifjuij + frug;  fPuwe — 2k frun + fRun
for any i, 7,k and [. This means that if
(Flex f)Z] =0
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for some fized i and j, then
(Flex f)w =0

for any k and I.
In other words, we have a result similar to the result in Theo-
rem 2.

Theorem 3. Let W be a geodesic d-web on the hypersurface
(M, g) given by web functions { f',..., f%} such that

(f) i — 22 foui + (F8) ugg # 0,

foralla=1,...,dand k,l =1,2,...,n. Assume that the intersec-
tion of W with the plane (x;,,x;,) , for given iy and jo, is a linear
planar d-web. Then the intersection of W with arbitrary planes
(xi,x;5) are linear webs too.

3. HYPERPLANAR WEBS

In this section we consider hyperplanar geodesic webs in R"”
endowed with a flat linear connection V.

In what follows, we shall use coordinates x1,...,x, in which
the Christoffel symbols I‘é»k of V vanish.

The following theorem gives us a criterion for a web of hyper-
surfaces to be hyperplanar.

Theorem 4. Suppose that a d-web of hypersurfaces, d > n + 1,
is given locally by web functions fo(x1,...,2,),a = 1,...,d. Then
the web is hyperplanar if and only if the web functions satisfy the
following PDE system:

(8) (Flex f)st =0,
forall s<t=1,... n.

Proof. For the proof, one should apply Theorem 1 to all foliations
of the web. g
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In order to integrate the above PDEs system, we introduce the
functions

As = I , s=1,...,.n—1,
ferl
and the vector fields
0 0
Xs=——A;—, s=1,....,n—1.
s 8$S Sastrl’S ) y T

Then the system can be written as
Xs (At) = O,

where s,t =1,...,n — 1.
Note that
[Xs, X¢] =0

if the function f is a solution of (8).
Hence, the vector fields X1, ..., X,,_1 generate a completely in-
tegrable (n — 1)-dimensional distribution, and the functions

Alv"'vAn—l

are the first integrals of this distribution.
Moreover, the definition of the functions Ag shows that

Xs(f)=0,s=1,...,n—1,

also.
As a result, we get that

As =P (f), s=1,...,n—1,

for some functions ®,.
In these terms, we get the following system of equations for f:

of of B B

8x5_(1)8(f)3$s+1’ s=1,...,n—1,
or

of _ of . _ N
(9) 8xs_‘1,s(f)8a:n7s_1"”7n 1,
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where ¥,, 1 =&, 4, and
Uy =D, 1Dy
fors=1,...,n—2.
This system is a sequence of the Euler-type equations and there-

fore can be integrated. Keeping in mind that a solution of the
single Euler-type equation

of
o =W ()

is given by the implicit equation

f:UO(wn‘i‘\Ijs(f)xs)a

where ug(z,) is an initial condition, when x5 = 0, and ¥, is an
arbitrary nonvanishing function, we get solutions f of system (8)
in the form:

f=uo(@n+¥Ye1 (f)on—1+-+ Y1 (f)x1),

where ug(z,,) is an initial condition, when

or

oxy,

Ty = =xp1 =0,

and W, are arbitrary nonvanishing functions.
Thus, we have proved the following result.

Theorem 5. Web functions of hyperplanar webs have the form
(10) fZUO (l‘n—l-\lfn,l (f)xn,1 +"'+‘I’1 (f) 1‘1),

where ug(xy) are initial conditions, when x; = -+ = Ty =
0, and W, are arbitrary nonvanishing functions.

Example 15. Assume that n = 3,

filxr,wo,3) = 1, fo(w1, @2, 23) = @2,  f3(x1, 22, 73) = X3,
and take ug = w3, V1(f1) = £, Wa(fs) = f4 in (10). Then we get
the hyperplanar 4-web with the remaining web function
ro — 1+ \/(1‘2 - 1)2 - 41‘1$3
21‘1 '

fa=
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It follows that the level surfaces fy = C of this function are defined
by the equation

x1(C*xy — Cag + 23+ C) = 0,
i.e., they form a one-parameter family of 2-planes
02331 —Ca:2+a:3+C:0.

Differentiating the last equation with respect to C' and excluding C,
we find that the envelope of this family is defined by the equation

(22)? — 4xy23 — 239 + 1 = 0.
Therefore, the envelope is the second-degree cone.
Example 16. Assume that n = 3,
fi(@1,22,23) = 21, fo(w1,20,23) = 2,  f3(21,72,73) = 3,
and take ug = x3,V1(f1) = 1,Wa(fs) = fZ in (10). Then we get

the linear 4-web with the remaining web function

B <1i V1 — 4z (2 +x3))2
Ja= .

21‘2

The level surfaces fi = C? of this function are defined by the
equation
xg(l‘l + CQ.IQ + T3 — C) = O,
i.e., they form a one-parameter family of 2-planes
1‘1+021‘2+$3—C:0.

Differentiating the last equation with respect to C' and excluding C,
we find that the envelope of this family is defined by the equation

4xi1x9 + dx03 — 1 = 0.
Therefore, the envelope is the hyperbolic cylinder.

In the next example no one foliation of a web W3 coincides
with a foliation of coordinate lines, i.e., all four web functions are
unknown.
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Example 17. Assume that n = 3 and take

Description 1.
(i) wor =3, Ui(f1) = f1, Va(f1) = fi;
(i) woe =z3, Vi(f2) =1, Ua(fo) = f3;
(iii) wos = 23, W1(f3) = f3, Va(fs) =1;
(iv) wos = x3, W1(fa) = Va(fa) = f4-

in (10). Then we get the linear 4-web with the web functions

xro — 1+ \/(1‘2 - 1)2 —41‘1%3

fl = le ’
2
1+ /1 —4xy(z1 + x3)
f2= 5
T2

(see Examples 15 and 16) and

B <1i V1 —4x1(x2+x3))2
f3= ;

21‘1

€3

Ja

1—1‘1—1‘2'

It follows that the leaves of the foliation X1 are tangent 2-planes
to the second-degree cone

(1‘2)2 — 4%1%3 — 21‘2 +1=0

(¢f. Example 15 and 16), the leaves of the foliation Xy and X3 are
tangent 2-planes to the hyperbolic cylinders

4rix9 + 4dxo13 — 1 =0 and 4x1x9 + 4123 — 1 =10

(¢f. Example 16), and the leaves of the foliation X4 are 2-planes
of the one-parameter family of parallel 2-planes

Cx1+Cxy+ 23 =1,

where C' is an arbitrary constant.
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