УДК 669.02/09:669.788 В.Ф.Мороз, Э.В.Приходько, Н.Е.Ходотова

ПОВЕДЕНИЕ ВОДОРОДА В РАЗЛИЧНЫХ СТРУКТУРНЫХ СОСТАВЛЯЮЩИХ УГЛЕРОДСОДЕРЖАЩИХ СПЛАВОВ И СТАЛЕЙ

Целью исследования явилось изучение закономерностей поведения водорода в сталях, определяющих их водородную хрупкость. С использованием физикохимической модели металлических расплавов с ОЦК – подобной структурой проанализировано поведение водорода в различных структурных составляющих углеродсодержащих сплавов и сталей. Установлена на численном уровне связь растворимости водорода, коэффициента его диффузии и водородопроницаемости с параметрами межатомного взаимодействия в многокомпонентных фазах и сплавах.

Сталь, структурные составляющие, водород, растворимость, проницаемость, хрупкость, параметры межатомного взаимодействия

Постановка задачи. Параметры диффузии, растворимости и водородопроницаемости, определяющие поведение водорода в сталях, зависят не только от температуры и химического состава, но и от их структурного состояния. Известно, что даже в небольших микрообъемах стали при одной и той же температуре могут наблюдаться различные структурные составляющие: аустенит, феррит, мартенсит, карбиды и др. Вследствие неодинаковой способности растворять в себе водород, содержание его в каждой из структур будет различно. Поэтому процессы поглощения и выделения водорода, происходящие при нагреве и охлаждении сталей в процессе их термообработки, вследствие их микронеоднородности будут протекать в этих структурах не одновременно и с различными скоростями даже в пределах одного зерна. Экспериментальные данные показывают неравномерное распределение атомов водорода в стали, обусловленное наличием границ зерен, различного рода дефектов и различных фазовых составляющих [1].

Целью исследования явилось изучение закономерностей поведения водорода в сталях, определяющих их водородную хрупкость. В этой связи, изучение локализации примесей водорода в металле и основных факторов, определяющих водородную хрупкость, является актуальной задачей.

Методика исследования. Изучение влияния структурных составляющих сталей проводили методом физико-химического моделирования с использованием модели металлических расплавов с ОЦК- подобной структурой [2]. При этом интегральные параметры межатомного взаимодействия в сталях с неоднородной структурой (перлит, сорбит, троостит и др.), получаемой в процессе термообработки, определили по аддитивной схеме, считая, что основными фазовыми составляющими являются феррит и карбиды различного состава – Fe₃C, (FeCr)₂₃C₆, (FeCr)₂₃C₇.

При расчете фазового состава исходили из того, что практически весь углерод входил в состав карбидов, а его доля в ферритной части составляла 0,02%. Интегральные параметры сталей рассчитывали по выражениям (1)–(3):

$$d_{\rm cT} = d_{\rm b} \cdot [\Phi] + d_{\rm K} \cdot [{\rm K}] \tag{1}$$

$$Z_{\text{cr.}}^{Y} = Z_{\phi}^{Y} \cdot [\Phi] + Z_{\kappa}^{Y}[K]$$
⁽²⁾

$$tg\alpha_{ct.} = tg\alpha_{\phi} \cdot [\Phi] + tg\alpha_{\kappa} \cdot [K], \qquad (3)$$

где $d_{\phi}, Z_{\phi}^{Y}, \text{tg}\alpha_{\phi}, d_{\kappa}, Z_{\kappa}^{Y}$ и $\text{tg}\alpha_{\kappa}$ – интегральные параметры феррита и карбидов; [Ф] и [К] – массовая доля феррита и карбидов.

Изложение основных материалов исследования. Экспериментальные исследования влияния структуры различных сталей на растворимость и диффузию в них водорода, приведенные в [3], показали, что с изменением состава и структуры сталей изменяется и растворимость в них водорода (табл. 1).

Таблица	1.	Химический	состав	сталей	(масс.	%)	И	растворимость	В	них
водорода	ι [3] при комнатн	юй тем	ператур	e					

Сталь	Сод	ержани	е элеме	Фазовый	[H],		
	С	Mn	Si	Cr	Ni	состав	см ³ /100г
Армкожелезо	0,05	-	-	-	-	Феррит	51,1
Трансформа-	0,08	0,11	3,92	-	-	Кремнистый	89,3
торная сталь						феррит	
Нержавеющая	0,10	0,48	0,57	18,48	8,42	Аустенит	62,2
сталь 18-8							
Углеродистая	0,84	0,32	0,42	-	-	Мартенсит	6,9
сталь						Троостит	15,9
						Сорбит	46,5
						Норм.стр-ра	25,0

Растворимость водорода в кремнистом феррите, как видно из табл.1, выше, чем в феррите и аустените. Углеродистая сталь со структурой сорбита характеризуется максимальной растворимостью водорода, а сталь с мартенситной структурой – минимальной.

Анализ параметров межатомного взаимодействия в этих сталях, имеющих различный фазовый состав (табл. 2), показал, что существует их связь с растворимостью водорода и его проницаемостью в виде уравнений:

$$[H]_{\text{pact.,cm}^3/100_{\Gamma}} = 3156, 1 + 823, 85d + 815, 14Z^Y - 526, 26 \text{tg}\alpha \qquad r = 0,945 \qquad (4)$$

$$V[H]_{\text{прон., cm}^3} = 1008,17 + 142,67d + 80,04Z^{\gamma} + 5931,94 \text{tg}\alpha \qquad r = 0,78 \qquad (5)$$

Сопоставительное сравнение экспериментальных и рассчитанных по уравнениям (4) и (5) значений приведены на рис.1 и 2.

В работах [4–7] приведены исследования по влиянию режимов термообработки на диффузию водорода в сталях 20Х13Ш, 35, 34ХМ и Fe–Ni– Мп сплавах с различной структурой (феррит, мартенсит, сорбит, перлит) и фазовым составом при температурах 30–400°С.

Таблица 2. Параметры межатомного взаимодействия стали, растворимость и выделение водорода

Сталь	$d \cdot 10^{-1}$,	Z^{Y} ,	tgα	[H] _{эксп.}	[H] _{расч.}	V[H] _{эксп.}	V[H] _{pacч.}
	HM	e	-	см ³ /100г	см ³ /100г	см ³	см ³
Армко	2,8184	1,1398	0,0881	51,1	48,6	7,78	7,78
Трансф.	2,7128	1,2956	0,0883	89,3	88,5	6,37	6,37
Углерод.	2,6849	1,2202	0,0891	6,9	3,6	1,10	1,10
Перлит	2,7391	1,1994	0,0889	25	31,4	2,84	6,23
Троостит	2,7391	1,1994	0,0889	15,9	31,4	7,70	6,23
Сорбит	2,7391	1,1994	0,0889	46,5	31,4	8,16	6,23
Нержав.	2,8030	1,7514	0,9854	62,2	62,2	-	-

Коэффициент диффузии водорода связан с параметрами межатомного взаимодействия в этих сталях (табл. 3) выражением: $\ln D = 13,489 + 0,0029t_{\text{H3M}} - 5,94d - 2,065Z^{Y} \qquad r = 0,881 \quad (6)$

Как видно из рис.За, связь рассчитанных и экспериментальных значений lgD характеризуется значительным разбросом точек, что можно объяснить как различным составом фаз, так и степенью завершенности процесса структуризации сталей и размера карбидных выделений.

В связи с отсутствием данных по размерам карбидных включений для повышения тесноты связей была введена в качестве параметра температура отпуска, которая косвенно связана с ними. Зависимость коэффициента диффузии при введении этого параметра от интегральных параметров описывается выражением:

 $\lg D = 3,472 + 0,0025t_{изм.} - 2,216d - 2,107Z^Y - 0,00064t_{отп.}$ *r*=0,949 (7) при этом разброс точек при сопоставлении рассчитанных и экспериментальных значений (рис.36), уменьшился.

Выполнен анализ водородопроницаемости сталей 20Х13Ш, ст.35, 20Х13, 34ХНМ и 80ХАМ в различных температурных интервалах и структурных состояниях [4, 5, 8]. Учитывая несопоставимые условия измерений, анализ экспериментальных данных по водородопроницаемости, которые приведены в этих работах, проведен выборочно. Так, водородопроницаемость сталей 34ХНМ и 80ХНМ [8] при температуре 650⁰С (табл. 4) описывается уравнением:

 $-\ln P = 6,538 + 0,00057t_{\text{OTIL}} - 0,428d + 2,248Z^Y \qquad r = 0,975 \qquad (8),$

а водородопроницаемость сталей 20Х13Ш, ст. 35 и 20Х13 [4, 5] в различных структурных состояниях описывается уравнением

$$-\lg P = 9.022 + 0.0055t - 0.694d + 0.785Z^Y \qquad r = 0.774 \qquad (9)$$

Следует отметить, что для каждой стали в отдельности коэффициент корреляции выше 0,93. Столь точные корреляции получены впервые.

Рис.3. Сопоставительное сравнение экспериментальных и рассчитанных по уравнению (6)-(а) и (7)-(б) значений коэффициента диффузии.

Bowinited with a prime												
Сталь	Структура		lgD	t,	$d \cdot 10^{-1}$,	Z^{Y} ,	tgα	t _{отп.}	$D \cdot 10^{7}$,	lgD _{расч.}	$lgD_{pacy.}$	Ис-
				°C	HM	e			см ² /с	(6)	(7)	точ-
												ник
	Мартенсит		-5,00	353	2,785	1,573	0,0855	390	100	-5,28	-5,13	[4]
20Х13Ш	Сорбит		-5,23	358	2,798	1,558	0,0854	570	58,5	-5,31	-5,22	
	Феррит		-5,59	352	2,803	1,526	0,0856	1000	25,8	-5,29	-5,46	
	Фер.+карб.	α -Fe+(Fe,Cr) ₂₃ C ₆	-5,55	350	2,789	1,547	0,0885	1000	28,5	-5,26	-5,48	[5]
20X13	Сорбит	α -Fe+(Fe,Cr) ₂₃ C ₆	-5,26	350	2,801	1,531	0,0853	570	54,8	-5,29	-5,19	
	Отп.мартен.	α -Fe+(Fe,Cr) ₇ C ₃	-5,15	350	2,803	1,530	0,0853	390	71,2	-5,31	-5,08	
Ст.35	Фер.+перлит	α−Fe+Fe ₃ C	-4,58	349	2,758	1,194	0,0885	640	263,3	-4,35	-4,44	
	Сорбит	α−Fe+Fe ₃ C	-4,23	350	2,786	1,183	0,0884	450	592,6	-4,49	-4,35	
	Мартенсит		-5,23	30	2,763	1,228	0,0882	850	2,8	-5,37	-5,46	[6]
Ст.34ХНМ	Зерн.перл.		-5,59	30	2,793	1,203	0,0881	850	6,3	-5,50	-5,47	
	Пласт.перл.		-5,55	30	2,793	1,203	0,0881	850	4,5	-5,50	-5,47	
<i>Fe-Ni-Мn</i> спл.	Мартенсит		-5,26	400	2,826	1,514	0,0923	1150	160	-5,26	-5,46	[7]
									~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			

Таблица 3. Параметры диффузии водорода в сталях с различной структурой и интегральные параметры межатомного взаимодействия в них

Таблица 4. Водородопроницаемость сталей при температуре 650 °С

Сталь	Структура	t _{отп.} ,	$d \cdot 10^{-1}$, HM	Z^{Y} , e	tgα	$-\ln P_{3\kappa c \pi}$	$-\ln P_{\text{pacy.}}$
		°C					
	Мартенсит	320	2,7698	1,2413	0,0884	8,3	8,32
34XHM	Бейнит	315	2,7319	1,2393	0,0886	8,35	8,31
	Перлит	650	2,7319	1,2393	0,0886	8,49	8,50
	Мартенсит	300	2,7053	1,2431	0,0890	8,35	8,34
80XHM	Бейнит	280	2,6486	1,2245	0,0888	8,3	8,32
	Перлит	650	2,6486	1,2245	0,0888	8,54	8,53

Согласно [9] водородопроницаемость структур отпуска закаленной стали определяется содержанием углерода в твердом растворе, а поведение углерода и водорода в железных сплавах является взаимообусловленным. Так, водородопроницаемость сталей с различным содержанием углерода ст.20, 30, 40, У8 и 20Х [10] в температурном интервале 400–930°С (табл. 5) достаточно тесно связаны с интегральными параметрами межатомного взаимодействия в сталях уравнением:

 $q \cdot 10^2 = 20447, 2 + 1996d + 1412, 8Z^Y + 149275, 6tg\alpha + 0,0711t$ r=0.95 (10)

Таблица 5. Параметры межатомного взаимодействия в сталях и проницаемость водорода в них

Сталь	$D \cdot 10^{-1}$,	Z^{Y} ,	tgα	t,	$q \cdot 10^2_{3 \text{ KC.}}$	$q \cdot 10^2_{\text{ pac.}}$
	HM	e		⁰ C	см ³ /ч	см ³ /ч
Ст.20	2,7853	1,1896	0,0883	825	31,5	32,7
Ст.30	2,7697	1,2001	0,0884	840	31,5	32,4
Ст.40	2,7541	1,2070	0,0885	840	27,8	26,0
Ст.У8	2,6948	1,2227	0,0891	840	14,6	19,3
20X	2,7864	1,2123	0,0881	835	33,8	37,9

Сопоставительное сравнение рассчитанных и экспериментальных значений водородопроницаемости приведено на рис.4.

Рис. 4. Сравнение рассчитанных по уравнению (10) и экспериментальных значений водородопроницаемости сталей с различным содержанием углерода

Выводы. Проведенными исследованиями установлено, что использование физико-химической модели металлических расплавов и определение параметров межатомного взаимодействия как аддитивных величин структурных составляющих, позволяют описывать в виде полуэмпирических моделей закономерностей поведения водорода в сталях, имеющих различное структурное состояние.

 Воврук М.В., Соловьян В.Б. Локализация примесей водорода в металле // Физико-химическая механика материалов. – 1985. – №4. – С.26–29.

- Приходько Э.В. Эффективность комплексного легирования сталей и сплавов. –К.: Наукова думка, 1995. – 212 с.
- 3. *Носырева С.С.* Влияние структуры на диффузию водорода в стали // Сталь. 1948. №6. С.542–544.
- Борисова Н.С., Аммосова Л.М. К вопросу об аномальном поведении водорода в сталях при низких температурах // Физико–химическая механика материалов. – 1976. – №5. – С.10–14.
- Влияние термообработки на водородопроницаемость конструкционных сталей / А.И.Никонорова, Н.С.Борисова, Л.М.Амосова и др. // Физико–химическая механика материалов. – 1972. – №3. – С.85–88.
- Влияние структуры стали на коэффициент диффузии водорода / В.Е.Волков, Р.А.Рябов, Е.С.Кодц и др. // Физика металлов и металловедение. – 1970. – Т.29. – С.431–432.
- Федоров С.Н., Кунин Л.Л., Сачкова Л.М. Влияние структурного фактора на диффузию водорода в сплаве Fe–Ni–Mn // В кн. Анализ газов в металлах. –М.: АН СССР, 1960. – Т. 10. – С.46–48.
- Влияние структуры на водородопроницаемость стали / П.В.Гельд, В.А.Гольцов, Л.И.Кватер и др. // Металловедение и термическая обработка металлов. – 1965. – №4. – С.10–14.
- Влияние температуры отпуска на водородную проницаемость и хрупность закаленной стали / А.К.Миндюк, Е.И.Свист, Ю.И.Бабей и др. // Физико– химическая механика материалов. – 1971. – №6. – С.65–70.
- Баталин Г.И., Балясный А.Л. Влияние содержания углерода на диффузию водорода в углеродистых сталях. // Изв. ВУЗов. Черная металлургия. – 1961. – №3. – С.120–125.

Статья рекомендована к печати: ответственный редактор раздела «Металловедение и материаловедение» докт.техн.наук, проф. Г.В.Левченко рецензент докт.техн.наук, проф. А.М.Нестеренко

В.Ф.Мороз, Е.В.Приходько, Н.Е.Ходотова

Поведінка водню в різних структурних складових вуглецевих сплавів і сталей

Метою дослідження є вивчення закономірностей поведінки водню в сталях, що визначає їхню водневу крихкість. З використанням фізико-хімічної моделі металевих розплавів з ОЦК-подібною структурою проаналізовано поведінку водню в різних структурних складових вуглецевих сплавів і сталей. На чисельному рівні встановлено зв'язок розчинності водню, коефіцієнта його дифузії та водородопроникливості з параметрами міжатомної взаємодії в багатокомпонентних фазах і сплавах.