ТЕОРИЯ И МОДЕЛИРОВАНИЕ НАНОСТРУКТУР

УДК 699+514.83

Л.С. Чхартишвили

Грузинский технический университет ул. М. Костава, 77, г. Тбилиси, 0175, Грузия

РАВНОВЕСНАЯ ГЕОМЕТРИЯ НАНОТРУБОК НИТРИДА БОРА УЛЬТРАМАЛОГО РАДИУСА

Ключевые слова: энергия связи, параметр структуры, квазиклассический метод, нанотрубка, нитрид бора Выведены формулы для межатомных расстояний в зигзагных и кресловидных нанотрубках. С их помощью в рамках квазиклассического приближения рассчитаны молярные энергии нанотрубок нитрида бора ультрамалого радиуса.

Введение

Нитрид бора BN существует во многих структурных формах, в том числе и в виде слоистых кристаллов гексагональной (h-BN) и ромбоэдрической (r-BN) модификаций. Они отличаются друг от друга лишь упаковкой атомных плоскостей, построенных из правильных шестиугольников, в вершинах которых поочередно расположены атомы бора и азота. Так что слоистые нитриды бора являются структурными аналогами графита. Кроме того, в периодической системе химических элементов Менделеева углерод находится между В и N. Поэтому неудивительно, что природа химической связи внутри слоев нитрида бора во многом схожа с реализуемой в графите: это преимущественно ковалентное связывание, но с малой долей ионности. Исходя из этих аналогий в работе [1] было предположено, что наряду с углеродными стабильными могут быть и борнитридные нанотрубки, образуемые сворачиванием прямоугольных фрагментов гексагонального слоя в цилиндры соответствующих радиусов.

С точки зрения многообразных технических применений нанотрубный нитрид бора не менее перспективен, чем нанотрубный углерод [2]. Благодаря близости параметров структуры слоистого нитрида бора и графита возможно создание наномасштабных гетеропереходов в форме многостенных нанотрубок, в которых часть слоев являются борнитридными, а часть — углеродными [3, 4]. Дополни-

© Л.С. ЧХАРТИШВИЛИ, 2009

тельно из-за частичной гетерополярности химических связей BN-нанотрубки могут служить в качестве превосходного пьезоэлектрического материала со спонтанной поляризацией, сравнимой с вюрцитными полупроводниками [5–7].

В настоящее время нанотрубные структуры нитрида бора выращиваются самыми различными способами: в дуговом разряде в азотной атмосфере между электродами, представляющими собой бруски тугоплавких металлборидных соединений; лазерным плавлением твердотельных модификаций нитрида бора под высоким давлением азота; каталически активированным пиролизом; в реакции замещения атомов в углеродных нанотрубках, обрабатываемых в высокотемпературном потоке азота совместно с борсодержащим молекулярным веществом; в твердотельном процессе — высокотемпературным отжигом порошкообразного h-BN с сильно разупорядоченной наноструктурой частиц; карботермальным восстановлением аморфного оксида бора при высокотемпературном азотировании; посредством баллистических смещений, вызываемых в структуре слоистых кристаллов нитрида бора облучением в просвечивающем электронном микроскопе и т. д. Тем не менее продвижение в практическом применении нанотрубного нитрида бора сдерживалось рядом проблем: малым выходом конечного продукта, наличием в нем еще достаточно больших концентраций примесей, а также необходимостью осуществления роста качественных нанотрубок при высоких (превосходящих 1100 °C) температурах. В последнее время в этой сфере новые перспективы были открыты разработкой метода низкотемпературного (~600 °C) роста на подложках нанотрубок нитрида бора с высокоупорядоченными структурами, не требующими дальнейшей очистки [8].

Получаемые нанотрубки нитрида бора чаще всего многостенны, а радиусы одностенных превышают 5 Å. Возникает вопрос: возможно ли вообще существование стабильных ультрамалых нанотрубок? Если да, то это позволило бы использовать нанотрубный нитрид бора в качестве почти одномерного материала. Данная работа ставит своей целью теоретическое исследование указанной проблемы. В рамках квазиклассического подхода нами конкретно вычислены равновесные значения энергии нехиральных — зигзагных и кресловидных нанотрубок нитрида бора ультрамалых радиусов. В следующем разделе выведены формулы для межатомных расстояний в подобных нанотрубках, что необходимо для квазиклассических вычислений. Далее дается краткое описание метода расчета и излагаются основные результаты. В заключении отмечен ряд факторов, которые наряду с критерием энергетической выгодности могут повлиять на реализуемость малоразмерных нанотрубок нитрида бора.

Межатомные расстояния в нехиральных нанотрубках нитрида бора

Как известно, гексагональные нанотрубки бывают хиральными и нехиральными. Образование хиральной нанотрубки из соответствующего фрагмента плоского слоя требует не только излома плоскостей шестичленных атомных колец, но и деформации последних. Поэтому при поиске равновесных геометрий гексагональных нанотрубок хиральные структуры можно с самого начала исключить из рассмотрения.

Что же касается нехиральных конфигураций, то они, в свою очередь, реализуются в двух вариантах — зигзагном и кресловидном (см. рис. 1, І и 2). При образовании этих трубок плоскости атомных колец изламываются соответственно вдоль линий тех связей B-N (N-B) или В-В (N-N), которые параллельны оси трубки, но искажение самой правильной формы шестиугольников уже необязательно. По этой причине малыми должны быть и возможные расхождения в длинах В-N-связей, по-разному ориентированных относительно оси. Если ими пренебречь, то в качестве единственного структурного параметра как для зигзагных, так и для кресловидных нанотрубок нитрида бора можно использовать именно длину В-N-связей, т. е. расстояние между ближайшими соседними атомами $a / \sqrt{3}$, где *а* является эквивалентом параметра решетки слоистого кристалла h-BN, который равен длине связей В-В (N-N) в слоях. Кроме того, предположим, что все атомные узлы данной нанотрубки лежат на одной и той же цилиндрической поверхности (в действительности, согласно детальным молекулярнодинамическим расчетам, проведенным методом сильной связи [9], благодаря релаксации, аналогичной реконструкции чистых поверхностей кристаллов соединений типа III-V, реальные нанотрубки нитрида бора должны быть слегка волнистыми: атомы бора чуть смещены в сторону оси, а атомы азота — в обратном направлении). В этих условиях индекс *n* в стандартных обозначениях (n,0) и (n, n) зигзагных и кресловидных нанотрубок определяет числа тех В-N-связей, направленных соответственно параллельно или перпендикулярно оси трубки, которые встречаются при ее обходе по одной из атомных окружностей.

Ниже будут выведены формулы, в аналитическом виде — через параметры *a* и *n* — определяющие координаты атомных узлов и межатомные расстояния в идеальных зигзагных и кресловидных нанотрубках нитрида бора. Заметим, что эти же соотношения будут пригодны и

Рис. 1. Зигзагная (1) и кресловидная (2) нанотрубки нитрида бора. Темными и светлыми кружками показаны соответственно атомы В и N

для любого другого структурного аналога, в частности для углеродных нанотрубок.

Элементарная ячейка зигзагной N-нанотрубки (n, 0) состоит из 4 атомных окружностей, перпендикулярных оси трубки, с *n* атомами каждая. Из них две содержат только атомы В, а остальные две — только атомы N. При этом окружности с разноименными атомами располагаются поочередно, образуя две пары. В данной паре расстояние между плоскостями окружностей составляет $a/2\sqrt{3}$, тогда как соседние атомные окружности, принадлежащие разным парам, удалены друг от друга на $a / \sqrt{3}$. Раз трубка предполагается цилиндрической, то узлы бора (азота) некоторой атомной окружности совместно с проекциями узлов азота (бора) другой окружности той же пары являются вершинами правильного 2n-угольника (вписанного в эту окружность) со сторонами длиной a / 2. Решение соответствующей кристаллографической

Рис. 2. Отклонения энергий ультрамалых нанотрубок нитрида бора от уровня энергии нанотрубки бесконечного радиуса (пунктирная линия), рассчитанные квазиклассическим методом (точки, соединенные сплошной жирной линией) и по экстраполяционной формуле (обычная сплошная линия) в зависимости от их радиуса

задачи, найденное нами ранее в [10], позволяет определить радиус зигзагной нанотрубки:

$$R_{(n,0)} = \frac{a}{4\sin\pi / 2n}$$
(1)

Если ось Ог совместить с осью зигзагной нанотрубки, то полярный радиус любого атомного узла в цилиндрической системе координат (ρ, ϕ, z) будет совпадать с $R_{(n,0)}$: $\rho = R_{(n,0)}$. Для определения остальных координат плоскость xOz удобно провести по одной из линий излома поверхности листа нитрида бора, а плоскость хОу — посредине одной из В-N-связей, лежащих на этой линии. Назовем атомы В и N, образующие указанную связь, центральной парой атомов в зигзагной трубке. Можно показать, что в этих условиях полярный угол и высота узлов ${}^{lm}_{(n,0)} B1$ и ${}^{lm}_{(n,0)} N1$ в атомных окружностях, кристаллографически эквивалентных окружности центральной пары, будут равны:

 $\varphi = 2l\pi/n, \quad z = (6m+1)a/2\sqrt{3}$ и $\varphi = 2l\pi/n, z = (6m-1)a/2\sqrt{3}$

Входящие сюда индексы l = 0, 1, 2..., n-1 и $m = 0, \pm 1, \pm 2, \dots$ нумеруют соответственно пары атомов В и N в парах атомных окружностей и сами эти окружности. В частности, для атомов центральной пары $_{(n,0)}^{00}$ В1 и $_{(n,0)}^{00}$ N1 с нулевыми значения индексов (l = 0 и m = 0) будем иметь: $\varphi = 0, z = a/2\sqrt{3}$ и $\varphi = 0, z = -a/2\sqrt{3}$.

Аналогично находятся выражения полярного угла и высоты для узлов ${}^{lm}_{(n,0)}$ В2 и ${}^{lm}_{(n,0)}$ N2 атомных окружностей, кристаллографически эквивалентных другой паре окружностей в элементарной ячейке нанотрубки:

$$\varphi = (2l+1)\pi / n, z = (3m-1)a / \sqrt{3}$$

n $\varphi = (2l+1)\pi / n, z = (3m+1)a / \sqrt{3}$

С помощью записанных цилиндрических координат атомных узлов после необходимых преобразований получим искомые выражения, позволяющие найти квадраты расстояний от атомов центральной пары зигзагной нанотрубки нитрида бора до любого атома этой структуры:

$$\frac{\binom{m}{(n,0)}B1-\binom{00}{(n,0)}B1}{a^2} = \frac{\sin^2 l\pi / n}{4\sin^2 \pi / 2n} + 3m^2,$$

$$\frac{\binom{lm}{(n,0)}B2 - \binom{00}{(n,0)}B1}{a^2} = \frac{\sin^2(2l+1)\pi/2n}{4\sin^2\pi/2n} + \frac{3(2m-1)^2}{4}$$
$$(\frac{lm}{N1} - \frac{00}{N1}B1)^2 = \sin^2 l\pi/n = (3m-1)^2$$

MAHO CTPYKTYPHOE

$$\frac{\sin^2 (n,0)^{2+1} (n,0)^{2+1}}{a^2} = \frac{\sin^2 (n,0)^{2+1} (n,0)^{2+1}}{4\sin^2 (\pi/2)^n} + \frac{(3m-1)^2}{3},$$

 $(\int_{0}^{lm} N$

$$\frac{\left(\frac{lm}{(n,0)}N2 - \frac{00}{(n,0)}Bl\right)^2}{a^2} = \frac{\sin^2(2l+1)\pi/2n}{4\sin^2\pi/2n} + \frac{(6m+1)^2}{12}$$

$$\frac{\binom{lm}{(n,0)}B1 - \binom{00}{(n,0)}N1}{a^2} = \frac{\sin^2 l\pi / n}{4\sin^2 \pi / 2n} + \frac{(3m+1)^2}{3}$$

$$\frac{(a_{n,0})^{lm}B2 - (a_{n,0})^{00}N1)^2}{a^2} = \frac{\sin^2(2l+1)\pi/2n}{4\sin^2\pi/2n} + \frac{(6m-1)^2}{12}$$

$$\frac{\binom{lm}{(n,0)}N1-\binom{00}{(n,0)}N1}{a^2} = \frac{\sin^2 l\pi / n}{4\sin^2 \pi / 2n} + 3m^2,$$

$$\frac{\binom{lm}{(n,0)}N2 - \binom{00}{(n,0)}N1)^2}{a^2} = \frac{\sin^2(2l+1)\pi/2n}{4\sin^2\pi/2n} + \frac{3(2m+1)^2}{4}$$
 (2)

Элементарную ячейку кресловидной ВN-нанотрубки (n,n) образуют две атомные окружности, ориентированные перпендикулярно ее оси. Каждая из них содержит по *n* атомов В и N, которые располагаются поочередно. Любая пара окружностей удалена от соседних на расстояние, равное а / 2. Атомные узлы произвольной окружности цилиндрической трубки совместно с проекциями узлов одной из соседних атомных окружностей являются вершинами (вписанного в нее) 4*n*-угольника с длиной сторон $a/2\sqrt{3}$ и $a/\sqrt{3}$ поочередно. В данном случае решение кристаллографической задачи привело нас к следующему выражению для радиуса кресловидной нанотрубки [10]:

$$R_{(n,n)} = \frac{a\sqrt{5 + 4\cos\pi/2n}}{4\sqrt{3}\sin\pi/2n}$$
(3)

Разумеется, что этой формулой для $R_{(n,n)}$ дается и полярный радиус любого атомного узла кресловидной нанотрубки, если в качестве ее оси выбрать ось $Oz: \rho = R_{(n,n)}$. Теперь плоскость xOy совместим с плоскостью одной из атомных окружностей, а плоскость xOz проведем посредине одной из В–N-связей, лежащих в плоскости xOy. Атомы В и N, которые составляют эту связь, назовем центральной парой атомов кресловидной трубки. Тогда полярный угол и высота узлов атомов ${}^{lm}_{(n,n)}$ В1 и ${}^{lm}_{(n,n)}$ N1 окружностей, кристаллографически эквивалентных окружности центральной пары, будут равны: $\varphi = \varphi_1 + 2l\pi/n, z = ma$ и $\varphi = -\varphi_1 + 2l\pi/n, z = ma$, где параметр φ_1 определяется из соотношения:

$$\sin \varphi_1 = \frac{2\sin \pi / 2n}{\sqrt{5 + 4\cos \pi / 2n}} \tag{4}$$

Индексы l = 0, 1, 2..., n-1 и $m = 0, \pm 1, \pm 2...$ здесь нумеруют соответственно атомы одного сорта в окружностях и сами атомные окружности. В частности, для координат узлов атомов центральной пары ${}^{00}_{(n,n)}$ B1 и ${}^{00}_{(n,n)}$ N1 (т. е. при l = 0 и m = 0) получаем: $\varphi = \varphi_1$, z = 0 и $\varphi = -\varphi_1$, z = 0.

Что касается координат узлов атомов

и $\lim_{(n,n)}$ N2 окружностей, кристаллографически эквивалентных другой атомной окружности элементарной ячейки трубки, то для них будем иметь: $\varphi = -\varphi_1 - 2\varphi_2 + 2l\pi/n$, z = (2m + 1) a/2 и $\varphi = \varphi_1 + 2\varphi_2 + 2l\pi/n$, z = (2m + 1) a/2. Здесь введен еще один параметр φ_2 , который определяется выражением:

$$\sin\varphi_2 = \frac{\sin\pi/2n}{\sqrt{5+4\cos\pi/2n}} \tag{5}$$

Отсюда найдем формулы для квадратов удаленностей произвольных атомных узлов кресловидной нанотрубки нитрида бора от узлов ее центральной пары:

$$\frac{\binom{lm}{(n,n)} \mathrm{B1} - \binom{00}{(n,n)} \mathrm{B1})^2}{a^2} = \frac{(5 + 4\cos\pi/2n)\sin^2(2n/2n)}{12\sin^2\pi/2n} + m^2,$$

$$\frac{\binom{lm}{(n,n)} \mathrm{B2} - \binom{00}{(n,n)} \mathrm{B1})^2}{a^2} = \frac{(5 + 4\cos\pi/2n)\sin^2(2l-1)\pi/2n}{12\sin^2\pi/2n} + \frac{(2m+1)^2}{4},$$

$$\frac{\binom{lm}{(n,n)} \mathrm{N1} - \binom{00}{(n,n)} \mathrm{B1})^2}{a^2} = \frac{(2\sin(2l-1)\pi/2n + \sin(l\pi/n)^2}{12\sin^2\pi/2n} + m^2,$$

$$\frac{\binom{lm}{(n,n)} \mathrm{N2} - \binom{00}{(n,n)} \mathrm{B1})^2}{a^2} = \frac{(\sin(2l+1)\pi/2n + 2\sin(l\pi/n)^2}{12\sin^2\pi/2n} + \frac{(2m+1)^2}{4},$$

$$\frac{\binom{lm}{(n,n)} \mathrm{B1} - \binom{00}{(n,n)} \mathrm{N1})^2}{a^2} = \frac{(2\sin(2l+1)\pi/2n + \sin(l\pi/n)^2}{12\sin^2\pi/2n} + m^2,$$

$$\frac{\binom{lm}{(n,n)} \mathrm{B2} - \binom{00}{(n,n)} \mathrm{N1})^2}{a^2} = \frac{(\sin(2l-1)\pi/2n + 2\sin(l\pi/n)^2}{12\sin^2\pi/2n} + \frac{(2m+1)^2}{4},$$

$$\frac{\binom{lm}{(n,n)} \mathrm{N1} - \binom{00}{(n,n)} \mathrm{N1})^2}{a^2} = \frac{(5 + 4\cos\pi/2n)\sin^2(l\pi/n)}{12\sin^2\pi/2n} + m^2,$$

$$\frac{\binom{lm}{(n,n)} \mathrm{N2} - \binom{00}{(n,n)} \mathrm{N1})^2}{a^2} = \frac{(5 + 4\cos\pi/2n)\sin^2(2l+1)\pi/2n}{12\sin^2\pi/2n} + m^2,$$

$$(6)$$

Квазиклассический метод расчета энергии связанной системы атомов

Полные энергии зигзагных и кресловидных цилиндрических нанотрубок нитрида бора ультрамалых радиусов как функции параметра а были нами вычислены с помощью того же квазиклассического метода, который уже тестировался в расчетах характеристик структуры и электронного энергетического спектра ряда других модификаций нитрида бора — диатомной молекулы BN [11, 12], гексагонального плоского листа BN [13], кристаллов гексагональной h-BN [12, 14], кубической с-BN [15] и вюрцитной w-BN [16, 17] фаз. Параметры структуры этих же объектов в работе [18] были найдены посредством аналитической оптимизации квазиклассической энергии, что возможно проделать в статическом приближении (колебательные энергии вычислялись в работе [19]).

Вкратце сущность квазиклассического подхода применительно к полной энергии связанной системы атомов заключается в следующем (детальное изложение физической теории дано в работе [20], а ее основные математические аспекты представлены в работах [21, 22]). Оказывается, что такие системы являются квазиклассическими по критерию Маслова в смысле близости их квазиклассического электронного энергетического спектра к точному. В начальном квазиклассическом приближении пространственные распределения плотности электрического заряда и потенциала электрического поля в составляющих структуру атомах представляются радиальными ступенчатыми функциями, для которых границами между ступенями слу1 Зинаравоилиатым

жат радиусы классических точек поворота для движения электронов относительно центра данного атома и его ядра относительно электронного облака как целого. При этом значения плотности заряда и потенциала в областях ступеней совпадают с соответствующими объемными средними. В результате подобной параметризации полная энергия полиатомной системы в квазиклассическом приближении представляется конечной линейной комбинацией произведений плотностей заряда и потенциалов в различных областях усреднения внутри взаимодействующих пар атомов, составляющих структуру. Коэффициенты этой энергетической суммы, в свою очередь, являются конечными линейными комбинациями универсальных геометрических функций, выражающих объемы областей пересечения двух сфер в зависимости от их радиусов и межцентровых расстояний. В качестве радиусов сфер выступают указанные выше радиусы классических точек поворота для атомных электронных состояний, а межцентровые расстояния совпадают с межузловыми в рассматриваемой системе атомов. И поскольку последние зависят от структурных параметров, то и полная энергия системы оказывается их функцией. Минимизацией энергии находят равновесные значения параметров структуры и энергию системы в основном состоянии.

Приведем расчетные формулы, используемые при квазиклассических оценках полной энергии кристалла E_{Total} , приходящейся на моль вещества. Эта величина является суммой статической энергии E_{Static} , из которой исключена нефизическая энергия самодействия частиц системы $E_{Self-Action}$, и колебательной энергии $E_{Vibration}$:

$$E_{Total} = (E_{Static} - E_{Self-Action}) + E_{Vibration},$$
⁽⁷⁾

$$E_{Static} = \frac{1}{4} \sum_{\vec{i}} \sum_{(i)=1}^{(i)=N} \sum_{(k)=1}^{(k)=N} \sum_{j=1}^{i=q_{(i)}} \sum_{l=1}^{l=q_{(k)}} \rho_{(i)j} \varphi_{(k)l} V_{(ik)jl}(r_{(ik)\vec{i}}),$$
(8)

$$E_{Self-Action} \approx \sum_{(i)=1}^{(i)=N} \left(\sum_{m=1}^{m=Z_{(i)}} \frac{3}{10(r_{(i)m}^{"3} - r_{(i)m}^{'3})} \left(r_{(i)m}^{"2} - \frac{3r_{(i)m}^{'3}(r_{(i)m}^{"} + r_{(i)m}^{'})}{2(r_{(i)m}^{"2} + r_{(i)m}^{"}r_{(i)m}^{'} + r_{(i)m}^{'2})} \right) + \frac{3Z_{(i)}^{2}}{10\tilde{r}_{(i)}} \right), \quad (9)$$

Наноструктурное материаловедение, 2009, № 1

$$E_{Vibration} = \frac{3\hbar}{2} \sum_{(i)=1}^{(i)=N} \sqrt{\sum_{\vec{i}}^{/} \sum_{(k)=1}^{(k)=N} \sum_{j=1}^{j=q_{(i)}} \sum_{l=1}^{l=q_{(k)}} \frac{\rho_{(i)j}\phi_{(k)l} + \rho_{(k)l}\phi_{(i)j}}{2M_{(i)}r_{(ik)\vec{i}}} \frac{\partial V_{(ik)jl}(r_{(ik)\vec{i}})}{\partial r_{(ik)\vec{i}}}}$$
(10)

Здесь \vec{t} — вектор трансляций, (*i*) и (*k*) номера атомов элементарной ячейки, N — их полное число, $r_{(ik)\bar{t}}$ — расстояние между двумя атомными узлами смещенных на вектор трансляций элементарных ячеек, *j* и *l* — номера слоев однородности в составляющих атомах, q_{ii} и $q_{(k)}$ — их числа, $\rho_{(i)j}$ и $\varphi_{(k)l}$ — объемно-усреднен-ные значения плотности заряда и потенциала в подобных слоях, т — номер электрона в атоме, *r*_{(*i*)*m*} и *r*_{(*i*)*m*}["] — внутренний и внешний классические радиусы поворота электронов в атоме, $Z_{(i)}$ — их полное число, $\tilde{r}_{(i)}$ — внешний классический радиус поворота ядра (внутренний всегда равен нулю), $M_{(i)}$ — масса атома. Формула (9) оценивает энергию самодействия лишь приближенно — как сумму энергий самодействия составляющих атомов, пренебрегая перераспределением валентного заряда. Штрих у знака суммирования в выражении (10) для колебательной энергии указывает на исключение члена с $\vec{t} = 0$ u(k)=(i), который соответствует взаимодействиям внутри данного атома; $V(R_1, R_2, D_{12})$ обозначает кусочно-аналитическую алгебраическую функцию, выражающую объем области пересечения двух сфер в зависимости от их радиусов $R_1 u R_2$ межцентрового расстояния D_{12} ,

$$V(R_{1}, R_{2}, D_{12}) =$$

$$= 4\pi R_{1}^{3}/3 \qquad D_{12} \le R_{2} - R_{1}$$

$$= 4\pi R_{2}^{3}/3 \qquad D_{12} \le R_{1} - R_{2}$$

$$= \pi (R_{1} + R_{2} - D_{12})^{2} \left((R_{1} + R_{2} + D_{12})^{2} - 4(R_{1}^{2} - R_{1}R_{2} + R_{2}^{2}) \right) / 12D_{12}$$

$$= 0 \qquad D_{12} \ge R_{1} + R_{2} \qquad (11)$$

В расчетах энергий зигзагных и кресловидных нанотрубок нитрида бора мы пользовались формулами межузловых расстояний, которые были выведены в предыдущем разделе, и квазиклассическими параметрами атомов бора и азота, следующими из подгонки квазиклассических энергий атомных орбиталей к их первопринципным значениям, получаемым методом Хартри–Фока (см., например, [13]).

Квазиклассическая энергия ультрамалых нанотрубок нитрида бора

Рассчитанные BN-нанотрубки можно расположить в порядке возрастания радиуса: (1,0), (1,1), (2,0), (3,0), (2,2), (4,0), (5,0) и (3,3). В прелелах точности начального квазиклассического приближения равновесные значения их структурного параметра одинаковы: a = 2.69 Å. Эта величина на ~7% превосходит измеренную в слоях кристаллов h–BN: *a* = 2.50 Å [23]. Некоторое удлинение химических связей по сравнению с внутрислоевыми в слоистых кристаллах, по-видимому, характерно для любой двумерной структуры нитрида бора. На подобную тенденцию также указывают результаты расчетов, проведенных для плоского фрагмента гексагонального слоя [24], двумерного кристалла [13, 18] и т. наз. хаекелитных (содержащих не только шестичленные атомные кольца) нанотрубок большего радиуса [25, 26].

По мере увеличения радиуса нанотрубки ее полная энергия, отнесенная к молю вещества, стремится к определенному пределу, который и был выбран в качестве нулевого уровня для отсчета энергии. Соответствующие разности ΔE молярных энергий ультрамалых и сверхбольшой трубки нитрида бора представлены на рис. 2. При оценке стабильности нанотрубки значения ΔE естественно сравнивать с молярной энергией связывания слоистых кристаллов нитрида бора E_{bind} , так как для фрагмента гексагонального слоя, образуемого в том или ином процессе, существуют лишь две альтернативы дальнейшего развития: или он сворачивается в

53

MATEPNAJOBEDENNE

нанотрубку соответствующего радиуса, или же включается в состав растущего слоя слоистого кристалла (для формирования фуллеренных структур нитрида бора подобно хаекелитным нанотрубкам недостаточно наличия только шестичленных колец).

Прежде всего надо отметить, что для нанотрубок (5,0) и (3,3) разности ΔE , будучи положительными, тем не менее являются существенно малыми по сравнению со стандартным термохимическим значением $E_{bind} = 13.0 \text{ eV/mole для}$ молярной энергии связывания слоистой модификации h–BN [27]. Так что нанотрубки нитрида бора этих размеров должны быть вполне устойчивыми.

Стабильными оказываются и такие нанотрубки, как (1,1), (2,0), (2,2) и (4,0), поскольку соответствующие энергетические разности не превосходят приведенное выше значение молярной энергии связывания слоистого нитрида бора. Однако, если принять во внимание, что для этих четырех нанотрубок квазиклассически рассчитанные значения ΔE имеют тот же порядок величины, что и E_{bind}, придем к выводу, что их образование относится к маловероятным событиям. В этом смысле наши результаты согласуются с выводом, сделанным в [28] на основе расчетов, которые проводились методом функционала локальной электронной плотности, что наименьшей стабильной трубной конфигурацией нитрида бора соответствует (5,0).

Для нанотрубки наименьшего радиуса, каковой является (1,0), получается $\Delta E > E_{bind}$, что означает принципиальную нереализуемость структуры. И в самом деле трудно представить "индивидуальную нанотрубку" (1,0), конфигурация которой является результатом вырождения зигзагной ВN-нанотрубки в зигзагную атомную цепочку, в точках излома которой поочередно расположены В и N. Такой объект может существовать разве что в качестве сердцевины многостенных нанотрубок, например в двустенной нанотрубке (1,0) × (10,0) (см. [10]).

Согласно квазиклассическим расчетам, среди ультрамалых нанотрубок нитрида бора особое место должна занимать зигзагная трубка (3,0), поскольку для нее $\Delta E < 0$. Следовательно,

такие трубки не только стабильны; их образование оказывается и энергетически более выгодным, чем формирование больших фрагментов гексагонального слоя, которые в дальнейшем будут сворачиваться в трубки большого радиуса или же складываться слоями трехмерного кристалла нитрида бора.

Подытоживая результаты наших расчетов молярной энергии для ультрамалых нанотрубок нитрида бора, можно сказать, что с увеличением радиуса трубки эта характеристика проявляет общую тенденцию к уменьшенияю. Такое поведение в среднем хорошо описывается (см. рис. 2) экстраполяцией на область ультрамалых радиусов функции $\Delta E [eV/mole] = 5.82 / (R [Å])^{2.09}$, которая, согласно расчетам [28], аппроксимирует спадание т. наз. молярной энергии деформации нанотрубок при увеличении их размеров. Однако на фоне монотонного уменьшения ΔE видна и осцилляция значений в форме пары хорошо выраженных экстремумов, соответствующих нанотрубкам (3,0) и (2,2). Возникает вопрос: каково поведение зависимости $\Delta E - R$ при дальнейшем увеличении радиуса R нанотрубок? При ответе было бы неоправданным опереться на квазиклассические результаты. Дело в том, что наш подход, позволивший проводить эффективные вычисления, целиком основанные на аналитических выражениях, обеспечивает необходимую точность только для ультрамалых нанотрубок. Если с помощью этого метода рассматривать нанотрубки нитрида бора, по размерам превосходящие трубку (3,3), то будут найдены довольно малые значения разности энергий ΔE , по порядку величины сравнимые с абсолютной погрешностью начального квазиклассического приближения для энергетических параметров. По этой причине мы проанализируем ниже некоторые из имеющихся данных, полученных другими теоретическими методами для нанотрубок нитрида бора малых и средних радиусов.

Предварительно следует заметить, что, как правило, рассчитывалась не разность молярных энергий ΔE нанотрубок с данным (т. е. с конечным) и бесконечным радиусами, а отмеченная выше молярная энергия деформации E_{str} , которая определяется как приходящаяся на моль ве-

щества энергия, затрачиваемая на образование трубной структуры сворачиванием соответствующего фрагмента гексагональной атомной плоскости. В принципе ΔE и E_{str} разнятся ввиду различия молярных энергий бесконечного слоя и его фрагмента. Во-первых, любой фрагмент с двух сторон ограничен линиями разреза, параллельными оси образуемой трубки, и для них приходится накладывать периодические граничные условия или же вводить фиктивные атомы водорода, "насыщающие" разорванные химические связи. Во-вторых, фрагменты ограничены и в направлении оси образуемой трубки: обычно в расчет принимают такое количество элементарных ячеек, которое позволяет получить разумное значение т. наз. фактора формы отношения длины трубки к ее радиусу. Учитывая квазиклассические значения атомных радиусов В и N — 2.30 Å и 1.70 Å соответственно (см. [18]), а также приведенную выше квазиклассическую оценку структурного параметра нанотрубок нитрида бора — 2.69 Å, можно прийти к выводу, что уже начиная с фрагментов для нанотрубок (6,0) и (4,4) должно практически отсутствовать сколько-нибудь существенное воздействие границ на атомы их центральных частей. Именно по этой причине мы не будем отличать E_{str} от ΔE для малых и средних нанотрубок нитрида бора.

В табл. 1 представлены те значения радиусов и приращений энергии нанотрубок нитрида бора, которые были рассчитаны в рамках теории функционала плотности (в приближении обобщенного градиента с использованием базиса плоских волн и ультрамягких остовных псевдопотенциалов) [25] и с помощью молекулярно-динамического моделирования на основе межатомных потенциалов с плавными окончаниями, получаемых методом погруженного атома [29, 30] (энергии ряда борнитридных нанотрубок в зависимости от длины межатомных связей в них недавно в работе [31] вычислялись квантово-химически — полуэмпирическим методом модифицированного пренебрежения диатомным перекрыванием в рамках модели молекулярного кластера; однако это был промежуточный этап расчета пьезоэлектрических характеристик нанотрубок, поэтому его результаты не приводились). Для сравнения в последнем столбце представлены те значения разности энергий, которые для этих радиусов следуют из приведенной выше аппроксимирующей формулы [28].

Нужно констатировать, что соответствующая степенная кривая проходит посредине рассчитанных точек и правильно передает порядок величины разностей молярных энергий для исследованных в этих работах нанотрубок. Вместе с тем относительные отклонения оказываются довольно существенными. Более того, имеются расхождения и в функциональном поведении. Во-первых, аппроксимирующая кривая является вогнутой, тогда как точки, относящиеся к нанотрубкам (4,4), (8,0), (5,5) и (10,0), явно ложатся на выпуклую. Во-вторых, эта кривая везде спадает, в то время как в действительнос-

Ссылка	Нанотрубка	Радиус <i>R</i> , <i>Å</i>	Приращение молярной энергии ΔE, eV/mole	Значение по аппроксимирующей формуле [28] ∆ <i>E</i> , eV/mole
[25]	(4,4)	2.86	0.28	0.65
[25]	(8,0)	3.29	0.26	0.48
[25]	(5,5)	3.57	0.22	0.41
[25]	(10,0)	4.02	0.16	0.32
[29, 30]	(8,8)	5.50	0.27	0.17
[29, 30]	(14,0)	5.58	0.21	0.16

Таблица 1. Теоретические значения радиусов и приращений молярных энергий нанотрубок нитрида бора

ти в области между радиусами нанотрубок (10,0) и (8,8) имеется участок роста молярной энергии (здесь приращение ΔE слишком значительно, чтобы его целиком отнести на счет возможного различия в знаках погрешностей разных методов расчета, примененных для двух указанных нанотрубок). Для аналогии можно заметить, что в случае хаекелитных нанотрубок нитрида бора рассчитанные точки [25, 26] также не вписываются в график какой-либо монотонно спадающей функции.

Таким образом, как оригинальные результаты настоящей работы, полученные квазиклассическим методом для ультрамалых нанотрубок нитрида бора, так и другие теоретические данные, имеющиеся для нанотрубок больших размеров, указывают на немонотонность зависимости от радиуса нанотрубки приращения ее молярной энергии относительно плоского слоя: на фоне общего уменьшения абсолютного значения этой величины видны и ее осцилляции. Разница между двумя областями значений радиуса лишь количественная. При относительно больших радиусах само приращение энергии и его немонотонность незначительны, тогда как при ультрамалых радиусах, когда приращения молярных энергий нанотрубок относительно плоского слоя сравнимы с молярной энергией связывания в реальных слоистых кристаллах нитрида бора, заметными становятся и их осцилляции. Такое поведение зависимости $\Delta E - R$ должно быть обусловлено отклонениями валентных углов в нанотрубках от равновесного значения $2\pi/3$ в гексагональном слое, которые особо существенны в трубках малого радиуса. Теоретически осцилляции молярной энергии нанотрубок можно объяснять с точки зрения упругой энергии скручивания [32] или же на основе первопринципных вантово-механических расчетов.

Заключение

Укажем на те факторы, которые могут влиять на формирование ультрамалых нанотрубок нитрида бора в экспериментальных условиях. Если полагать, что тенденция снижения вели-

HAHO CTPYKTYPHOE

рида бора при уменьшении радиуса [29] остается в силе и для области очень малых радиусов, то тогда следует ожидать образования лишь довольно коротких нанотрубок ультрамалого радиуса. Но открытым наносистемам чрезвычайно малых размеров присущи необычно большие флуктуации энергии [33], в которые опосредованно вносят свой вклад флуктуации числа атомов в системе и параметров структуры, а также отклонения состава от стехиометрического. В данной связи интересно отметить, что наблюдаемые в эксперименте предпочтения по хиральности объясняются [28] не большей стабильностью самых нанотрубок, а устойчивостью окончаний трубок, присущих той либо иной хиральности. Необходимо принять во внимание и влияние на размеры нанотрубок нитрида бора кинетики конкретного технологического процесса, с помощью которого они выращиваются. Например, при их получении осаждением радиус растущей нанотрубки приблизительно совпадает с радиусом той нанопоры в подложке, которая выступает в роли центра роста. Ситуация аналогична в случае реакции замещения: образуются нанотрубки нитрида бора, соразмерные с теми графитовыми, в которых атомы углерода были заменены атомами В и N [34]. А когда малая нанотрубка зарождается в сердцевине большой, размерами и сплющиванием последней определяются радиус, хиральность и ориентация малой нанотрубки.

чины фактора формы больших нанотрубок нит-

Если же исходить лишь из критерия энергетической выгодности, то по результатам настоящей работы приходим к следующим выводам. Формирование из гексагональных слоев зигзагных и кресловидных нанотрубок нитрида бора с индексами (5,0) и (3,3) и выше практически так же вероятно, как и прямое включение подобных фрагментов в слоистый кристалл. Образование сверхмалых нанотрубок (1,1), (2,0), (2,2) и (4,0) маловероятно, а наиболее малая структура (1,0) вообще нереализуема. Исключение составляет нанотрубка (3,0), образование которой должно быть энергетически более выгодным, чем рост кристалла нитрида бора. Виведено формули для міжатомних відстаней у зигзагних і кріслоподібних нанотрубках. За їхньою допомогою у рамках квазікласичного наближення обчислено молярні енергії нанотрубок нітриду бору ультрамалого радіуса.

Ключові слова: енергія зв'язку, параметр структури, квазікласичний метод, нанотрубка, нітрид бору

Formulas determining interatomic distances in zigzag and armchair nanotubes are obtained. By means of them the molar energies of ultrasmall-radius boron nitride nanotubes are calculated within the quasi-classical approach.

Key words: binding energy, structure parameter, quasiclassical method, nanotube, boron nitride

- Rubio A., Corkill J.L., Cohen M.L. Theory of graphitic boron nitride nanotubes // Phys. Rev. — 1994. — B 49, № 7. — P. 5081–5084.
- Boron nitride nanotubes / Chopra N.G., Luyken R J., Cherrey K et al. // Science. — 1995. — 269, № 5226. — P. 966–967.
- Theory of composite B_xC_yN_z nanotube heterojunctions / Blase X., Charlier J.-L., de Vita A., Car R. // Appl. Phys. Lett. — 1997. — 70, № 2. — P. 197–199.
- 4. Structural and electrical properties of composite B_xC_yN_z nanotubes and heterojunctions / Blase X., Charlier J.-L., de Vita A., Car R.// Appl. Phys. 1999. A 68, № 3. P. 293–300.
- 5. *Mele E J., Kral P.* Electric polarization of heteropolar nanotubes as a geometric phase // Phys. Rev. Lett. 2002. **88**, № 056803. P. 4.
- Spontanous polarization and piezolectricity in boron nitride nanotubes / Nakhmanson S.M., Cazolari A., Meunier V. et al. // Phys. Rev. — 2003. — B 67, № 235406. — P. 5.
- Sai N., Mele E.J. Microscopic theory for nanotube piezoelectrisity // Phys. Rev. — 2003. — B 68, № 242405(R). — P. 3.
- Low Temperature growth of boron nitride nanotubes on substrates / Wang J., Kayastha V.K., Yap Y.Kh. et al. // Nano Lett. — 2005. — 5, № 12. — P. 2528–2532.
- Menon M., Srivastava D. Structure of boron nitride nanotubes: Tube closing versus chirality // Chem. Phys. Lett. — 1999. — **307**, № 5–6. — P. 407–412.
- Чхартишвили Л.С. О размерах нанотрубок нитрида бора / Харьковская нанотехнологическая ассамблея. Т. 2: Тонкие пленки в оптике и наноэлектронике. — Харьков: ННЦ ХФТИ, 2006. — С. 367–373.
- Параметры основного состояния диатомических молекул В₂, ВС, ВN и ВО / Чхартишвили Л., Лежава Д., Цагарейшвили О., Гулуа Д. // Труды Академии МВД Грузии. — 1999. — № 1. — С. 295–300.
- 12. Chkhartishvili L., Lezhava D., Tsagareishvili O. Quasiclassical determination of electronic energies and vibration

frequencies in boron compounds // J. Solid State Chem. — 2000. — **154**, № 1. — P. 148–152.

- Чхартишвили Л.С. Квазиклассические оценки постоянной решетки и ширины запрещенной зоны кристалла: Двумерный нитрид бора // Физика твердого тела. — 2004. — 46, № 11. — С. 2056–2063.
- *Чхартишвили Л., Лежава Д.* Влияние нулевых колебаний на энергию связи кристалла: Квазиклассический расчет для слоистого нитрида бора // Труды Грузин. техн. ун-та. 2001. № 6. С. 87–90.
- Chkhartishvili L. Quasi-classical approach: Electronic structure of cubic boron nitride crystals // J. Solid State Chem. — 2004. — 177, № 2. — P. 395–399.
- Chkhartishvili L. Ground state parameters of wurtzite boron nitride: Quasi-classical estimations // Proceedings of the 1st International Boron Symposium. — Kutahya: Dumlupinar Univ., 2002. — P. 139–143.
- Chkhartishvili L.S. Density of electron states in wurtzitelike boron nitride: A quasi-classical calculation // Mater. Sci.: An Indian J. — 2006. — 2, № 1. — P. 18–23.
- Чхартишвили Л.С. Аналитическая оптимизация параметра кристаллической решетки на основе квазиклассически рассчитанной энергии связывания // Физика твердого тела. — 2006. — 48, № 5. — С. 606– 612.
- Chkhartishvili L. Zero-point vibration energy within quasi-classical approximation: Boron nitrides // Proc. Javakhishvili Tbilisi State Univ. (Phys.). — 2006. — № 40. — P. 130–138.
- *Чхартишвили Л.* Квазиклассическая теория основного состояния вещества. — Тбилиси: Изд-во Техн. ун-та, 2004. — 258 с.
- Чхартишвили Л.С. Объем области пересечения трех сфер // Матем. заметки. — 2001. — 69, № 3. — С. 466– 476.
- Ухартишвили Л.С. Итерационное решение векового уравнения // Матем. заметки. — 2005. — 77, № 2. — С. 303–310.
- Кузьма Ю.Б., Чабан Н.Ф. Двойные и тройные системы, содержащие бор: Справочник. — М.: Металлургия, 1990. — 320 с.
- 24. Strout D.L. Structure and stability of boron nitrides: Isomers of $B_{12}N_{12}$ // J. Phys. Chem. — 2000. — A 104, $N_{\rm P}$ 15. — P. 3364–3366.
- Неспиральные ВN-нанотрубки типа "хаекелит" / Лисенков С.В., Виноградов Г.А., Астахова Т.Ю., Лебедев Н.Г. // Письма в ЖЭТФ. — 2005. — 81, № 7. — С. 431–436.
- Геометрическая структура и электронные свойства ВN-нанотрубок и нанотрубных структур типа "хаекелит" / Лисенков С.В., Виноградов Г.А., Астахова Т.Ю., Лебедев Н.Г. // Физика твердого тела. — 2006. — 48, № 1. — С. 179–184.

<u>HAHO CTPYKTYPHOE</u>

- Selected Values of Chemical Thermodynamic Properties (Series I) / Wagmann D.D., Evans W.H., Parker V.B. et al. — Washington: US Department of Commerce. National Bureau of Standards, 1968. — P. 270.
- First-principles study of small-radius single-walled nanotubes / Xiang H.J., Yang J., Hou J.G., Zhu Q. // Phys. Rev. — 2003. — B 68, № 035427. — P. 5.
- Синтез, структура и механизм образования нитридборных нанотрубок / Бартницкая Т.С., Олейник Г.С., Покропивный А.В., Покропивный В.В. // Письма в ЖЭТФ. — 1999. — 69, № 2. — С. 145–150.
- 30. Boron nitride analogs of fullerens (the fulborenes), nanotubes, and fullerites (the fulborenites) / Pokropivny V.V., Skorokhod V.V., Oleinik G.S. et al. // J. Solid State Chem. — 2000. — 154, № 1. — P. 214–222.

- Лебедев Н.Г., Чернозатонский Л.А. Квантово-химические расчеты пьезоэлектрических характеристик борнонитридных и углеродных нанотрубок // Физика твердого тела. 2006. 48, № 10. С. 1909–1915.
- Покропивный В.В. Неуглеродные нанотрубки (Обзор).
 II. Виды и структура // Порошковая металлургия. 2001. — № 11–12. — С. 51–65.
- 33. *Hill T.L., Chamberlin R.V.* Fluctuation in energy in completely open small systems // Nano Lett. 2002. —
 2, № 6. P. 609–613.
- 34. Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction / Golberg D., Bando Y., Han W., Kurashima K. et al. // Chem. Phys. Lett. 1999. **308**, № 3–4. P. 337–342.