

11 • 2008

ХІМІЯ

УДК 546.185

© 2008

I.В. Затовський

Синтез та будова подвійного дифосфату LiTiP₂O₇

(Представлено членом-кореспондентом НАН України М. С. Слободяником)

A method of the preparation of double lithium-titanium (III) diphosphate by the interaction of $Li_2O-P_2O_5$ melts with titanium nitride at the ratio Li/P = 0.7 is developed. The structure of $LiTiP_2O_7$ is characterized by single crystal X-Ray analysis (sp. gr. $P2_1$; a = 0.48882(10), b = 0.8209(2), c = 0.69550(10) nm, $\beta = 108.80(3)^\circ$) and FTIR-spectroscopy. The three-dimensional framework is formed by linking distinct TiO_6 octahedra with P_2O_7 groups. Lithium atoms have fivefold coordination environment and exist in canals of the anionic sublattice along direction a. For the prepared compound, the scheme of thermal destruction and the assignment of vibration bands in FTIR-spectra are given.

Подвійні фосфати літію та полівалентних металів широко застосовуються як електродні матеріали в сучасних автономних джерелах струму [1, 2]. Насамперед це стосується відомого катодного матеріалу літій-іонних акумуляторів на основі ортофосфату LiFePO₄ [2]. Не менш цікавими та перспективними з точки зору практичного застосування як електродні матеріали є ряд інших фосфатів, які містять літій та полівалентні метали у нижчих ступенях окиснення, наприклад LiM^{III}P₂O₇ або Li₃M^{III}₂(PO₄)₃ (M^{III} — Fe, V, Ti, Mo) [2]. Це обумовлює постійну увагу до сполук даного класу.

У попередніх роботах [3, 4] нами було показано, що при взаємодії нітриду титану з розплавленими фосфатами $M_2^I O - P_2 O_5$ ($M^I - Na, K$) можна отримати подвійні фосфати, які містять тривалентний титан. У даному повідомленні розглянуто будову подвійного дифосфату літію-титану (III) LiTiP₂O₇, який синтезовано при взаємодії нітриду тітану (TiN) з розплавом фосфату літію в системі Li₂O-P₂O₅.

Для проведення структурних досліджень кристали LiTiP₂O₇ вирощували за такою методикою. Ретельно перетерту суміш Li₂CO₃ та NH₄H₂PO₄ з розрахованим співвідношенням Li/P = 0,7 повільно нагрівали у платиновій чашці до 400 °C та витримували в ізотермічних умовах до закінчення газовиділення. Температуру поступово підвищували до 900 °C, отримане фосфатне скло виливали на мідний лист. Літійфосфатне скло з указаним співвідношенням у кількості 25–50 г переносили в порцеляновий тигель і розплавляли у шахтній печі при 900 °C. У розплав при інтенсивному перемішуванні додавали TiN (2–4 г) та підвищували

ISSN 1025-6415 Доповіді Національної академії наук України, 2008, №11

129

температуру до 1000 °C. Витримували в ізотермічних умовах та періодичному перемішуванні (кожні 20–30 хв) 4 год. Спонтанну кристалізацію проводили зі швидкістю 25 °C/год до 800 °C. Потім розплав зливали з темно-фіалкових кристалів LiTiP₂O₇, які відмивали від залишків розплаву 0,1 н розчином HCl.

Для рентгеноструктурних досліджень було відібрано кристал призматичної форми з лінійними розмірами $0.12 \times 0.09 \times 0.06$ мм. Експеримент проведено з використанням дифрактометра Enraf-Nonius CAD4 "Express" (Мо_{K_{\alpha}}-випромінювання, графітовий монохроматор, $\omega/2\theta$ -сканування). Структуру розраховано прямим методом та уточнено повноматричним методом найменших квадратів у анізотропному наближенні з використанням програм SHELXS-97 [5] та SHELXL-97 [6]. Деталі рентгеноструктурного експерименту, кристалографічні параметри та кінцеві розрахунки уточнення наведено у табл. 1. Отримані координати атомів, їх ізотропні теплові параметри та довжини зв'язків у координаційних поліедрах наведено у табл. 2. Результати структурних досліджень доступні під депозитним номером CSD-419307 Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany).

Подвійний дифосфат літію-титану (III) кристалізується в моноклінній сингонії та є ізоструктурним до фосфатів LiM^{III}P₂O₇ (M^{III} — Fe, In) [7, 8]. В основі його кристалічної структури знаходиться тривимірна аніонна підгратка [TiP₂O₇]⁻, яку побудовано шляхом

Кристалографічні параметри та умови рентгеноструктурної зйомки	Отримані значення та застосовувані методи		
Склад сполуки	LiTiP ₂ O ₇		
M_r	228,75		
Сингонія, пр. гр.	Моноклінна, Р21		
Параметри комірки	a = 0,48882(10) HM; $b = 0,8209(2)$ HM; $c = 0,69550(10)$ HM;		
	$\beta = 108,80(3)^{\circ}; V = 0,26418(9)$ нм ³ ; $Z = 2$		
$ ho_{ m calc.}, { m r/cm}^3$	2,875		
Розмір кристала, мм	0,12 imes 0,09 imes 0,06		
Дифрактометр	Enraf-Nonius CAD4 "Express"		
Довжина хвилі, нм	0,071073		
Монохроматор	Графітовий		
Метод зйомки	$\omega/2 heta$ -сканування		
Температура, К	293		
$\mu,~{ m mm}^{-1}$	2,20		
Поправка на абсорбцію	Multi-scan		
T_{\min}, T_{\max}	$0,753,\ 0,827$		
Отримано рефлексів	1573		
Незалежні рефлекси	947		
Рефлексів з $I > 2\sigma(I)$	946		
$R_{ m in}$	0,016		
$ heta_{\min}, heta_{\max}, $ град	3,1, 26,8		
h-, k-, l-	$-5 \rightarrow 6, -9 \rightarrow 10, -8 \rightarrow 5$		
F(000)	222		
Метод розрахунку	Прямий		
Вагова схема	$w = 1/[\sigma^2(F_o^2) + (0.052P)^2 + 0.2897P],$ де $P = (F_o^2 + 2F_c^2)/3$		
$R_1[F^2 > 2\sigma(F^2)]$	0,024		
$R_1(\text{all}), wR_2, S$	$0,0244;\ 0,0702;\ 1,099$		
Кількість параметрів	101		
$(\Delta ho)_{ m max,min}, { m e} \cdot { m Hm}^{-3}$	0,000411, -0,000325		
Параметр Флека	-0,01(4)		

Таблиця 1

130

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2008, № 11

поєднання октаедрів TiO₆ з дифосфатними групами. Кисневі октаедри титану досить сильно викривлено, а довжини зв'язків Ti–O знаходяться у межах 0,1956(3)–0,2087(3) нм (див. табл. 2). Геометрія дифосфатного аніона є досить типовою для групи P₂O₇ [9]: зв'язки P–O від 0,1507(3) до 0,1603(3) нм, кут P–O–P 129,86(18)°. Кожна з P₂O₇-груп координована бідентатно до одного атома титану з утворенням шестичленного циклу та монокоординована ще до чотирьох атомів титану, як це показано на рис. 1. Внаслідок такого поєднання вздовж кристалографічної осі *а* формується система каналів, в яких розташовано атоми літію (рис. 2). Літій знаходиться у п'ятикоординаційному кисневому оточенні (у межах відстаней Li – O 0,2653(31) нм) та перебуває поблизу однієї із стінок каналу. Відстань між сусідніми атомами літію дорівнює 0,4888(14) нм. Така геометрія кристалічної гратки передбачає можливість міграції літію вздовж каналу та, відповідно, наявність у LiTiP₂O₇ іонної провідності.

Термічну стійкість LiTiP₂O₇ досліджено методом диференціально-термічного аналізу (дериватограф "Q-1500"квазі", квазістаціонарний режим в інтервалі температур від 20 до 1000 °C, швидкість нагрівання 5°/хв). При 570 й 630 °C на DTG-кривій зафіксовано ендоефекти, які можуть бути обумовлені наявністю фазових переходів. В інтервалі температур від 630 до 720 °C відбувається розклад LiTiP₂O₇, який супроводжується окисненням тривалентного титану, що відповідає інтенсивному ендоефекту близько 670 °C. У наведе-

Таблиця 2

Атом	x	y	z	$U_{\rm iso}/U_{\rm eq}$	
Ti(1)	-0,71049(13)	0,19864(7)	-0,22778(8)	0,00871(19)	
Li(1)	0,696(2)	0,0645(10)	0,1816(13)	0,0298(17)	
P(1)	-0,09774(19)	0,37955(10)	0,02514(12)	0,0087(2)	
P(2)	0,28524(19)	0,48499(11)	0,41778(13)	0,0094(2)	
O(1)	-0,3062(5)	0,2383(3)	-0,0118(4)	0,0118(6)	
O(2)	-0,2493(6)	0,5424(3)	0,0082(4)	0,0117(5)	
O(3)	0,1014(6)	0,3750(4)	-0,1039(4)	0,0128(5)	
O(4)	0,0983(6)	0,3549(3)	0,2567(4)	0,0130(5)	
O(5)	0,1000(6)	0,6310(4)	0,4244(4)	0,0161(6)	
O(6)	0,5410(6)	0,5294(4)	0,3521(4)	0,0153(6)	
O(7)	0,3719(6)	0,3953(3)	0,6184(4)	0,0133(6)	
${ m Ti}(1){ m O}_6$ поліедр					
$Ti(1) - O(6)^i$	0,1956(3) Ti(1	$-O(3)^{iv}$	0,2048(3)	
$Ti(1) - O(5)^{ii}$	0,2031(3) Ti(1	$1) - O(2)^{ii}$	0,2052(3)	
${\rm Ti}(1) - {\rm O}(7)^{\rm iii}$	0,2047(3) Ti(1) - O(1)	0,2087(3)	
РО ₄ поліедри					
P(1) - O(1)	0,1510(3) P(2		2) - O(6)	0,1507(3)	
P(1) - O(2)	0,1514(3) P(1	2) - O(5)	0,1512(3)	
P(1) - O(3)	0,1522(2) P(2	2) - O(7)	0,1512(3)	
P(1) - O(4)	0,1599(3) P(1	2) - O(4)	0,1603(3)	
$ m Li(1)O_5$ поліедр					
$Li(1) - O(1)^{v}$	0,1958(9)	9) Li(1	$)-O(2)^{viii}$	0,2165(39)	
$Li(1) - O(3)^{vi}$	0,2009(1	12) Li(1	$)-O(5)^{vii}$	0,2653(31)	
$Li(1) - O(7)^{vii}$	0,2067(1	12)	· · · ·	· · · · · · · · · · · · · · · · · · ·	

Примітка. Симетричні трансляції, що призводять до генерації еквівалентних атомів: (i) -0.5 + x, y, 1.5 - z; (ii) x, y, 1 + z; (iii) -x, 0.5 + y, 2 - z; (iv) -x, 0.5 + y, 1 - z; (v) 1 + x, y, z; (vi) 1 - x, -0.5 + y, -z; (vii) 1 - x, -0.5 + y, 1 - z; (viii) -x, -0.5 + y, -z.

ISSN 1025-6415 Доповіді Національної академії наук України, 2008, №11

131

Рис. 1. Принцип поєднання октаедрів TiO₆ дифосфатною групою в структурі LiTiP₂O₇

Рис. 2. Проекція структури LiTiP₂O₇: атоми літію розташовано вздовж кристалографічної осі a в каналах аніонної підгратки ${\rm TiP_2O_7}_{\infty}$

ному температурному інтервалі на TG-кривій спостерігається приріст маси зразка на 3,5%, який відповідає повному окисненню Ti(III) \rightarrow Ti(IV). При подальшому нагріванні виявлено ще три ендоефекти продуктів окиснення при 850, 920 й 950 °C. Рентгенографічний та IЧ спектральний аналізи продуктів розкладу LiTiP₂O₇ виявили у їх складі значну кількість подвійного *орто*-фосфату LiTi₂(PO₄)₃. Це дозволяє запропонувати таку схему окиснення для подвійного дифосфату літію-титану (III):

 $2\text{LiTiP}_2\text{O}_7 + 0.5\text{O}_2 \rightarrow \text{LiTi}_2(\text{PO}_4)_3 + \text{LiPO}_3.$

IЧ-спектри для LiTiP₂O₇ записано на спектрометрі FTIR NICOLET Nexus 470 у частотному діапазоні 400–4000 см⁻¹ (зразки пресовано у таблетки з KBr). У спектрі зафіксовано смуги поглинання, що характерні для подвійних дифосфатів літію та тривалентних мета-

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2008, № 11

132

лів [10]. Спостережувальні смуги віднесено таким чином: поглинання 425 і 445 см⁻¹ інтерпретовано як коливання τ P–O зв'язку; 515, 565, 570, 588, 625 і 645 см⁻¹ віднесено до σ_{as} й σ_s зв'язку P–O та ν_{as} й ν_s Ti–O у TiO₆-октаєдрі; характерні для P₂O₇-групи валентні симетричні і асиметричні P–O–P знаходяться при частотах 765, 785, 870 і 950 см⁻¹; ν_{as} й ν_s коливання P–O зв'язку зафіксовано при 1040, 1100, 1120 і 1180 см⁻¹.

Таким чином, подвійний дифосфат літію-титану (III) можна синтезувати шляхом взаємодії нітриду титану з літійфосфатним розплавом зі співвідношенням Li/P = 0,7. Дані структурних досліджень для LiTiP₂O₇ вказують на те, що геометрія кристалічної гратки передбачає можливість міграції літію вздовж каналів структури. Це прогнозує наявність у синтезованої сполуки провідних властивостей з іонним механізмом, що відповідно можна використовувати при створенні електродів автономних джерел струму. Для LiTiP₂O₇ запропоновано схему термічного розкладу на повітрі та проведено інтерпретацію смуг поглинання в IЧ-спектрі.

- 1. Каназава Т. Неорганические фосфатные материалы. Киев: Наук. думка, 1998. 297 с.
- Nazri G.-A., Pistoia G. Lithium Batteries // Science and Technology. Berlin: Springer, 2004. Р. 728.
 Затовский И.В., Слободяник Н.С., Стратийчук Д.А. Двойные фосфаты Ti(III) в системе
- К20-Р2О5-ТіК // Укр. хим. журн. 1998. 64, № 11./12. С. 75-80.
- Zatovsky I. V., Slobodyanik N. S., Stratiychuk D. A. et al. A Novel Convenient Synthesis of Mixed-Valence Ti^{III}/Ti^{IV} Double Phosphates Starting with Titanium Nitride TiN // Zeitschrift fur Naturforschung. Tel. B. - 2000. - 55, No 3./4. - P. 291–298.
- 5. Sheldrick G. M. SHELXS-97. Program for crystal structure solution. Germany: Univ. of Gottingen, 1997.
- Sheldrick G. M. SHELXL-97. Program for crystal structure refinement. Germany: Univ. of Gottingen, 1997.
- 7. Генкина Е. А., Максимов Б. А., Тимофеева В. А. и др. Синтез и атомное строение нового двойного пирофосфата LiFeP₂O₇ // Докл. АН СССР. 1985. **284**, № 4. С. 864–867.
- 8. *Генкина Е. А.* Структурные типы двойных пирофосфатов с общей формулой A⁺M³⁺P₂O₇ // Журн. структур. химии. 1990. **31**, № 6. С. 92–96.
- 9. Corbridge D. E. C. The Structural Chemistry of Phosphorus. Amsterdam: Elsevier, 1974. P. 542.
- 10. *Атлас* инфракрасных спектров фосфатов. Двойные моно- и дифосфаты / Под. ред. И. В. Тананаева. Москва: Наука, 1990. 243 с.

Київський національний університет ім. Тараса Шевченка Надійшло до редакції 24.03.2008