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SOME RECENT DEVELOPMENTS IN THEORY OF FRACTIONAL POSITIVE AND
CONE LINEAR SYSTEMS

3anpononosarno o2ns0 ma desiki HOGL pezyibmamu y meopii pakyitinux 0ooamuix ma konycHux oonosumipnux (1D)
ma 0eoeumipnux (2D) ninitinux cucmem. Iodano pignsnus cmany ma ixnHe po36 sa3anHs Ol QPAKYIIHUX HenepepeHUX
ma OUCKpemHux JniuHux cucmem. Bcmanosneno neobxioni ma docmamui ymosu 015 Hympiunboi ma 3068HiuHb0I 00-
damuocmi gpaxyitinux ainiinux cucmem. Iloxazano ixuio docscHicmo. 3anpononoeano Hogy opmy 3anucy KOHYCHUX
cucmem ma mMemoou, npuUOamHi 0 KOMN I0MeEPHO20 PO3PAXYHKY makux cucmem. Ilpedcmasneno dooamui ¢parkyitini
2D niniuni cucmemu. Bemanosneno nHeobxioni ma oocmammui ymogu 01151 dodamuocmi ma oocsiicHocmi. Teopemuuni
BUKIAOU NPOLIIOCMPOBaH0 yucenbhumu npukiadamu 1D ma 2D ninitiinux cucmenm.

Ipeonoscenvl ananuz coCMosHUs 6ONPOCA U HEKOMOPble HOGble PEe3VIbMamyl, NOIYYeHHble 8 MeoPUuU GHPaAKYUOHHbIX
nonodcumenvHbIx U Konycholx oonomephvix (1D) u osymepnvix (2D) nunetinvix cucmem. Ipueedenvi ypagnenus co-
CMOAHUS U UX PeuteHUs 0N (PPAKYUOHHBIX HENPEPBIGHbIX U OUCKPEMHBIX TUHEUHbIX cucmeM. Buviaenenvr neobxooumvle
u docmamouHvie YCiogus O GHYMPEHHel U GHeWHell NOIOICUMETbHOCMU (PPAKYUOHHBIX TuHelnbIX cucmem. [lo-
Kazana ux Oocmudcumocmo. Ilpednodicena HO6as GOpmMa 3anuUct KOHYCHbIX CUCHEM, a MAKdxice Memoobl Ux
KomnvlomepHno2o pacuema. IIpedcmasnenvt nonroscumenvihvle gpakyuonnvie 2D nunetinvie cucmemsl. Yemanoseienul
HeobXoouMble U OOCHAMOUHble YCA08US 015 NOJONCUMENbHOCMU U Jocmudcumocmu. Teopemuueckue GuIKIaAOKU
unrrocmpuposansl yucieHuvimu npumepamu 1D u 1D nunetinvix cucmenm.

Introduction. In positive systems inputs, state variables and outputs take only non-negative values.
Examples of positive systems are industrial processes involving chemical reactors, heat exchangers and
distillation columns, storage systems, compartmental systems, water and atmospheric pollution models. A
variety of models having positive linear systems behaviour can be found in engineering, management
science, economics, social sciences, biology and medicine, etc.

Positive linear systems are defined on cones and not on linear spaces. Therefore, the theory of
positive systems is more complicated and less advanced. An overview of state of the art in positive systems
is given in the monographs [2, 5]. An extension of positive systems are the cone systems. The notion of cone
systems was introduced in [6]. Roughly speaking cone system is a system obtained from positive one by
substitution of the positive orthants of states, inputs and outputs by suitable arbitrary cones. The realization
problem for cone systems has been addressed in [6].

The first definition of the fractional derivative was introduced by Liouville and Riemann at the end
of the 19th century [21, 24, 26]. This idea has been used by engineers for modeling different processes in the
late 1960s [1, 3, 25-27]. Mathematical fundamentals of fractional calculus are given in [21, 23, 24, 26]. A
generalization of the Kalman filter for fractional order systems has been proposed in [27]. Fractional
polynomials and nD systems have been investigated in [4]. The positive controllability of positive systems
and approximate constrained controllability of mechanical systems have been investigated in [20, 21].

The aim of this paper is to give an overview of some recent developments and new results in the
theory of fractional positive and cone 1D and 2D linear systems.

The paper is organized as follows. The standard and positive fractional continuous-time linear
systems are addressed in section 2. Necessary and sufficient conditions for the positivity of the system are
established. Similar problem for the discrete-time linear systems are considered in section 3. Section 4 is
devoted to the reachability of positive fractional discrete-time linear systems. The realization problem for
positive fractional continuous-time systems is addressed in section 5. The cone fractional discrete-time linear
systems and their reachability are considered in section 6. Positive fractional 2D systems and their
reachability are addressed in section 7. Concluding remarks and open problems are given in section 8.

The following notation will be used in this paper.
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Let R™™ be the set of nxm real matrices and R" ;= R™". The set of mxn matrices with
nonnegative entries will be denoted by RT™" and R” := R™. The set of nonnegative integers will be

denoted by Z, and the nxn identity matrix by 1.

Continuous-time linear systems. 1. Continuous-time fractional linear systems. In this paper the
following Caputo definition of the fractional derivative will be used [21, 24]

1 ¢ f®
D*f (t) = f(t) = dr, n-l1<a<neN={1,2,..}, 1
()= dta ()= F(n_a)l(t_r)m @2} @
. . . . (n) dnf(T)
where o € R is the order of fractional derivative and ™ (r) = ——=.

Consider the continuous-time fractional linear system described by the state equations
D“x(t) = Ax(t) + Bu(t), O<a<1 y(t) = Cx(t) + Du(t) , (2a,b)
where x(t) e R", u(t) eR™, y(t) e R’ are the state, input and output vectors and Ae R™", Be R™",

CeR™, DeRr™.
Theorem 1. [10] The solution of equation (2a) is given by

X(t) = D, (t)X, + j d(t-7)Bu(r)dr, x(0)=Xx, 3)
a o) tka 0 Akt(k+l)a -1
where @, (t) = E, (At“) kZ:(; 0 kZ:(; Tk Da] (4,5)

and E_(At”) is the Mittage-Leffler matrix function, I'(X) = '[ e 't*'dt is the gamma function.

e k
Remarks. 1. From (4) and (5) for a =1 we have @, (t) = ®(t) = z (A1) =eM, (6)

= T(k+1)
2. From the Cayley-Hamilton theorem we have. If det[l s* — A]=(s“)" +a,_,(s*)"" +..+as“ +a, (7)

then A"+a A" +..+aA+al=0. (8)
Example. Find the solution of eq.(2a) for 0 < o <1, A:[g é} B :[ﬂ X, :[ﬂ u(t) :{% ]:‘?)rrttz% N )!
®© k¢ ka a a-1 2a-1
Using (4) and (5) we obtain @, (t) = ZA—t =1, Al o) =1, t +A t ,  (10a,b)
= ['(ka +1) ' +1) I'(ex) I'2a)
o _[01] _Joo _
since A —[0 0} —[0 0} for k=2,3,....

Substitution of (10) and u(t) =1 into (3) yields

X(t):q)o(t)xo +j‘q)(t—1')BU(T)dT=XO+ AXota j‘[r( )( — )a_l AB —T)Za_ldeZ

(o +1) I'(2a)
ta tZa y (11)
1+ +
~ Axt*  Bt” ABt* |T T(a+1) T(2a+1)
o ¥ M(a+1) T(x+1) F(2a+1) Lt
I +1)

since ['(at +1) = ol ().
2. Positivity of continuous-time fractional systems.
Definition 1. The fractional system (2) is called the internally positive fractional system if and only

if x(t) e R and y(t) e R? for t >0 for any initial conditions x, € R and all inputs u(t) € R, t>0.
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A square real matrix A= [aij] is called the Metzler matrix if its off-diagonal entries are nonnegative,
ie.a; >0 fori=j [2 5]

Lemmal. Let AeR™ and O<a <1.Then

0 Aktka 0 Akt(k+1)a -1
Dy(t) =D ———e R for t>0, D) =) ————eRI" for t>0, (12,13)
=T (ka +1) =Tk +Da]

if and only if A is a Metzler matrix. Proof is given in [10].
Theorem 2. The continuous-time fractional system (2) is internally positive if and only if

AeM, , BeR"™, CeR” DeR"™ (14)
M _is the set of Metzler matrices. Proof is given in [10].

n

Definition 2. The fractional system (2) is called externally positive if and only if y(t) e R",t>0
for every input u(t) e R7,t>0 and x, =0.

The impulse response g(t) of single-input single-output system is called its output for the input
equal to the Dirac impulse 5(t) with zero initial conditions. Assuming successively that only one input is
equal to &(t) and the remaining inputs and initial conditions are zero we may define the impulse response
matrix g(t) € R”™ of the system (2). The impulse response matrix of the system (2) is given by

gt)=Co(t)B+Do(t) for t>0. (15)

t
Substitution of (3) into (2b) for x, =0 yields y(t) = jCGD(t —7)Bu(r)dr +Du(t), t>0. (16)
0

The formula (15) follows from (16) for u(t) =5 (t).

Theorem 3. The continuous-time fractional system (2) is externally positive if and only if its
impulse response matrix (15) is nonnegative, i.e.  g(t) e R*™ for t>0. (17)

Proof. The necessity of the condition (17) follows immediately from Definition 2. The output y(t)
of the system (2) with zero initial conditions for any input u(t) is given by the formula

y(®) = [g(t-r)u(r)de (18)

which can be obtained by substitution of (15) into (16). If the condition (17) is met and u(t) e RT, then

from (18) we have y(t) e R? for t>0. From (15) and (13) it follows that if A is a Metzler matrix and

(14) holds then the impulse response matrix (15) is nonnegative. Therefore, we have the following two
corollaries: 1. The impulse response matrix (15) of the internally positive system (2) is nonnegative.

2. Every continuous-time fractional internally positive system (2) is also externally positive.

A example of electrical circuit composed of a resistance R, capacitance C and voltage source
described by fractional differential equation is given in [18].

Discrete-time linear systems. 1. Discrete time fractional systems. The following definition of the

fractional difference will be used A“X, = 2( 1)’ ( ) j 0<a<l, (19)

where a € R is the order of the fractional dlfference, and

(a)_ 1, for j=0

V) a(@-1(a-j+1 : (20)
(@-D)-la—j+1) =12
J!
Consider the fractional discrete-time linear system, described by the state-space equations
A%,y =AX +Bu, ueZ, Y =Cx, +Du, , (21a,b)
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where X, € R", U, € R™, y, €RP are the state, input and output vectors and AeR"",

BeR™™ CeRP”" DeRP™,

Using (19) we may write the equations (21) in the form
k+1

A
Xk+l+z(_1)1[jjxk—j+l:AXk+Buk' k€Z+ Yk =ka+DUk. (22a,b)
i

Definition 3. The system (22) is called the (internally) positive fractional system if and only if X, € ERQ and

Y € RP, ke Z, forany initial conditions x, e %" and all input sequences U, € R, ke Z,.
k-1
Theorem 4. [8] The solution of equation (22a) is given by X =D X, + ZCI)k_i_lBui , (23)
i=0
k+1
. . . i+1 a .
where @, is determined by the equation ®, ; = (A+1,a)®, + Z(—l) [ : jq)k—iﬂ with @, =1,.(24)
i=2

M

Theorem 5. Let det[lnAa (zh- AZ_lJ =y (25)
i=0

be the characteristic polynomial of the system (22). Then the matrices @, ®,,...,®,, satisfy the equation

M
D a®; =0. (26)
i=0

Proof. From definition of inverse matrix and (25) we have

-1 o0 (M .
Ad[ 1,4% () - Az | = [Zcpiz' j{z ay 2" j , 27)
i=0 i=0
where AdjF denotes the adjoint matrix of F.
Comparison of the coefficients at the same power z™ of the equality (27) yields (26) since degree
of Adj[l,A%(z")— Az™"] less than M.

Theorem 5 is an extension of the well-known classical Cayley-Hamilton theorem for the fractional
system (20). Note that the degree M of the characteristic polynomial (25) depends on k and it increases to

infinity for k — co. In practical problems it is assumed that k is bounded by some natural number L. If k=L
then M = N(L+1).

2. Positivity of discrete-time fractional systems. The following two lemmas are used in the proof of
the positivity of the fractional system (23).

Lemma2. [8]If O<a <1, then (-1)™ (‘f) >0 fori=12,.. (28,29)

nxn nxn
Lemma 3. [8] If (29) holdsand A * Tn® € R4 pen Dy €N for k=12,
Theorem 6. Let (28) be satisfied. Then the fractional system (28) is positive if and only if

A+l aeRT, BeRI™, CeRP, DeRP™. (32)
Proof is given in [8, 18].
Example 2. Consider the fractional system (22) for 0 <o <1 with A= [% _%[] B= [ﬂ ,(n=2). (33)

l+a O %2
The fractional system is positive since A+lha = 0 0 €N,

(30,31)

Using (24) for k =0,1,... we obtain diagonal matrices of the forms
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@, =(A+1,a)00=| 5% 0

2
®2=(A+|na)®l—(g)®0=1[a toa+2 0 }

2 0 (l-a)x
®, = (A+1.a)D, —[aj®1—[aj®o -
2 3 . (34)
1 {3((12 +5a +2)(ar +1) — (o ~1)(2e +5)ex 0 }
6 0 1-a)(a-2)a
k-1
From (23) and (24) we have X =Dy Xo + Z(Dk—i—l [(ﬂui : (35)
i=0

where @, is given by (34).
Definition 4. The discrete-time fractional system (22) is called externally positive if
Y, € R, keZ, forevery input sequence U, € RT, ke Z, and X, =0.
Theorem 7. The discrete-time fractional system (22) is externally positive if and only if its response
D, fork=0
. — 1 . . . pxm
matrix G {CAk—lB’ fork=12,.. is nonnegative, i.e. g, € R for ke Z,. (36,37)

The proof is similar to the proof of Theorem 3.

Remark 4. The impulse response matrix (36) of the internally positive system (22) is nonnegative
and every discrete-time fractional internally positive system is also externally positive.

Reachability of positive fractional discrete-time systems. Consider the positive fractional discrete-
time linear system (22).

Definition 5. A state X; e SRQ of the positive fractional system (22) is called reachable in q steps if

there exist an input sequence U, € ‘RT k=0,1...,0—1 which steers the state of the system from zero
(X =0) to the final state X, ,i.e. X, =X;.

Let e, i=1...,n be the i-th column of the identity matrix | . A column ae, for a >0 is called a

monomial column.
Theorem 8. The positive fractional system (22) is reachable in g steps if and only if the reachability

matrix R, =[B, ®,B,...,®, ,B] (38)
contains n linearly independent monomial columns.

gq-1 Ug-1
Proof. Using (22) for k =q and X, =0, obtain x; =x; = Zcbq,i,lBui =Ry Ug-2 |, (39)
i=0 u'O
From Definition 5 and (39) it follows that for every X eiRE there exists an input sequence U; € RT,

i=0,1...,q-1 if and only if the matrix (38) contains n linearly independent monomial columns.

Example 3. Consider the positive fractional systems (22) for 0 <« <1 with (33).Using (24) and (38)
we obtain

RZ:[B,d)lB]:[g 8}, R3=[B,q>lB,q>zB]=[8 g 0,5(1%)“},

00 0 0
Ry =|; o U-®a (@-a)@-2a|,.. (40)
2 6
Note that the matrices (40) contain only one linearly independent monomial column. Therefore, by
Theorem 8 the system (22) with (33) is unreachable.
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Example 4. Consider the fractional systems (22) for 0 < o <1 with A= [‘f‘ 8} B= [%} , (n=2). (41
The system is positive since A+l.a= [8 9 E a} eR¥2. Using (24) for k=0 we obtain
D, =(A+1,a)0, = [8 2 E a} . The reachability matrix (38) for g=2 has the form

R, =[B,chB]=[% ﬂ

It contains two linearly independent monomial columns. Therefore, the positive fractional system
with (41) is reachable in two steps.

Remark 5. From (24) and (38) it follows that the positive fractional system (22) is reachable only if
the matrix [B,A+1,a] 42)
contain n linearly independent monomial columns.

The controllability of positive fractional discrete-time linear systems has been considered in [8] and
the reachability of positive fractional continuous-time linear systems in [10].

Realisation problem for positive fractional continuous-time linear systems.

1. Problem formulation. Using the Laplace transform it is easy to show that the transfer matrix of the

systems is given by the formula T(s)=C[I,s" - Al'B+D. (43)
The transfer matrix is called proper if and only if limT(s)=K e RP™ and it is called strictly proper if
S—0
and only if K =0. From (43) we have limT(s) =D, since lim[I s* — Alt=0. (44)

S—0 §—00

Definition 6. Matrices (14) are called a positive fractional realization of given transfer matrix T (S)
if they satisfy the equality (43). A realization is called minimal if the dimension of A is minimal among all
realizations of T (S).

The positive realization problem can be stated as follows. Given a proper transfer matrix T (), find its

positive realizations (14). In this section sufficient conditions for the existence of positive fractional realizations will
be established and procedure for computation of the positive fractional realizations will be proposed.

Problem Solution. The realization problem will be solved for single-input single-output (SISO)
linear fractional systems with the proper transfer function

b, (s*)" +b, ,(s“)" ™ +...+bs* +hy

T(s)= (45)
) (s*)"—a, (s*)" —...—as” —a,
Using (44) we obtain D=IimT(s)=b, (46)
S—
and the strictly proper transfer function has the form
b, ()" +b, ,(s*)" 2 +...+bs” +b,
Tsp(s):T(S)_D: n—l(a r)1 n—Za( n—z Bl 0 , (47)
(s%)" —a,4(s*) " —..—as” —a
where b =b, +ab, k=01..,n-1. (48)
From (48) it follows that if a, >0 and b, >0 for k =0,1,...,n thenalso b, >0 for k=0,1,...,n-1.
Theorem 9. There exist positive fractional minimal realizations of the forms
[0 1 0 .. 0
0 0 1 0 00 0 a b,
01700 2|68
3 A A . A A=10 1. 08 B=l R (49a,b)
0 _ 00 ..1a_ b4
B= (1) , C=[by b .. byy4] D=by c =0 0 1], D=b,

ISSN 0204-3599. Texn. enekmpoounamixa. 2010, No2 25



a ., a._ .4 Ay a, 10 0
%t 0o 3 an, 01 .00 i
A= 0 1 .. 0 0f B=[7|, A=| %" [ l, B=| £ |,
: : S 0 a, 00 1 b (49c,d)
0 0 .10 3% 00 ..0 by
C=[b,, .. b by D=b, C=[1 0 .. 0], D=bh,

of the transfer function (45) if a) b, >0 for k=0,1..,n, b) a =0 for k=0,1,..,n-2 and
b,,+a,4b,=0.
Proof. Taking into account that for (49) det[l s* — A]=(s*)" —a,,(s*)" ' —...—a;s* —a, and
Adj[l,s* —AIB=[1 s* .. (s*)"]itis easy to verify that
CAdj[l s —AJB _ by 4 (s*)" ™ +By_p(s%)" 2 +...+Bys” +by
det[l,s* — A] )" —a, (M) —as® —ay

The matrix A is Metzler matrix if and only if a, >0 for k=0,1,...,n—2 and arbitrary a,_;. Note that the

Cll,s* —AI'B =

coefficient of matrices C and D are nonnegative if the conditions a) is met and EH =b,,+a,4b,>0.The

proof for (49b), (49c) and (49b) are similar (dual). The matrices (49) are minimal realizations if and only if
the transfer function (45) is irreducible. If the conditions of Theorem 9 are satisfied then the positive minimal
realizations (49) of the transfer function (45) can be computed by use of the following procedure.

Procedure. Step 1. Knowing T(s) and using (46) find D and the strictly proper function (47). Step 2.
Using (49) find the desired realizations.

Example 5. Find the positive minimal fractional realizations (49) of the irreducible transfer function

2(s%)% +55% +1

) (s*)*+2s* -3
Using Procedure and (50) we obtain the following. Step 1. From (46) and (50) we obtain
a2 a a
D= lim2E )T+ T,(s)=T(s)-D ST (51,52)

soo (%) +25% —3 C(s%)2+25% -3
Step 2. Taking into that in this case b, =7, 51 =1 and using (49) we obtain the desired positive
minimal fractional realizations

A:[g _12] Bzm, C=[7 1, D=2; A:[? _32] Bzm, C=[0 1, D=2; (53ah)

-2 3 1 . -2 1] 1] . .
A{l 0}, B:M, C=[ 7], D=2; A—{S 0}, B_M, C-[L 0], D=2. (53¢,d)

An extension of this method for multi-input multi-output positive fractional continuous-time linear
systems has been given in [11]. The presented method can be easily extended for positive fractional discrete-
time linear systems.

Cone Fractional Discrete Time Systems And Their Reachibility.

P
Definition 7. Let P :|: e R™ pe nonsingular and p, be the k-th (k =1,...,n) its row.
Pn
n
The set P :z{XeiR”:ﬂ pkxzo} (54)
k=1

is called a linear cone generated by the matrix P.
In a similar way we may define for the inputs u the linear cone

Q ::{u ei}%m:ﬁqkuzo} (55)

k=1
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generated by the nonsingular matrix Q = {ql e ™M and for the outputs v, the linear cone

Om
p
V i={yeRP:(\vy=0 (56)
k=1
V.
generated by the nonsingular matrix V = e RPP,
v
p

Definition 8. The fractional system (22) is called (P ,Q ,V ) cone fractional system if x, eP and
VeV  kez, forevery x,eP,u, €Q  kez,.

The (P,Q ,V ) cone fractional system (4) will be shortly called the cone fractional system. Note
that if P =R7, Q =RT, V =R" then the (R7, RT, RP) cone system is equivalent to the classical
positive system [2, 5].

Theorem 10. The fractional system (22) is (P ,Q ,V ) cone fractional system if and only if

A=PAP'eR™, B=PBQ'eR™, C =VCP'eR™, D=VDQ ' eRP (57)

Proof. Let X, = Px,, U, =Qu, and Yy, =Vy,, keZ, . (58)

From Definition 8 it follows that if X, €P then X, e R, if u, €Q then T, e RT and if

y, €V then y, € RP. From (22) and (58) we have

k+1 k+1

_ A 04 _1— 11— -~ =

Xag + ) (-D)] [ j}km =Py + Y (-D)] [ Jpka = PAX, + PBu, == PAP7IX, +PBQ T, = AX, + B, keZ,
j=1 j=1

and ¥, =Vy, =VCx, +VDu, =VCP'x, +VDQ't, =Cx, + DU, ke Z,. (59a,b)

It is well-known [5] that the system (59) is the positive one if and only if the conditions (57) are satisfied.
Definition 9. A state X; € P of the cone fractional system (22) is called reachable in q steps if there

exists an input sequence U, eQ , k=0,1,...,g—1 which steers the state of the system from zero initial
state (X, =0) to the desired state X, i.e. Xq =X;. If every state X; eP s reachable in g steps then the

cone fractional system is called reachable in q steps. If for every state X; e P there exists a natural number

g such that the state is reachable in q steps then the cone fractional system is called reachable.
Theorem 11. The cone fractional system (22) is reachable in q steps if and only if the matrix

R, =[PBQ, P®,BQ™,...,Pd ,BQ] (60)

contains n linearly independent monomial columns.
Proof. From the relations (58) it follows that if x, €P then X, = Px, e R and if u, €Q then
U, =Qu, e RT for k e Z,. Hence by Definition 8 and 9 the cone fractional system (22) is reachable in g

steps if and only if the positive fractional system (59) is reachable in g steps.

Using (24) and (57) it is easy to show that CTDK of the system (59) with @, of he system (22) are
related by @, =POP ™ for k=0,1,... . (61)

Taking into account that ®,B=P®,P'PBQ'=P®,BQ ", k=12,..q-1 (62)
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_ R, =[B,®,5,..®,,B]=
we may write L L 1a" (63)
=[PBQ™, P®,BQ,.., P®,,BQ” ]
By Theorem 8 the positive fractional system (59) is reachable in q steps if and only if the matrix (60)
contain n linearly independent monomial columns.

A

Example 6. Consider the cone fractional system (22) X2
P-| Y 1] e-m,
for (64)
_| o a
A_[l a—a+1}’ a>0, 0<a<l

and for the following two forms of the matrix B

o T

The P -cone generated by the matrix P is shown in
Fig.. In case 1 we shall show that the cone fractional
system is not reachable.

Using (57) and (64) we obtain

A-resar (3 A ] o

RS R

The system (59) with matrices (65) is a positive fractional system. Using (60) for q=2, (64) and

(65)

taking into account that @, = A, we obtain

R -[PBQ % POBQ I-PB, ABI-| 1 1|0 %] B ZE%Y] e

The matrix (66) contains only one (the first) monomial column. Thus by Theorem 11 the cone
fractional system is unreachable.

_ 1 1)-
In case 2 we have B,=PB,Q" = b1_| O , b>0. (67)
-1 1| b 2b

The system (59) with matrices /TH and I§2 given by (65) and (67) is also a positive fractional
system. Using (60) and (64) we obtain the matrix

F_QZ:P[BZ,AHBZ]:[_ll ﬂ[‘bb ZBHZ% Zgb}, a>0,b>0, (68)

which contains two linearly independent monomial columns. Therefore, by Theorem 11 the cone fractional
system is reachable.

The controllability to zero of the cone fractional discrete-time linear systems has been considered in [9].

Positive Fractional 2d Linear Systems And Their Reachibility And Their Reachibility.

1. Fractional 2D linear systems. The positive fractional 2D linear systems have been introduced in
[15, 16] and the positive 2D hybrid linear systems in [17].

Definition 10. The (e, B) orders fractional difference of and 2D function X;; is defined by the formula

i
APx ="K DX jr . N=l<a<n, n-1<B<n, neN={,2.3} (69
k=01-0
1 for k=0 or/fand 1=0
where AP x; = A?Alx; and ¢, (K1) =1 () a(a-1)..(a+1-K)B(B-1)..(B+1-1) . (70)
kIl
for k+1>0
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The justification of Definition 10 is given in [15].
Consider the (a, ) order 2D fractional linear system, described by the state equations

Aa'ﬂxm,ju = ApXij + AXisg j ++AX i1+ Bl + Byl + Byl g ¥ij = Cx; + Duy (71a,b)

where  x; e R",u; eR™, y; eRP are the state, input and output vectors and A eR™",

B, e R™™ k=0,1,2, CeR”", DeRPM.
Using Definition 10 we may write the equation (71a) in the form
_ _ _ i+1 j+1
Xist, jo1 = PoXiy + A j + AXi ja — z zcaﬁ (Ko D)X ksq, joraa + Bolij + ByUiyg  + Bouy g, (72)

k=0 1=0
k+1>0

where Ay=Ay—l,aBf, A=A-1.0, A=A-1a.

From (69) it follows that the coefficients (70) in (69) strongly decrease when k and | increase.
Therefore, in practical problems it is assumed that i and j are bounded by some natural numbers L; and L,. In
this case (72) takes the form

L+l L,—k+1

Xii1ji1 = Abxu +'°1X|+1J + A2X| j+1 Z Z Cop (Ko D)Xik g jorsa + Boljj + ByUiyg j + Byl - (73)
k=0 1=0
Note that the fractional systems are 2D linear systems with delays increasing with i and j.
The boundary conditions for the equation (72) and (73) are given in the form

X, 1€Z, and Xy, jeZ,. (74)
Theorem 12. The solution of equatlon (72) with boundary condltlons (74) is given by

Xij =Z‘1 -p.j 1(A1XpO+Blup0)+zT| -1,j- q(AZXOq +B qu)++ZT| p-1 1A0Xp0+
p=

j-1 j
2 Tit,j-q-1Ao%oq +Ticx, 1'°b“00+ZZTI p-1.j-q-150 qu+22(ﬂ p1j-q-1B1 T Tiop j-q1B2)Upq
gq=1

p=0q=0 p=09=0
(75)
where the transition matrices T, are defined by the formula
, forp=g=0
— — _ P g
Toq =1 ATprqat ATpqr t ATpag— O D.Cs(pP—kq-DT, for p+q>0- (76)
<P 2
0 (zero matrix) for p<0Oor/and g <0
Proof is given in [16]. Let
L+1L,+1
G(z,2,) =1+, D 1Cupk, Nz, %z, - Az 'z, - Az - Azt (77)
k=0 1=0
N, N,
and detG(z,2,) =), Zalek,Nz—l 7'z, . (78)

k=01=0
It is assumed that i and j are bounded by some natural numbers L;, L, which determined the degrees N,, N, .

Theorem 13. Let (78) be the characteristic polynomial of the system (71). Then the matrices T,

Nl N2
satisfy the equation > > ayTy =0. (79)
k=01=0
Proof is given in [16].
Theorem 13 is an extension of the well-known classical Cayley-Hamilton theorem for the 2D
fractional system (71).
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2. Positivity of the fractional 2D systems
Lemma 4. [16]

a)If 0<a<land1l< <2 then caﬂ(k,l)<0 for k=12,...;1=2,3,... (80a)
b) If 1<a <2 and 0< f <1 then caﬂ(k,l)<0 for k=2,3,...;1=12,.... (80b)
Lemma 5. [16] If (80) is met and A e R for k=0,1,2, (81)
then Ty €RY" for pgeZ, . (82)

Definition 11. The system (71) is called the (internally) positive 2D fractional system if and only if
x; € R} and y; e NP, i, jeZ, for any boundary conditions X, € R}, ieZ, X, € R, ieZ and all
input sequences u; e RT,i,jeZ,.

Theorem 14. The 2D fractional system (71) for 0 < @ <1 and 1< f < 2 is positive if and only if

A eRT", B, eRT™ k=0,1,2,CeRP", DeRPM. (83)
Proof is given in [16].
Remark 6. From (70) and (71) it follows that if & =8, 0<a <1 then c,z(k,1)<0 for k=1=12,..

and the fractional 2D system (71) is not positive.
3. Reachability of the positive fractional 2D systems.
Definition 12. The positive 2D fractional system (71) is called reachable at the point

(h,k) e Z, xZ, if and only if for zero boundary conditions (74) (X, =0,i€Z,, X,;, j€Z,) and every
vector X; € R there exists a sequence of inputs u;; € R for

(,))eDy ={G,))eZ,xZ, :0<i<h,

0<j<k,i+j#h+k}
such that X,, = X;. A vector is called monomial if and only if its one component is positive and the remaining

components are zero.
Theorem 15. The positive 2D fractional system (71) is reachable at the point (h,k) if and only if
the reachability matrix

Rk =[Mg, M1,....Mfip, M{ ... ME, My, My, My, ..., My ]
Mo =T, 4 x4Bo, Mi1 =ThoikaBi + Thoiak1Bos 1=1..,0
sz =T akaBe + Thak jaBor 1 =1k (85.86)

MIJ :Th—i—l,k—j—lBO +Th*|,kfjlel +Th7ifl,kleZ’ i :1,...,h, j :1,...,k

contains n linearly independent monomial columns.
Proof. Using the solution (75) for i = h, j =k and zero boundary conditions we obtain

X; =Ry u(h,k), (87)

(84)

T T T T T T T T T 9T
where U(h, k) =[Ugg,Ugg,eees Ungs Uggseess Ugy s Upgseees Uge s Upgy sy Uy ] (88)
and T denotes the transpose.
For the positive 2D fractional system (71) from (86) and (85) we have M, e R™™, M! e R™™,
MJ? e R, M; eRI™i=1..,h, j=1..h and Ry, € RN CErom (87) it follows that there

exists a sequence Uj e R for (i, j) e Dy, for every x; e R} if and only if the matrix (85) contains n

linearly independent monomial columns.
The following theorem gives sufficient conditions for the reachability of the positive 2D fractional system (71).

Theorem 16. The positive 2D fractional system (71) is reachable at the point (h,k) if rank R, =n

and the right inverse R/, of the matrix (85) has nonnegative entries
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Ric = Rik[Ruc Ry e s nterime, (89)
Proof. If rank R, =n then there exists the right inverse Ry, of the matrix R, . If the condition

(89) is met then from (87) we obtain u(h,k) = R/, x, e RIPDEDM f5r every x. e R,
Example 7. Consider the positive 2D fractional system (71) with

Ao Al AR g e fael]

To check the reachability at the point (h,k) =(1,1) of the system we use Theorem 15. From (86) and
(85) we obtain

MO:BO:[%}’ M]:!-:B]_:|:8:|, M]_2 = Bz :|:%:|, M” =0 for iZl,jZl,

R11:[M01M111 Mlz]:[%gﬂ (91)

The first two columns of (91) are linearly independent monomial columns and by Theorem 15 the
positive 2D fractional system (71) with (90) is reachable at the point (1,1). The sequence of inputs steering

the state of the system from zero boundary conditions to an arbitrary state X; e SRE at the point (1,2) is

given by [ﬂoo} =X; and Uy, =0. Using (89) and (91) we obtain
10

10 4 42 -1
RI =RT[R, RL] =0 1 [2 1} —Zla 2. 92)
hk = Mk LMk Mk 1 1|1 2 3|7 1

From (92) it follows that the condition (89) is not satisfied in spite of the fact that the system is
reachable at the point (1,1). Note that the system is reachable at the point (1,1) for any fractional order

(o, ) O<a<1,1<B<2 (orl<a <2, 0< B <1)andany matrices A,k =0,1,2.

Necessary and sufficient conditions for the controllability to zero of positive fractional 2D linear
systems have been established in [16].

Concluding remarks and open problems. An overview of some resent developments and new
results in the theory of fractional positive and cone 1D and 2D linear system have been given. The state
equations and their solutions for fractional continuous-time and discrete-time linear systems have been
proposed. Necessary and sufficient conditions for the internal and external positivity and reachability of the
systems have been established. The realization problem for positive fractional continuous-time linear
systems has been formulated and solved. A new class of cone fractional discrete-time linear systems has
been introduced. The positive fractional 2D linear systems have been also introduced and their reachability
has been investigated. From the long list of the open problems in the fractional systems theory the following
are the natural steps:

- 1D and 2D fractional linear systems with delays,

- Positive 1D and 2D fractional linear systems with delays,

- Positive fractional 2D hybrid systems with and without delays,

- Standard and positive 2D fractional continuous-time systems,

- Standard and positive 1D and 2D nonlinear systems.

This work was supported by Ministry of Science and Higher Education in Poland under work No NN514
1939 33.
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