УДК 54.128.13:541.124:542.943.7:546.262.3-31:546.92'284

Использование природных алюмосиликатов Украины для разработки новых металлокомплексных катализаторов очистки воздуха от газообразных токсичных веществ

Ракитская Т.Л.¹, Киосе Т.А.¹, Волкова В.Я.¹, Эннан А.А.²

¹ Одесский национальный университет ² Физико-химический институт защиты окружающей среды и человека МОН и НАН Украины

Получены нанесенные на природные алюмосиликаты (клиноптилолит, морденит, монтмориллонит, трепел, базальтовый туф) Pd(II)-Cu(II)-катализаторы окисления монооксида углерода кислородом при температуре окружающей среды, нормальном давлении, повышенной влажности газовоздушной смеси и содержании монооксида углерода 300 мг / м³ (15 ПДК для рабочей зоны). Установлено, что, кроме трепела, формирование Pd(II)-Cu(II)-катализатора, обеспечивающего стационарное окисление CO кислородом воздуха, происходит только на кислотномодифицированных образцах клиноптилолита (H-CLI-6), морденита (H-MOR-6), монтмориллонита (H-Mont-6) и базальтового туфа (H-БT(1)-6, H-БT(1)*-6, H-БT(2)-6). Активность катализатора зависит от природы носителя. Степень окисления CO кислородом в стационарном режиме понижается в ряду носителей H-Mont-6 (94) > H-БT(1)-6 (91) > H-БT(1)*-6 (88) > TP (87) > H-БT(2)-6 (82) > H-MOR-6 (40) ≈ H-CLI-6 (38). В случае применения образцов базальтового туфа разного происхождения найдена корреляция между фазовым составом носителя и активностью катализатора.

Ключевые слова: катализатор, монооксид углерода, Pd(II)-Cu(II)-катализатор, природные алюмосиликаты.

Отримано нанесені на природні алюмосилікати (клиноптилоліт, морденіт, монтмориллоніт, трепел, базальтовий туф) Pd(II)-Cu(II)-каталізатори окиснення монооксиду вуглецю киснем при температурі навколишнього середовища, нормальному тиску, підвищеній вологості газоповітряної суміші та вмісті монооксиду вуглецю 300 мг / м³ (15 ГПК для робочої зони). Встановлено, що, крім трепелу, формування Pd(II)-Cu(II)-каталізатора, який забезпечує стаціонарне окиснення CO киснем повітря, відбувається тільки на кислотномодифікованих зразках клиноптилоліту (H-CLI-6), морденіту (H-MOR-6), монтмориллоніту (H-Mont-6) та базальтового туфу (H-БТ(1)-6, H-БТ(1)*-6, H-БТ(2)-6). Активність каталізатора залежить від природи носія. Ступінь окиснення CO киснем у стаціонарному режимі знижується у ряді носіїв H-Mont-6 (94) > H-БТ(1)-6 (91) > H-БТ(1)*-6 (88) > TP (87) > H-БТ(2)-6 (82) > H-MOR-6 (40) \approx H-CLI-6 (38). У випадку застосування зразків базальтового туфу різного походження знайдено кореляцію між фазовим складом носія та активністю каталізатора.

Ключові слова: каталізатор, монооксид вуглецю, Pd(II)-Cu(II)-каталізатор, природні алюмосилікати.

В [1–5] обобщены теоретические и практические аспекты разработки нанесенных на оксидные (Al₂O₃, SiO₂) и углеродные (AУ, углеродные волокнистые материалы (УВМ)) носители металлокомплексных катализаторов, обеспечивающих эффективную очистку воздуха от СО, PH₃, O₃ при температуре окружающей среды, нормальном атмосферном давлении, повышенном содержании паров воды и низкой концентрации названных токсичных веществ в

воздухе (1–15 ПДК), а также при наличии примесей — каталитических ядов. Конечной целью является применение таких катализаторов в малогабаритных коллективных и индивидуальных средствах защиты органов дыхания работников различных отраслей промышленности и производств, что диктует ряд требований к катализаторам, среди которых обеспечение стабильной очистки воздуха от токсичных веществ до ПДК и ниже при постоянно изменяющихся

<u> </u>	Месторождение	Химический состав, % (мас.)				م
Ооразец		SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	SiO ₂ /Al ₂ O ₃	Фазовыи состав, % (мас.)
CLI ¹	Сокирницкое, Закарпатская обл.	71,50	13,10	0,90	5,5	СLI — 85 ± 6; α-SiO ₂ , Fe ₂ O ₃ и др. — остальное
MOR	с. Липча, Закарпатская обл.	64,56	12,02	0,95	5,4	МОR — 72 ± 6; α-SiO ₂ , Fe ₂ O ₃ и др. — остальное
Mont	Кудринское, Крым	58,25	14,27	4,37	4,1	Mont > 70; каолинит, Fe ₂ O ₃ , α-SiO ₂ , полевой шпат
TP^2	Коноплянское, Кировоградская обл.	80,00	4,00	3,00	20,0	кремнезем (опалкристобалит, CLI ≤ 8 , Mont ≤ 10)
БТ(1)	Полыцкое II, Ровенская обл. (Н = 50-70 м)	68,44	12,82	10,14	5,3	СLI и MOR — 35–40; Mont — 30–40; α-SiO ₂ , Fe ₂ O ₃ , TiO ₂ и др. — остальное
БТ(1) [*]	Полыцкое II, Ровенская обл. (Н = 20–30 м)	63,62	19,60	10,49	3,2	То же
БТ(2)	Берестовецкое, Волынская обл.	58,79	18,51	7,90	3,2	То же

Сведения о природных сорбентах Украины, используемых в качестве носителей Pd(II)-Cu(II)катализаторов

Примечание. 1 — ТУ У 14.5-00292540.001-2001; 2 — ТУ У 14.2-00374485-004:2005.

характеристиках газовоздушного потока и малом времени контакта [5]. Высокая активность нанесенных металлокомплексных катализаторов достигается при условии оптимального сочетания физико-химических и структурно-адсорбционных свойств носителя, природы центрального атома и лигандов, а также соотношения металл : лиганд.

В рамках решения задач, связанных с проблемами энерго- и ресурсосбережения, а также заменой импортных материалов отечественными актуальным в области разработки катализаторов экологического назначения является поиск новых доступных и дешевых отечественных природных материалов для использования их в качестве носителей активной формы катализатора: дисперсных металлов, оксидов металлов и металлокомплексов. По нашему мнению, перспективными могут быть природные цеолиты (клиноптилолит (CLI), морденит (MOR)), слоистые силикаты с расширяющей элементарной ячейкой – монтмориллонит (Mont), дисперсные кремнеземы – трепел (ТР), а также базальтовый туф (БТ). Физико-химические свойства перечисленных природных сорбентов, кроме базальтового туфа, всесторонне изучены [6-8] и продолжают изучаться [9,10]. Природные цеолиты используются для разделения газов и улавливания значительных количеств атмосферных загрязнителей (CO₂, SO_x, NO_x, H₂S, NH₃) [11].

Применение указанных природных материалов в качестве носителей дисперсных металлических [12] или оксидных [13] катализаторов крайне ограничено. Кроме наших работ [14–18], практически нет данных об их использовании в качестве носителей металлокомплексных соединений. Такая ситуация объясняется тем, что обоснованный выбор носителя усложняется переменным составом природных сорбентов и множеством факторов, влияющих на активность металлокомплексных катализаторов. По нашему мнению, кроме компонентного состава катализатора, к наиболее важным факторам относятся следующие: структура (топология алюмосиликатного каркаса, геометрические размеры входных окон, каналов); природа и соотношение фаз для многофазовых сорбентов; соотношение n_{Si}/n_{Al}; кислотные свойства сорбентов; условия сорбции ионов переходных металлов, форма их нахождения; топографические места локализации Mn⁺ и возможность их координации с другими лигандами; возможность доступа газообразных молекул к местам локализации иона Mn+; наличие других катионов и анионов, влияющих не только на локализацию ионов Mn⁺ и их координационное окружение, но и на подвижность ионов вообще и ионов водорода в особенности.

В настоящей работе на примере реакции низкотемпературного окисления монооксида углерода кислородом исследовано влияние природы носителя (CLI, MOR, Mont, TP и БТ) на активность нанесенных на них сложных композиций, содержащих соли палладия (II), меди (II) и бромид калия, которые только при совместном присутствии и определенном соотношении обеспечивают протекание реакции в стационарном режиме.

В таблице представлены сведения о химическом и фазовом составе природных сорбентов, используемых для приготовления катализаторов. Видно, что CLI, MOR, Mont и БТ(1)

Рис.1. Зависимость C_{CO}^{κ} во времени т при окислении CO кислородом в присутствии катализаторов K_2PdCl_4 -Cu(NO₃)₂-KBr-H₂O/CLI (или MOR) на носителях: 1 – CLI; 2 – H-CLI-3; 3 – H-CLI-6; 4 – MOR; 5 – H-MOR-6 ($C_{Pd(II)} = 2,72\cdot10^{-5}, C_{Cu(II)} = 2,9\cdot10^{-5}, C_{KBr} = 1,02\cdot10^{-4}$ моль/г; $C_{CO}^{\mu} = 300$ мг/м³).

характеризуются примерно одинаковым массовым соотношением SiO_2/Al_2O_3 ; этот показатель высокий для TP и более низкий для $БT(1)^*$ и БT(2).

Только образцы базальтового туфа имеют высокое содержание Fe_2O_3 . Природные алюмосиликаты являются сложными полиминеральными системами с переменным фазовым составом. Образцы природных сорбентов, кроме трепела, модифицировали раствором азотной кислоты (3 моль/л) при кипячении в течение 3–6 ч [14].

Образцы катализатора получали методом импрегнирования носителя раствором, содержащим хлорид палладия (II), нитрат меди (II) и бромид калия. Носитель (10 г) постоянного фракционного состава (0,75 мм) пропитывали 4 мл раствора с заданным соотношением компонентов. Полученную влажную массу сушили в воздушной среде при 110 °С до постоянной массы, а затем образец выдерживали в эксикаторе над раствором серной кислоты (30–35 %) в течение 1 ч, чтобы он адсорбировал 0,03 г Н₂О на 1 г носителя. Полученные образцы катализатора являются многокомпонентными системами K_2PdCl_4 -Cu(NO₃)₂-KBr-H₂O/носитель. Содержание компонентов катализатора рассчитывали на единицу массы носителя. Тестирование образцов на каталитическую активность в реакции окисления СО осуществляли в проточной по газу термостатированной при 20 °С установке, в реакторе с неподвижным слоем катализатора.

Размеры реактора, дисперсность образцов и линейная скорость газовоздушной смеси (ГВС) (U = 4,2 см/с) соответствуют режиму идеального вытеснения и протеканию реакции в кинетической области [14].

ГВС с концентрацией СО 100 и 300 мг/м³ получали разбавлением концентрированного газа (СО 98–99 % (об.)) очищенным воздухом. Начальную (С_{СО}^н) и конечную (С_{СО}^к) концентрации определяли с помощью газоанализатора 621ЭХО4 («Аналітприлад», Украина), чувствительность которого 2 мг/м³. Относительную влажность ГВС ($\phi_{\Gamma BC}$) поддерживали постоянной (76 %). Об активности катализаторов судили по степени окисления СО в стационарном режиме и достижению предельно допустимой концентрации СО (ПДК_{СО} = 20 мг/м³).

Рентгенограммы исследуемых образцов в области $8^{\circ} > 2\theta < 60^{\circ}$ получены на приборе ДРОН-3М, а в области θ от 1 до 4° — с помощью модифицированного прибора ДРОН; излучение СиК_{α} (λ = 0,154178 нм), напряжение 30 кВ, ток 28 мА.

На рис.1 представлены данные по изменению конечной концентрации СО во времени при окислении его кислородом на катализатоpax K₂PdCl₄-Cu(NO₃)₂-KBr-H₂O/CLI (кривые 1-3). Видно, что закрепленные на природном клиноптилолите Pd (II) и Cu (II) не обеспечивают стационарного режима окисления СО и только на кислотномодифицированном клиноптилолите проявляются каталитические свойства ацидокомплексов палладия (II) и меди (II). Однако и в этом случае степень превращения СО низкая и при варьировании Pd (II) от 0 до 3,05·10⁻⁵ моль∕г и Си (II) от 0 до 2,3·10⁻⁴ моль/г С_{СО}^к превышает ПДК. Аналогичная картина наблюдается и в случае применения морденита (кривые 4, 5). Очевидно, низкая активность таких катализаторов обусловлена не только физико-химическими свойствами сложной каталитической системы, но и ограниченной доступностью для молекул СО активных центров в диффузионнолимитирующих каналах цеолитов, которыми, по данным [11], для клиноптилолита являются 8-членные каналы С, а для морденита — 8-членные каналы 2.

Тестирование в реакции окисления СО кислородом композиции с применением монтмориллонита K_2PdCl_4 -Cu(NO₃)₂-KBr-H₂O/Mont (рис.2) показало, что носитель также требует предварительного кислотного активирования, но, как видно из представленных данных, для достижения высокой степени превращения СО в стационарном режиме можно ограничиться модифицированием в течение 1 ч. При более

Рис.2. Зависимость C_{CO}^{κ} во времени т при окислении CO кислородом в присутствии катализаторов K_2PdCl_4 -Cu(NO₃)₂-KBr-H₂O/Mont: 1 — Mont; 2 — Mont-H2O; 3 — H-Mont-1; 4 — H-Mont-3; 5 — H-Mont-6 ($C_{Pd(II)} = 2,72\cdot10^{-5}$, $C_{Cu(II)} = 2,9\cdot10^{-5}$, $C_{KBr} = 1,02\cdot10^{-4}$ моль/г; $C_{CO}^{\mu} = 300$ мг/м³).

длительной кислотной обработке монтмориллонита катализатор обеспечивает очистку воздуха намного ниже ПДК_{СО}.

Ранее разработанный нами катализатор K₂PdCl₄-Cu(NO₃)₂-KBr-H₂O/T3K-M (T3K-M – трепел, модифицированный по специальной технологии и содержащий 99,7 % (мас.) SiO₂; Зикеевское месторождение, Россия) продемонстрировал высокую активность и стабильную очистку воздуха от СО в условиях алюминиевого производства [5]. При использовании природного трепела вышеназванного месторождения

C CO, MF/M

Рис.3. Изменение $C_{CO}{}^{\kappa}$ во времени т при окислении CO кислородом при разной массе катализатора $K_2 PdCl_4{}^-$ Cu(NO₃) $_2{}^-$ KBr-H $_2O/TP$, г: 1 - 2,5; 2 - 3,0; 3 - 5,0; 4 - 7,5; 5 - 10,0 (C $_{Pd(II)}$ = 4,0.10 ${}^{-5}$, C $_{Cu(II)}$ = 8,8.10 ${}^{-5}$, C $_{KBr}$ = 1,02.10 ${}^{-4}$ моль/г; С $_{CO}{}^{\rm H}$ = 100 мг/м³).

получить активный Pd(II)-Cu(II)-катализатор не удалось.

Трепел, добываемый в Украине (см. таблицу), является высококремнистым полифазным минералом, в нем, кроме кристобалита, обнаруживается не более 8-10 % (мас.) CLI и Mont. Такой же сложный фазовый состав отмечается у белорусских трепелов [18]. Очевидно, преимущественное содержание кремнезема в трепеле обусловливает формирование Pd(II)-Cu(II)катализатора, обеспечивающего высокую степень превращения СО в стационарном режиме, уже на природном образце. При этом видно (рис.3), что в случае $C_{CO^{H}} = 100 \text{ мг}/\text{м}^{3}$ даже при массе катализатора 2,5 г воздух очищается до ПДК. Варьированием содержания Pd (II) и Си (II) найдено их оптимальное соотношение в составе катализатора.

Рис.4. Зависимость C_{CO}^{κ} во времени т при окислении CO кислородом в присутствии катализаторов K_2PdCl_4 -Cu(NO₃)₂-KBr-H₂O/БТ: 1 – БТ(1); 2 – БТ(1)*; 3 – БТ(2); 4 – H-БТ(1)-6; 5 – H-БТ(1)*-6; 6 – H-БТ(2)-6 (C_{Pd(II}) = 1,36·10⁻⁵, C_{Cu(II}) = 2,9·10⁻⁵, C_{KBr} = 1,02·10⁻⁴ моль/г; C_{CO}^H = 300 мг/м³).

В случае применения базальтового туфа в качестве носителя ацидокомплексов Pd (II) и Cu (II) нами показано, что только на кислотномодифицированных образцах БТ формируется активный катализатор окисления CO [14, 17]. При кислотной обработке БТ происходит не только изменение его кислотных свойств [19], но и существенные структурные изменения носителя, в результате чего возрастает вероятность совместной локализации Pd (II) и Cu (II), необходимой для достижения стационарного протекания реакции окисления CO. Из рис.4 видно, что активность катализаторов ряда Pd(II)-Cu(II)/H-БТ-6 при прочих равных условиях зависит от происхождения базальто-

Рис.5. Дифрактограммы образцов природного базальтового туфа: 1 - БT(1); 2 - БT(1)*; 3 - БT(2).

вого туфа (см. таблицу): наибольшую степень превращения СО в стационарном режиме обеспечивают ацидокомплексы Pd (II) и Cu (II), нанесенные на H-БT(1)-6, который, по данным [19], имеет наименьшее по сравнению с H-БT(1)*-6 и H-БT(2)-6 содержание льюисовских и бренстедовских кислотных центров.

Однако кислотность образцов не является единственной причиной, обусловливающей разную активность катализаторов. Об этом свидетельствуют выполненные нами рентгенофазовые исследования образцов природного базальтового туфа разного происхождения (рис.5), а также химически-модифицированных образцов [20].

Обобщены данные по изменению кристалличности образцов базальтового туфа (%) в зависимости от их происхождения и химического модифицирования: БТ(1) – 100; H-БТ(1)-6 – 84; Pd(II)-Cu(II)/H-БТ(1)-6 – 76; БТ(1)* – 67; H-БТ(1)*-6 – 70; Pd(II)-Cu(II)/H-БТ(1)*-6 – 61; БТ(2) – 43; H-БТ(2)-6 – 44; Pd(II)-Cu(II)/H-БТ(2)-6 – 33.

В целом по результатам рентгенофазового анализа сделаны следующие выводы. Образцы природного базальтового туфа разного происхождения являются многофазовыми минералами, отличающимися кристалличностью и относительным содержанием основных фаз: CLI, MOR, Mont и Fe₂O₃. Кристалличность исходных БТ уменьшается в ряду БТ(1) > БТ(1)* > БТ(2). Для БТ(2) установлено наименьшее содержание фаз Mont и Fe₂O₃.

При кислотном модифицировании образцов БТ и нанесении на них ацидокомплексов Pd (II) и Cu (II) кристалличность образцов снижается без разрушения структуры цеолитных фаз CLI и MOR; монтмориллонит испытывает структурные изменения, что сопровождается изменением рентгеноспектральных характеристик (d и I/I⁰) первой базовой линии при $\theta = 2,87^{\circ}$, d = 1,55 нм. Впервые установлено, что при нанесении Pd (II) и Cu (II) на кислотно-модифицированные образцы базальтового туфа локализация катионов металлов происходит не только на алюмосиликатных (CLI, MOR и Mont), но и на оксидных фазах (Fe₂O₃ и TiO₂). Все образцы ряда Pd(II)-Cu(II)/H-БТ-6 из-за низкого содержания Pd (II) (около 0,24 % (мас.)) и Cu (II) (около 0,4 % (мас.)) являются однородными и не содержат фаз соответствующих солей, оксидов (PdO, CuO, CuO₂) и Pd⁰.

Тестирование образцов катализатора в реакции окисления СО (см. рис.4) показало, что их активность уменьшается в ряду носителей H-БT(1) > H-БT(1)* > H-БT(2). Это обусловлено уменьшением содержания фазы Mont, на которой, как нами установлено, формируется наиболее активный катализатор (см. рис.2).

Кроме того, изменяя продолжительность кислотного модифицирования образцов БТ и оптимизируя состав катализатора на каждом исследуемом образце БТ, можно получить катализатор, обеспечивающий очистку воздуха от СО до ПДК и ниже (ТУ У 24.6-02071091-001:2008: Каталізатор низькотемпературного окиснення оксиду вуглецю (II) КНО-СО/БТ) [21].

Обобщающие данные о влиянии природных алюмосиликатов на активность Pd(II)–Cu(II)катализатора окисления СО представлены на рис.6. Наибольшую активность проявляет катализатор на H-Mont; требованиям санитарной очистки отвечают и катализаторы на H-БТ-6, однако с технологической точки зрения более простым является катализатор на природном

Рис.6. Влияние природы носителя на активность Pd(II)-Cu(II)-катализатора в реакции окисления CO кислородом ($C_{Pd(II)} = 2,72 \cdot 10^{-5}$, $C_{Cu(II)} = 2,9 \cdot 10^{-5}$, $C_{KBr} = 1,02 \cdot 10^{-4}$ моль/г; $C_{CO}^{H} = 300$ мг/м³; в случае TP CPd_(II) = 4,0 \cdot 10^{-5} моль/г).

трепеле, так как не требуется его предварительная кислотная обработка.

Катализаторы с применением CLI и MOR малоактивны, но это не означает, что эти носители вообще не имеют перспектив применения. Так, нами показано, что нанесенные на природный клиноптилолит хлоридные комплексы меди (II) активны в реакции окисления SO₂ кислородом [22], а хлоридные комплексы Co (II) и Mn (II) — при разложении озона [23].

Список литературы

- Rakitskaya T.L., Bandurko A.Yu., Ennan A.A., Paina V.Ya. Catalysts for sanitary air cleaning from ozone // J. Catal. Today. – 1999. – Vol. 53, № 4. – P. 703–713.
- Rakitskaya T.L., Bandurko A.Yu., Ennan A.A. et al. Low-temperature catalytic decomposition of ozone microconcentrations by carbon fibrous materials // Advances in Environ. Research. – 2000. – Vol. 3, № 4. – P. 472–478.
- Ракитская Т.Л., Эннан А.А., Абрамова Н.Н., Ракитский А.С. Каталитическое окисление фосфина // Тр. I Междунар. науч.-практ. конф. — Одесса: Астропринт, 2002. — С. 200–217.
- Ракитская Т.Л., Эннан А.А. Экологический катализ: теория и практика // Вісн. Одес. нац. ун-ту. – 2003. – Т. 8, вип. 3–4. – С. 26–40.
- Ракитская Т.Л., Эннан А.А., Волкова В.Я. Низкотемпературная каталитическая очистка воздуха от монооксида углерода. — Одесса : Экология, 2005. — 191 с.
- Тарасевич Ю.И. Природные сорбенты в процессе очистки вод. – Киев : Наук. думка, 1981. – 208 с.
- Жданов С.П., Хвощев С.С., Самулевич Н.Н. Синтетические цеолиты. – М. : Химия, 1981. – 230 с.
- Брэк Д. Цеолитовые молекулярные сита. М. : Мир, 1976. – 778 с.
- 9. Korkuna O., Leboda R., Skubiszewska-Zieba J. et al. Structural and physicochemical properties of natural zeolites : Clinoptilolite and mordenite // Micropor. Mesopor. Mater. - 2006. - Vol. 87, № 3. - P. 243-254.
- Armbruster T. Clinoptilolite-heulandite : Applications and basic research // Studies in Surface Science and Catalysis. 2001. Vol. 135. P. 13–27.
- Ackley M.W., Rege S.U., Saxena H. Application of natural zeolites in the purification and separation of gases // Micropor. Mesopor. Mater. – 2003. – Vol. 61, № 1. – P. 25–42.
- 12. Garriazo J.G., Martinez L.M., Odriozola J.A. et al. Gold supported on Fe, Ce, and pillared bentonites for CO oxidation reaction // Appl. Catal. B: Environ. – 2007. – Vol. 72, № 1– 2. – P. 157–165.
- Бражник Д.В., Зажигалов В.А., Григорян Р.Р. и др. Использование природных цеолитов для создания катализаторов нейтрализации газовых выбросов.
 Окисление СО // Энерго-

технологии и ресурсосбережение. — 2009. — № 1. — С. 27– 32.

- Ракитская Т.Л., Киосе Т.А., Волкова В.Я., Волощук А.Г. Влияние деалюминирования природного цеолита на активность Pd(II)-Cu(II)-катализатора окисления монооксида углерода кислородом // Вісн. Одес. нац. ун-та. Сер. Хімія. — 2005. — Т. 10, вип. 2. — С. 184–191.
- Ракитская Т.Л., Киосе Т.А., Волкова В.Я., Захария А.Н. Адсорбция меди (II) природным и кислотно-модифицированным цеолитом базальтовым туфом // Вопр. химии и хим. технологии. — 2007. — № 7. — С. 183–186.
- 16. Ракитская Т.Л., Киосе Т.А., Волкова В.Я. Адсорбционные свойства базальтового туфа и каталитическая активность закрепленных на нем ацидокомплексов Pd (II) и Cu (II) в реакции окисления монооксида углерода // Укр. хим. журн. — 2008. — Т. 74, № 3-4. — С. 80–85.
- Ракитская Т.Л., Киосе Т.А., Волощук А.Г. и др. Влияние кислотного модифицирования базальтового туфа на каталитическую активность закрепленных ацидокомплексов палладия (II) и меди (II) в реакции окисления монооксида углерода кислородом воздуха // Журн. прикл. химии. – 2009. – Т. 82, № 2. – С. 204–208.
- Шашкова И.Л., Ратько А.И., Мильвит Н.В. и др. Извлечение ионов тяжелых металлов из водных растворов с использованием природных карбонатсодержащих трепелов // Там же. — 2000. — Т. 73, вып. 6. — С. 914–919.
- Ракитська Т.Л., Патриляк Л.К., Кіосе Т.О., Волкова В.Я. Кислотні та каталітичні властивості системи Pd(II)-Cu(II)-базальтовий туф // Зб. наук. пр. XII Наук. конф. «Львів. хім. читання — 2009», Львів, 1–4 черв. 2009 р. — Львів, 2009. — С. H–25.
- Ракитская Т.Л., Резник Л.И., Киосе Т.А. и др. Рентгенофазовое исследование Pd(II)-Cu(II)катализатора, закрепленного на базальтовом туфе // Вісн. Одес. нац. ун-та. Сер. Хімія. — 2007. — Т. 12, вип. 2. — С. 99–110.
- Ракитська Т.Л., Кіосе Т.О., Волкова В.Я., Барбул О.Л. Обґрунтування способу одержання каталізатора на основі Pd(II), Cu(II) і базальтового туфу для низькотемпературного окиснення монооксиду вуглецю киснем // Вісн. Одес. нац. ун-та. Сер. Хімія. — 2008. — Т. 13, вип. 11. — С. 5–14.
- 22. Пат. 39382 Укр., МКІ⁸ В 01 J 23/72. Сорбент для очищення повітря від діоксиду сірки / Т.Л.Ракитська, М.І.Гавриленко, Т.О.Кіосе. — Опубл. 25.02.09, Бюл. №4.
- Ракитська Т.Л., Еннан А.А., Раскола Л.А. та ін. Низькотемпературний розклад озону закріпленими на клиноптилоліті ацидокомплексами Cu(II) // Зб. наук. пр. XII Наук. конф. «Львів. хім. читання — 2009», Львів, 1–4 черв. 2009 р. — Львів, 2009. — С. Н–30.

Поступила в редакцию 28.09.09

Ukrainian Natural Silica-Alumina Application for New Metal Complex Catalysts of Air Purification from Gaseous Toxic Substances Development

Rakitskaya T.L.¹, Kiose T.A.¹, Volkova V.Ya.¹, Ennan A.A.²

¹ Odessa National University ² Physicochemical Institute of Environment and Humans Protection of the Ministry of Education and Science of Ukraine and NASU, Odessa

Pd(II)-Cu(II) catalysts deposited on natural silica-alumina (clinoptilolite, mordenite, montmorillonite, tripoli, and basalt tuff) for carbon monoxide oxidation at ambient temperature, normal pressure, increased air-gas mixture humidity and carbon monoxide concentration of 300 mg/m³ (15 MPC for working area) are obtained. It is established that Pd(II)-Cu(II) catalyst formation that provides CO steady-state oxidation descends only on acid modified clinoptilolite (H-CLI-6), mordenite (H-MOR-6), montmorillonite (H-Mont-6), and basalt tuff (H-bT(1)-6, H-bT(1)*-6, and H-bT(2)-6) samples. The catalyst activity depends on carrier nature. The level of CO oxidation (%) by oxygen in the stationary mode decreases in the following consequence: H-Mont-6 (94) > H-bT(1)-6 (91) > H-bT(1)*-6 (88) > TP (87) > H-bT (2)-6 (82) > H-MOR-6 (40) > H-CLI-6 (38). The correlation between carrier phase composition and catalyst activity in case of different origin basalt tuffs application is discovered.

Key words: catalyst, carbon monoxide, Pd(II)-Cu(II) catalyst, natural silica-alumina. Received September 28, 2009

УДК 622.772:669.21:573.6.086

Биохимическое извлечение серебра из руд казахстанских месторождений

Семенченко Г.В., Беркинбаева А.Н., Мукушева А.С., Пономарева Е.И.

АО «Центр наук о Земле, металлургии и обогащения», Алматы, Казахстан Показана возможность увеличения извлечения серебра из золото-серебросодержащих руд месторождений Казахстана биохимическими методами выщелачивания. Выщелачивание проводили комплексным растворителем, в состав которого входили цианид, роданид, бактерии и аминокислота. Оптимизация соотношения компонентов выщелачивающего раствора была проведена методом математического планирования. Установлено, что в первые 8–16 ч выщелачивания в раствор переходит в основном золото и медь. Через 30 ч в выщелачивающем растворе возрастает содержание серебра. В результате проведенных исследований удалось повысить извлечение благородных металла на 10–15 % по сравнению с обычным цианированием.

Ключевые слова: серебро, золото, цианид, роданид, гетеротрофные бактерии, аминокислота, биохимическое выщелачивание.