УДК 536.2

Шубин Г.С.

Московский государственный университет леса, Россия

МЕТОД РАСЧЕТА СКОРОСТИ ПЕРЕМЕЩЕНИЯ ГРАНИЦЫ ФАЗОВОГО ПЕРЕХОДА В ПРОЦЕССАХ ТЕПЛОМАССОПЕРЕНОСА В ТВЕРДЫХ ДИСПЕРСНЫХ МАТЕРИАЛАХ

Наведено систему рівнянь тепломасопереносу при рухомих границях фазового переходу (ГФП) для тіл циліндричної форми та пластини. Записано вирази для розрахунку швидкості пересування цієї границі у циліндрі та пластині. На прикладах відтаювання та високотемпературного сушіння проаналізовано швидкості ГФП при різних значеннях Ві. Приводится система уравнений тепломассопереноса при подвижных границах фазового перехода (ГФП) для тел цилиндрической формы и пластины. Записаны выражения для расчета скорости перемещения этой границы в цилиндре и пластине. На примерах оттаивания и высокотемпературной сушки анализируются скорости ГФП при различных значения Bi. We have obtained a system of equations of heat and mass transfer for the case of moving phase transition boundaries (PTB) for a cylinder and a plate. Expressions for calculating the velocity of motion of this boundary in a cylinder and a plate are written down. On the examples of thawing and high-temperature drying, we analyze the velocities of PTB for various Bi values.

- С удельная теплоемкость;
- к координата вдоль оси *x*, отсчитываемая от поверхности, на которой произошел фазовый переход;
- *n* степень показателя параболы;
- *R* характерный размер тела;
- *r*_ф теплота фазового перехода;
- t температура;
- х координата в теле, отсчитываемая от поверхности;
- α коэффициент теплообмена;
- λ коэффициент теплопроводности;
- ρ плотность;
- ρ_φ масса вещества (вода, лед), подлежащего фазовому переходу;

Введение

Процессы с подвижными границами фазового перехода имеют большое значение при тепломассопереносе в телах, в частности, при гидротермической обработке древесины. Сюда, например, относятся процессы оттаивания (промерзания), низко- и высокотемпературной сушки при влажности выше предела насыщения клеточной стенки. Эти процессы описываются дифференциальτ – время;

- Ві число Био;
- Ко число Коссовича;
- П безразмерный параметрический критерий, характерный для процессов с подвижными границами;
- Fo число Фурье.

Индексы:

- 1, 2 зоны в теле №№ 1 и 2;
- кип кипение;
- отт оттаивание;
- с среда;
- ц.о начальное состояние на оси тела;
- ф фазовый переход.

ными уравнениями, которые нелинейны вследствие подвижных границ даже при постоянных коэффициентах переноса. По своему физическому содержанию и математической формулировке рассматриваемые процессы близки к процессам, описываемым задачей Стефана, которая имеет конечное аналитическое решение лишь в простейшем случае (полуограниченное тело при граничных условиях I рода). Поэтому представляет интерес развитие приближенных аналитических методов расчета. Отличительной особенностью таких процессов является сопряжение двух частей (зон) тела, имеющих разные теплофизические характеристики.

Система уравнений тепломассопереноса

Сформулируем задачу для тела цилиндрической формы при движении границы фазового перехода и граничных условиях III рода в теплофизической трактовке. Пусть температура среды t_c , будет больше температуры фазового перехода t_{ϕ} (оттаивание, плавление, высокотемпературная сушка). При $t_c < t_{\phi}$ справедливость выводов полностью сохраняется.

Дифференциальное уравнение переноса теплоты в наружной зоне (зона I, $t_c > t_{\phi}$) и внутренней зоне (зона II, $t_c < t_{\phi}$) можно записать (текущая координата *х* исчисляется от поверхности) в виде

$$C_{1,2}\rho_{1,2}\frac{\partial t_{1,2}}{\partial \tau} = \lambda_{1,2} \left(\frac{\partial^2 t_{1,2}}{\partial x^2} - \frac{1}{R - x} \frac{\partial t_{1,2}}{\partial x^2} \right).$$
(1)

Граничные условия на внешней поверхности $(\alpha_1 = \alpha_2 = \alpha)$:

$$\alpha \left[t_c - t_1(0, \tau) \right] + \lambda_1 \left| \frac{\partial t_1}{\partial x} \right|_{x=0} = 0 \quad .$$
⁽²⁾

Начальные условия:

$$t_2(x,0) = f(x) . \tag{3}$$

Условия внутренней симметрии тела

$$\left|\frac{\partial t_2}{\partial x}\right|_{x=R} = 0 \quad . \tag{4}$$

Условия постоянства температуры фазового перехода

$$t_1(\kappa,\tau) = t_2(\kappa,\tau) = t_{\hat{o}} = \text{const} .$$
 (5)

Дифференциальное условие Стефана на границе фазового перехода ($x = \kappa$)

$$r_{\phi}\rho_{\phi}\frac{\partial x}{\partial \tau} = \lambda_2 \left|\frac{\partial t_2}{\partial x}\right|_{x=\kappa} - \lambda_1 \left|\frac{\partial t_1}{\partial x}\right|_{x=\kappa}$$
(6)

Для получения приближенного решения задачи был применен метод аппроксимации температурных кривых, предложенный акад. Л.С. Лейбензоном [1]. При этом, для того, чтобы уменьшить погрешности, которые могут возникнуть при подстановке в условие (6) производных от температурных кривых в точке фазового перехода $(x = \kappa)$, дифференциальное условие Стефана (6) было преобразовано в интегральное условие, включающее производные на внешней поверхности. Для этого интегрируются обе части уравнения (1) соответственно в пределах 0 – к и $\kappa - R$, отыскиваются из полученных уравнений выражения градиентов температуры при $x = \kappa$, которые подставляются в условие (6). После преобразования получаем интегральное условие оттаивания и высокотемпературной сушки и аналогичных им процессах с подвижными границами, в которых отсутствуют производные при $x = \kappa$.

$$\lambda_{1} \frac{R}{R-\kappa} \frac{\partial t}{\partial x} \Big|_{x=0} = \left[\int_{0}^{\kappa} \frac{R-x}{R-\kappa} C_{1} \rho_{1} \frac{\partial t_{1}}{\partial x} \partial x + \int_{\kappa}^{R} \frac{R-x}{R-\kappa} C_{2} \rho_{2} \frac{\partial t_{2}}{\partial x} \partial x + r_{\phi} \rho_{\phi} \right] \frac{d\kappa}{d\tau}$$
(7)

В различных случаях тепломассопереноса (тип и интенсивность процесса, род и размеры материала) поля потенциалов переноса (в данном случае — температуры) могут иметь различный характер, в связи с чем важно получение приближенного решения задачи, в котором температурные линии в каждой из зон представляются в самой общей форме, например, в виде кривых типа парабол степени $n(n_1 - в$ зоне I и $n_2 - в$ зоне II), информация о которых должна быть сохранена в конечном решении.

Дальнейшие многочисленные преобразования позволили получить выражение для определения продолжительности процесса достижения зоной фазового перехода координаты κ , которое здесь опускается (см. [2]).

Исходные расчетные уравнения

Приведем полученное нами выражение в числах подобия для установления скорости пе-

ремещения в цилиндре границы фазового перехода:

$$\frac{d(\kappa/R)}{dFo} = \frac{1}{\frac{\kappa}{R} \left\{ \frac{2}{n_{1}(n_{1}+1)} - \frac{\kappa/R}{(n_{1}+1)} \times \right\}} \times \frac{1}{\left\{ \frac{1}{(n_{2}+1)n_{1}} + \frac{1}{(\kappa/R+n_{1}/Bi_{1})n_{1}} - \right\}} \times \frac{1}{\left\{ \frac{1}{(n_{2}+1)n_{1}} + \frac{1}{(\kappa/R+n_{1}/Bi_{1})n_{1}} - \right\}} \times \frac{1}{(-2+(n_{1}+1)\left(\frac{1}{n_{1}} + \frac{1}{n_{1}+2}\right)\right]} \times \frac{1}{\left\{ \frac{\kappa^{2}/R^{2}}{(\kappa/R+n_{1}/Bi_{1})(n_{1}+1)(n_{1}+2)} \right\}} \times \frac{1}{\left\{ \frac{\kappa}{(\kappa/R+n_{1}/Bi_{1})(n_{1}+1)(n_{1}+2)} \right\}} \times \frac{1}{\left\{ \frac{1}{n_{1}} \left(1 + \frac{\kappa}{R}\right)^{2} \left(\frac{\kappa}{R} + \frac{n_{1}}{Bi_{1}}\right) \frac{3n_{2}}{2(n_{2}+2)} \Pi + \right\}} \times \frac{1}{\left\{ \frac{1}{n_{1}} \left(1 + \frac{\kappa}{R}\right)^{2} \left(\frac{\kappa}{R} + \frac{n_{1}}{Bi_{1}}\right) \frac{3n_{2}}{2(n_{2}+2)} \Pi + \right\}} \times \frac{1}{\left\{ \frac{1}{n_{1}} \left(1 + \frac{\kappa}{R}\right)^{2} \left(\frac{\kappa}{R} + \frac{n_{1}}{Bi_{1}}\right) \frac{3n_{2}}{2(n_{2}+2)} \Pi + \right\}} \times \frac{1}{\left\{ \frac{1}{n_{1}} \left(1 + \frac{\kappa}{R}\right)^{2} \left(\frac{\kappa}{R} + \frac{n_{1}}{Bi_{1}}\right) \frac{3n_{2}}{2(n_{2}+2)} \Pi + \right\}} \times \frac{1}{\left\{ \frac{1}{n_{1}} \left(1 + \frac{\kappa}{R}\right)^{2} \left(\frac{\kappa}{R} + \frac{n_{1}}{Bi_{1}}\right) \frac{3n_{2}}{2(n_{2}+2)} \Pi + \right\}} \times \frac{1}{\left\{ \frac{1}{n_{1}} \left(1 + \frac{\kappa}{R}\right)^{2} \left(\frac{\kappa}{R} + \frac{n_{1}}{Bi_{1}}\right) \frac{3n_{2}}{2(n_{2}+2)} \Pi + \right\}} \times \frac{1}{\left\{ \frac{1}{n_{1}} \left(1 + \frac{\kappa}{R}\right)^{2} \left(\frac{\kappa}{R} + \frac{n_{1}}{Bi_{1}}\right) \frac{3n_{2}}{2(n_{2}+2)} \Pi + \right\}} \times \frac{1}{\left\{ \frac{1}{n_{1}} \left(1 + \frac{\kappa}{R}\right)^{2} \left(\frac{\kappa}{R} + \frac{n_{1}}{Bi_{1}}\right) \frac{3n_{2}}{2(n_{2}+2)} \Pi + \right\}} \times \frac{1}{\left\{ \frac{1}{n_{1}} \left(1 + \frac{\kappa}{R}\right)^{2} \left(\frac{\kappa}{R} + \frac{n_{1}}{Bi_{1}}\right) \frac{3n_{2}}{2(n_{2}+2)} \Pi + \right\}} \times \frac{1}{\left\{ \frac{1}{n_{1}} \left(1 + \frac{\kappa}{R}\right)^{2} \left(\frac{\kappa}{R} + \frac{n_{1}}{Bi_{1}}\right) \frac{3n_{2}}{2(n_{2}+2)} \Pi + \left\{ \frac{1}{n_{1}} \left(\frac{\kappa}{R} + \frac{n_{1}}{Bi_{1}}\right) \frac{1}{n_{2}} \left(\frac{\kappa}{R} + \frac{\kappa}{R}\right) \frac{1}{n_{1}} \left(\frac{\kappa}{R} + \frac{\kappa}{R}$$

Здесь

$$\Pi = \frac{C_2 \rho_2 \left(t_{\phi} - t_{u,o} \right)}{C_1 \rho_1 \left(t_c - t_{\phi} \right)} , \qquad (9)$$

$$\mathrm{Ko} = \frac{r_{\Phi} \rho_{\Phi}}{C_{1} \rho_{1} \left(t_{\mathrm{c}} - t_{\Phi} \right)} \,. \tag{10}$$

В уравнении (9) *t*_{и.о} – начальная (перед началом фазового перехода) температура на оси цилиндра, обычно равная начальной температуре.

Аналогичное выражение для пластины получено в виде

$$\frac{d(\kappa/R)}{d\text{Fo}} = \frac{1}{\frac{\kappa}{R} \frac{1}{(n_1+1)n_1} \left(\frac{\kappa/R + 2n_1/\text{Bi}_1}{\kappa/R + n_1/\text{Bi}_1}\right) + \left(\frac{\kappa}{Rn_1} + \frac{1}{\text{Bi}_1}\right)} \times$$

$$\times \frac{1}{\left(1 - \frac{\kappa}{R}\right)\left(1 - \frac{n_2}{n_2 + 1}\right)\Pi + \left(\frac{\kappa}{Rn_1} + \frac{1}{Bi_1}\right)Ko}.$$
 (11)

По выражениям (8) и (11) с учетом (9) и (10) были произведены расчеты скорости углубления зоны фазовых превращений в цилиндре и пластине при процессах оттаивания и высокотемпературной сушки.

Результаты анализа

(8) На рис. 1, а приведены графики $\frac{d(\kappa/R)}{dFo} = f\left(\frac{\kappa}{R}\right)$ для оттаивания пластины.

При расчетах принимались нижеследующие значения параметров, соответствующие условиям оттаивания: $n_1 = 1,25$; $n_2 = 2,0$; Ко_{отт} = 1,0. Для того, чтобы исключить влияние внутренней зоны, в данном случае принималось $\Pi_{ott} = 0$.

Из графиков видно, что скорость перемещения границы фазовых превращений постепенно затухает по мере приближения к центру пластины, что согласуется с литературными данными. Такой затухающий характер процесса можно объяснить ростом теплового сопротивления оттаявшей зоны (зона I) вследствие ее утолщения при сохранении одного и того же размера поверхности, на которой этот фазовый переход происходит. При этом, чем выше значение Ві1, тем скорость затухания больше, так как в этом случае больше тепловое сопротивление зоны І. Аналогичный характер процесса получен при высокотемпературной сушке пластины (рис. 1, б), когда принималось: $n_1 = 1; n_2 = 2; \Pi_{\text{кип}} = 0;$ Ко_{кип} = 10.

Иной характер скорости перемещения границы фазового перехода вглубь тела имеет место в цилиндре. На рис.2 приведены результаты расчета по формуле (8) для процесса оттаивания, а на рис. 1, б (кривая - - -) – для высокотемпературной сушки. При оттаивании (рис. 2) было принято: $n_1 = 1$; $n_2 = 2$; Ко_{отт} = 1,0, Bi₁ = ∞ , 20, 5,1 и 0,1, П_{отт} = 0 (сплошные линии) и П_{отт} = 0,35 (пунктирные линии); при высокотемпературной суш-

Рис. 1. Графики скорости перемещения зоны фазового перехода: а — оттаивание, пластина; б — высокотемпературная сушка: — — пластина, ---- – цилиндр.

ке для цилиндра принимались те же значения параметров, что и для пластины. Из рисунков видно, что кривые скорости перемещения границы фазового перехода к оси носят сложный характер. При больших значениях $Bi_1 (\infty, 20 \text{ и } 5)$ кривые свидетельствуют о первоначальном затухании скорости перемещения границы, а затем ее ускорении. При малых значениях $Bi_1 (1 \text{ и } 0, 1)$ скорость перемещения практически нарастает с самого начала процесса. Отметим также, что принятие $\Pi_{\text{отт}} > 0$ ($t_0 < 0$ °C) не вносит изменений в характер зависимости

$$\frac{d(\kappa/R)}{d\mathrm{Fo}} = f\left(\frac{\kappa}{R}\right)$$

Полученные для цилиндра результаты в значительной мере неожиданные, новые и представляют несомненный интерес. Объяснить эти результаты можно следующим образом. Затухание скорости перемещения на первой стадии процесса так же, как и в случае пластины, объясняется ростом теплового сопротивления расширяющейся зоны, в которой произошел фазовый переход. Однако, в отличие от пластины, в данном случае одновременно с увеличением теплового сопротивления по мере движения границы внутрь, уменьшается площадь (изменяется площадь цилиндра), на которой происходит фазовый переход, что, как мы видим, приводит к ускорению движения его границы. При малых значениях Bi_1 , когда характерно малое тепловое сопротивление (большие λ , малые R), уменьшение площади, на которой происходит фазовый переход, практически с самого начала приводит к ускорению перемещения границы фазового перехода.

Заключение

Получены выражения для расчета скорости перемещения границы фазового перехода (ГФП) в процессах тепломассопереноса. Произведены расчеты для пластины и цилиндра на примерах оттаивания и высокотемпературной сушки. Подтвержден затухающий характер заглубления ГФП для пластины при любых значениях Ві и получены новые данные по ГФП для цилиндра. Первоначально перемещение ГФП в последнем случае затухает, а с некоторого времени ускоряется, при малых значениях Ві ($\leq 1,0$) процесс с самого начала идет с ускорением.

Puc. 2. Графики скорости перемещения зоны фазового перехода при оттаивании в цилиндре: a) $-Bi_1 = \infty$; б) $-Bi_1 = 20$; в) $-Bi_1 = 5, 0$; г) $-Bi_1 = 1, 0$; д) $-Bi_1 = 0, 1$; _____ $-t_0 = 0$ °C; $-----t_0 < 0$ °C.

ЛИТЕРАТУРА

1. Лейбензон Л.С. О динамическом температурном условии образования складчатости на поверхности земного шара при охлаждении. М.: Издательство АН СССР, ОТН. 1939. – №6. – 625 с. 2. Шубин Г.С. Расчет процессов тепломассопереноса, сопровождаемых движением границы фазовых превращений // Тепломассообмен V. Материалы V Всесоюзной конференции по тепломассообмену. Минск: 1976. – Т. 5. – С. 207–217.

Получено 19.06.2006 г.