УДК 536.24:533.6.011 **Письменный Е.Н., Терех А.М., Баранюк А.В., Бурлей В.Д.** *Национальный технический университет Украины «КПИ»*

ТЕПЛООБМЕН И АЭРОДИНАМИЧЕСКОЕ СОПРОТИВЛЕНИЕ МАЛОРЯДНЫХ ПУЧКОВ ПЛОСКО-ОВАЛЬНЫХ ТРУБ С НЕПОЛНЫМ ОРЕБРЕНИЕМ

Виконані дослідження конвективного теплообміну і аеродинамічного опору малорядних шахових і коридорних пучків плоско-овальних труб з неповним обребренням. Отримані узагальнюючі залежності для розрахунку поправок, що враховують вплив кількості поперечних рядів труб в пучку на його теплообмін та аеродинамічний опір. Выполнены исследования конвективного теплообмена и аэродинамического сопротивления малорядных шахматных и коридорных пучков плоско-овальных труб с неполным оребрением. Получены обобщающие зависимости для расчета поправок, учитывающих влияние числа поперечных рядов труб в пучке на его теплообмен и аэродинамическое сопротивление. Researches of heat trasfer and aerodynamic resistance of few rows staggered and in-line banks of flat-oval tubes with incomplete fins are executed. Generalizing dependences are obtained for calculation of correction accounting for the effect of the number of transversal rows of tubes in a bank on its heat transfer and aerodynamic resistance.

S – шаг между трубами;

w – скорость потока;

z₂ – число поперечных рядов труб;

АВО – аппарат воздушного охлаждения;

Безразмерные комплексы:

Nu – число Нуссельта;

Введение

Малорядные пучки из ребристых труб применяют в калориферах для лесосушильных камер, подогрева дутьевого воздуха в котлах, в системах вентиляции, кондиционирования и воздушного отопления общественных зданий и промышленных предприятий, в теплообменных секциях аппаратов воздушного охлаждения (ABO). Число поперечных рядов труб z_2 по направлению движения воздуха в таких устройствах обычно составляет 1...3, в ABO $z_2 = 3...6$.

Отсутствие рекомендаций по определению влияния количества поперечных рядов труб z_2 на теплообмен и аэродинамическое сопротивление пучков способствует принятию противоречивых конструкторских решений при проектировании теплообменных устройств из ребристых труб.

В связи с этим актуальными являются вопросы создания надежных обобщенных заRe – число Рейнольдса; Eu – Число Эйлера;

Нижние индексы:

- к конвективный;
- 0 на один поперечный ряд;
- 1 поперечный;
- 2 продольный.

висимостей для расчета поправок, учитывающих влияние входных рядов на теплообмен и аэродинамическое сопротивление пучков труб. Неучет влияния входных рядов может привести к неоправданному занижению или завышению площади теплообменной поверхности и сопротивления устройства.

В НТУУ "КПИ" проведены экспериментальные исследования влияния на теплообмен и аэродинамическое сопротивление числа поперечных рядов шахматных и коридорных компоновок плоско-овальных труб с неполным оребрением [1-4] (рис. 1, 2).

Влияние числа поперечных рядов труб на теплообмен и аэродинамическое сопротивление пучков обычно учитывается поправками C_z и C_z' в обобщенных уравнениях (1), (2):

$$Nu = C_z C_q Re^m, (1)$$

$$\mathrm{Eu}_{0} = C'_{z}C_{s}\mathrm{Re}^{-n}$$
⁽²⁾

Рис. 1. Плоско-овальная труба с неполным оребрением: a – тип 1; б – тип 4.

1. Теплообмен малорядных пучков плоскоовальных труб с неполным оребрением

Экспериментальные исследования теплообмена во входных рядах пучков проведены путем последовательного удаления поперечных рядов многорядного пучка ($z_2 = 6 - 7$). Таким образом определялись значения чисел Нуссельта для 1-го, 2-х, 3-х, 4-х, 5-и, 6-и рядных компоновок пучка. В таблицах 1 - 3 приведены геометрические характеристики плоско-овальных труб и пучков для которых проведены исследования влияния на теплообмен числа поперечных рядов труб. Значения поправки C_z вычислялись относительно средних коэффициентов теплоотдачи десятирядных пучков.

Обработка экспериментальных данных для шахматных и коридорных компоновок показала увеличение интенсивности теплообмена при переходе от первого ко второму- третьему рядам пучка, что можно объяснить ростом степени турбулентности потока по мере его продвижения вглубь пучка (рис. 3). Для коридорных пучков рост интенсивности теплоотдачи при переходе от ряда к ряду проявляется слабее нежели для шахматного (рис. 4, 5), что объясняется различным механизмом обтекания труб пучков этих компоновок [5, 6].

Наименования величин	Обозн.	Труба тип 1	Труба тип 2	Труба тип 3	Труба тип 4	Труба тип 5
Поперечный размер несущей трубы	<i>d</i> ₁ , мм	15,0	16,0	15,0	15,0	15,0
Продольный размер несущей трубы	<i>d</i> ₂ , мм	30,0	40,0	30,0	42,0	42,0
Высота ребер	<i>h</i> , мм	27,5	28,5	22,0	23,0	23,0
Шаг ребер	<i>t</i> , MM	3,65	3,40	3,65	3,75	3,50
Длина ребер	<i>l</i> , мм	48,5	48,5	48,5	55,5	55,5
Коэф. оребрения	Ψ	21,50	18,47	17,68	15,16	16,2

Таблица 1. Геометрические характеристики оребренных труб

Рис. 3. Теплообмен входных рядов шахматных пучков труб: а – пучок Ш1; б – пучок Ш5; 1 – пятый ряд, 2 – третий, 3 – первый.

На рис. 6 нанесены осредненные по экспериментальным данным расчетные кривые зависимости поправки C_z от числа рядов пучка плоско-овальных труб: кривая 1 для шахматных пучков, кривая 2 для коридорных. Кривая для шахматных пучков более крутая и распола-

Рис. 4. Теплообмен входных рядов коридорного пучка К1: 1 – первый ряд; 2 – третий; 3 – пятый.

Номер размещения	<i>S</i> ₁ , мм.	<i>S</i> ₂ , мм	S_{1}/d_{1}	$S_{2}^{/}d_{1}$	$S_{1}^{/}S_{2}^{-}$	
Плоскоовальная труба с неполным оребрением типа 1						
Ш1	79	53	5,27	3,53	1,490	
Ш2	79	80	5,27	5,33	0,988	
ШЗ	101	53	6,75	3,53	1,910	
Ш4	135	53	9,00	3,53	2,547	
Плоскоовальная труба с неполным оребрением типа 2						
Ш5	79	53	4,94	3,31	1,490	
Ш6	79	80	4,94	5,00	0,988	
Ш7	101	53	6,33	3,31	1,910	
Ш8	135	53	8,44	3,31	2,547	
Плоскоовальная труба с неполным оребрением типа 4						
Ш9	79	80	5,27	5,33	0,988	
Плоскоовальная труба с неполным оребрением типа 5						
Ш10	86	60	5,73	4,00	1,433	

Таблица 2. Геометрические характеристики шахматных пучков оребренных труб

Таблица 3. Геометрические характеристики коридорных пучков оребренных труб

Номер размещения	<i>S</i> ₁ , мм.	<i>S</i> ₂ , мм	S_{1}/d_{1}	$S_{2}^{/}d_{1}^{}$	$S_{1}^{}/S_{2}^{}$
Плоскоовальная труба с неполным оребрением типа 3					
К1	66	60	4,40	4,0	1,100
К2	86	60	5,73	4,0	1,433
Плоскоовальная труба с неполным оребрением типа 4					
К3	86	60	5,73	4,0	1,433

гается ниже кривой для коридорной компоновки. Это свидетельствует о том, что: во-первых стабилизация течения и теплообмена для шахматных пучков происходит быстрее нежели для коридорных, и во-вторых входные ряды коридорной компоновки в меньшей степени влияют на интенсивность теплообмена, чем шахматные.

Математическое описание опытного массива данных (кривые 1 и 2 рис. 6) с точностью ± 4 % дает следующие зависимости для расчета поправки на малорядность пучка в формуле (1):

шахматные пучки плоско-овальных труб с неполным оребрением

$$C_z = 3,23z_2^{0,021} - 2,38, \qquad (3)$$

коридорные пучки плоско-овальных труб с неполным оребрением

$$C_z = 3,67z_2^{0.01} - 2,77.$$
⁽⁴⁾

На рис. 6 для сравнения полученных результатов нанесены и кривые поправки $C_z = f(z_2)$ для шахматных (кривая 3 с $S_1/S_2 > 2$, кривая 4 с $S_1/S_2 < 2$) и коридорных (кривая 5) пучков круглых труб с шайбовым и спирально-ленточным оребрением [5, 6]. Кривые 3, 4 по мере увеличения z_2 возрастают как и для пучков плоско-

Рис. 6. Зависимость поправки Сг от числа рядов для пучков поперечнооребренных труб: 1 – шахматные пучки плоско-овальных труб с неполным оребрением; 2 – коридорные пучки плоскоовальных труб с неполным оребрением; 3 – шахматные пучки кругло-ребристых труб при S₁/S₂ > 2 [5, 6]; 4 – шахматные пучки кругло-ребристых труб при S₁/S₂ < 2 [5, 6]; 5 – коридорные пучки кругло-ребристых труб [5, 6].

овальных труб с неполным оребрением, однако входные ряды труб в этом случае оказывают более сильное влияние на интенсивность теплообмена, а сама поправка для шахматных пучков круглоребристых труб изменяется от 0,8 до 1 при изменении z_2 от 1 до 8 для $S_1/S_2 > 2$ и от 0,67 до 1 для $S_1/S_2 < 2$. Такую довольно большую разницу в кривизне кривых 3 и 4 по мере увеличения z_2 можно объяснить тем, что для шахматных пучков с $S_1/S_2 < 2$ стабилизация течения и теплообмена в пучке происходит быстрее чем для $S_1/S_2 > 2$.

Для коридорных пучков круглоребристых труб поправка C_z имеет клюшкообразный вид (кривая 5 рис. 6) с минимумом величины поправки при $z_2 = 2$ -3. В то же время значения C_z в области $z_2 \ge 2$ достаточно хорошо аппроксимируются зависимостью, полученной для малорядных шахматных круглоребристых пучков с отношением шагов труб $S_1/S_2 > 2$. Это обстоя-

тельство не является случайным, так как шахматная компоновка с $S_1/S_2 > 2$ по характеру обтекания труб приближается к коридорной [5].

Расчетные зависимости для поправки *C_z* пучков из круглых труб с шайбовым и спирально-ленточным оребрением имеют вид [5, 6]:

шахматные пучки пр
и $z_2 < 8$ и коридорные при $2 \leq z_2 < 8$ с
 $S_1/S_2 > 2$

$$C_z = 3,5z_2^{0,03} - 2,72,$$
 (5)

шахматные пучки при $z_2 < 8$ с $S_1/S_2 < 2$

$$C_z = 3,15z_2^{0,05} - 2,5.$$
 (6)

Для всех рассмотренных компоновок пучков из различных видов труб при $z_2 \ge 8$ поправка $C_2 = 1$.

2. Аэродинамическое сопротивление малорядных пучков плоско-овальных труб с неполным оребрением

Влияние на аэродинамическое сопротивление входных рядов пучков плоско-овальных труб экспериментально исследовано для шахматных и коридорных компоновок. Поправка на малорядность C'_{z} представлена как функция отношения чисел Эйлера, приходящихся на один ряд малорядного пучка Eu_{0i} , к числам Эйлера Eu_{0} , приходящихся также на один ряд, но многорядного пучка $(z_2 \ge 6)$ для которого при дальнейшем увеличении количества поперечных рядов труб z_2 числа Eu_{0} достигают своего предельного значения:

$$C'_{z} = \frac{\operatorname{Eu}_{0i}/z_{2i}}{\operatorname{Eu}_{0}/z_{2}} = f(z_{2}).$$
⁽⁷⁾

На рис. 7 представлены в логарифмических координатах зависимости чисел Эйлера Eu_0 от чисел Рейнольдса при изменении числа поперечных рядов для шахматных пучков плоско-овальных труб (пучки Ш 2, Ш 10). С уменьшением z_2 , как свидетельствует рис. 7, для исследованных шахматных пучков не наблюдается увеличения сопротивления пучка, т.е. можно сказать, что поправка $C_z' = 1$ не зависит от количества поперечных рядов z_2 . Такой же результат исследования влияния входных рядов шахматных пучков на аэродинамическое сопротивление для круглых труб с завальцованным спирально-ленточным оребрением получили авторы [7].

Для коридорных пучков плоско-овальных труб (рис. 8, рис. 9) с ростом числа поперечных рядов в пучке числа Эйлера, отнесенные к одному поперечному ряду уменьшаются и при $z_2 = 5.6$ достигают своего предельного значения.

На рис. 10 нанесены расчетные кривые зависимости поправки C_z' от числа рядов для шахматных (кривая 1) и коридорных (кривая 2) пучков плоско-овальных труб. Кривая 1, как указывалось выше, описывается прямой, параллельной оси z_2 : $C_z' = 1$. На рис. 10 нанесена также кривая 3 для шахматных пучков круглых труб с приварным спирально-ленточным оребрением [8, 9].

Кривая 2 на рис. 10 показывает влияние входных рядов труб для коридорной ком-

 $1 - z_2 = 1; 2 - z_2 = 2; 3 - z_2 = 3; 4 - z_2 = 4; 6 - z_2 = 6.$ $6 - nyuok III 10: 1 - z_2 = 1; 2 - z_2 = 2; 3 - z_2 = 3;$ $4 - z_2 = 4; 5 - z_2 = 5; 6 - z_2 = 6.$

Рис. 8. Аэродинамическое сопротивление входных рядов коридорных пучков плоско-овальных труб:

a – пучок K 1: $1 - z_2 = 2$; $2 - z_2 = 4$; $3 - z_2 = 6$. б – пучок K 3: $1 - z_2 = 1$; $2 - z_2 = 2$; $3 - z_2 = 3$; $4 - z_2 = 4$; $5 - z_2 = 5$; $6 - z_2 = 7$.

Рис. 9. Аэродинамическое сопротивление входных рядов коридорного пучка К 2: 1-z_=1; 2-z_=4; 3-z_=6.

поновки из плоско-овальных труб с неполным оребрением и описывается следующим соотношением:

$$C'_{z} = 1, 4z_{2}^{-0,192}$$
, (8)
при $z_{2} \ge 6 C'_{z} = 1.$

чин должны совпадать при $z_2 = 1$. Отмеченное обстоятельство свидетельствует о недостаточной точности нормативной зависимости (кривая 5) для коридорных пучков круглоребристых труб.

Зависимость для определения поправки C_z' на малорядность коридорных пучков круглоребристых труб (кривая 4) соответствует указанной выше тенденции и описывается следущим соотношением:

При z ₂ < 6	$C'_{z} = 1 + \frac{0.65}{(z_{2})^{3}}$.	(9)
При $z_2 \ge 6$	$C_{z}' = 1.$	

Выводы

Рис. 10. Зависимость поправки С_z' от числа рядов для пучков поперечнооребренных труб: 1 – шахматные пучки плоско-овальных труб с неполным оребрением; 2 – коридорные пучки плоско-овальных труб с неполным оребрением; 3 – шахматные пучки кругло-ребристых труб [8, 9]; 4 – коридорные пучки кругло-ребристых труб [5]; 5 – коридорные пучки круглоребристых труб [8, 9].

На рис. 10 для сравнения нанесены кривые поправки на малорядность $C_z' = f(z_2)$ для коридорных пучков круглых труб с шайбовым и спирально-ленточным оребрением из [5] (кривая 4) и [8, 9] (кривая 5). Как видно из рисунка при сохранении общей тенденции роста величины C_z' с уменьшением z_2 наблюдается заметное отклонение обобщающей кривой 4 от нормативной зависимости (кривая 5), которая получена в работе [10] только в графическом виде. Нормативная кривая 5 располагается значительно выше нормативной кривой 3, что не соответствует характеру изменения величины Еи, по глубине трубных пакетов с коридорной компоновкой. В этом случае с ростом числа поперечных рядов в области $1 \le z_2 \le 6$ величина Еu₀ должна падать быстрее, чем падает Еu₀ в случае шахматной компоновки при прочих равных условиях. Кроме того, значения этих вели• Входные ряды существенно влияют на интенсивность теплообмена и аэродинамическое сопротивление пучков. Это влияние проявляется тем больше, чем меньше число поперечных рядов труб в пучке.

• При расчете и проектировании малорядных трубчато-ребристых теплообменников, например калориферов, теплообменных секций ABO и др. неучет влияния входных рядов труб может привести к занижению поверхности нагрева и сопротивления пучка, что в свою очередь влечет к росту температуры внутреннего теплоносителя на выходе (при его охлаждении), неправильному выбору тяго-дутьевых устройств или работе их не в оптимальном режиме и к снижению надежности теплообменного аппарата в целом.

• Величину поправки *C*_z, учитывающую влияние на теплообмен числа поперечных рядов плоско-овальных труб с неполным оребрением для шахматной компоновки, предлагается определять по формуле (3), для коридорной – по (4).

• Входные ряды шахматных пучков плоско-овальных труб не влияют на аэродинамическое сопротивление пучка, поправка при этом равна 1.

• Величину поправки C_z' , учитывающей влияние на сопротивление числа поперечных рядов плоско-овальных труб с неполным оре-

брением для коридорной компоновки, предлагается определять по зависимости (8).

ЛИТЕРАТУРА

1. Письменний С.М., Терех О.М., Рогачов В.А., Бурлей В.Д. Теплообмінна труба. Деклараційний патент на корисну модель. Україна. №4871. 15.02.2005. Бюл. № 2.

2. Письменний С.М., Терех О.М., Рогачов В.А., Бурлей В.Д. Теплообмінна труба. Патент на корисну модель. Україна. № 25025 25.07.2007. Бюл. №11.

3. *Письменный Е.Н.* Новые эффективные развитые поверхности теплообмена для решения задач энерго-и ресурсосбережения // Пром. теплотехника. – 2007. – Т.29, №5. – С. 7-16.

4. Багрий П.И, Терех А.М., Рогачев В.А. Сравнение тепловой эффективности шахматных пучков поперечно-оребренных труб различного профиля // Восточно-Европейский журнал передовых технологий. – 2007. – №6/5 (30). – С. 51-56.

5. Письменный Е.Н. Теплообмен и аэроди-

намика пакетов поперечно-оребренных труб.-Киев: Альтерпрес, 2004. – 244 с.

6. *Письменный Е.Н., Терех А.М.* Теплообмен малорядных пучков поперечно-оребренных труб // Пром. теплотехника. – 1991. – Т.13, №3. – С.55-60.

7. Кунтыш В.Б., Кузнецов Н.М. Тепловой и аэродинамический расчеты оребренных теплообменников воздушного охлаждения // С-Пб.: Энергоатомиздат. Санкт-Петерб. отд., 1992. – 280 с.

8. *Аэродинамический расчет* котельных установок (Нормативный метод) /под ред. С.И. Мочана. Изд.3-е. – Л.: Энергия, 1977. – 256 с.

9 *РТМ 108..030.140-87* Расчет и рекомендации по проектированию поперечно-оребренных конвективных поверхностей нагрева стационарных котлов. – М.: Минэнергомаш – 1988. – 30 с.

10. *Юдин В.Ф., Тохтарова Л.С.* Сопротивление пучков ребристых труб при поперечном омывании потоком // Энергомашиностроение. – 1974. – №6. – С. 30-32.

Получено 17.12.2009 г.