УДК 681.122

Тонконогий Ю¹., Пядишюс А.¹, Тонконоговас А.¹, Круковский П.Г².

¹Литовский энергетический институт ²Институт технической теплофизики НАН Украины

ОТКЛИК И ДИНАМИЧЕСКАЯ ПОГРЕШНОСТЬ ТУРБИННОГО СЧЕТЧИКА ГАЗА ПРИ ПУЛЬСАЦИЯХ ПОТОКА ПО СЛОЖНЫМ ЗАКОНАМ

Розроблений нами метод, який раніше застосовувався для числового моделювання відгуку і динамічної похибки турбінного лічильника газу при простих законах пульсації потоку, на цей раз використаний для близьких до практики складних законів пульсації.

Разработанный нами метод, ранее примененный для численного моделирования отклика и динамической погрешности турбинного счетчика газа при простых законах пульсации потока, на этот раз использован для случая близких к практике сложных законов пульсации. The method we previously applied for numerical simulation of the response and dynamic error of the turbine gas meter with a simple law of flow pulsation, this time used to closed to practice the complex laws of pulsation.

f-частота пульсации;

Q – текущий расход;

 \overline{Q} – безразмерный расход, $\overline{Q} \equiv Q/Q_{cp}$;

q – мгновенное показание ТСГ;

 $\Delta \overline{q} = (\overline{q}_{_{Makc}} - \overline{q}_{_{Muh}})/2$ – безразмерное показание ТСГ:

 $\Delta \overline{q} = (\overline{q}_{Makc} - \overline{q}_{Muh})/2$ – безразмерная амплитуда показаний ТСГ;

 $\Delta Q \equiv (Q_{MAKC} - Q_{MUH})/2$ – амплитуда пульсации расхода;

 $\Delta \vec{Q} \equiv \Delta Q / Q_{cp}$ – безразмерная амплитуда;

Введение

Турбинные счетчики газа (ТСГ) широко применяются для учета природного газа. Для них характерна т.н. динамическая погрешность, возникающая в пульсирующем потоке из-за инерции ротора счетчика. Мгновенная частота вращения отстает от текущего значения расхода. Показания счетчика быстрее приближаются к действительным значениям расхода при увеличении последнего, нежели при его снижении. В результате возникает всегда положительная динамическая погрешность.

Обширные исследования динамической погрешности провели Н. Леманн [1], Р. МакКи [2], Р. Чизрайт [3], В. Ли [4], К. Аткинсон [5]

$\Delta \bar{Q}_y$ – условная безразмерная амплитуда для

расчета уравнения пульсации расхода;

T – показатель инерции ТСГ;

t – время;

 Δt_0 – период пульсации расхода;

 $\Delta t_i - \text{шаг во времени;}$

 $\delta = (q_{\rm cp} - Q_{\rm cp})/Q_{\rm cp}$ – динамическая погрешность;

ω – частота вращения ТСГ.

Индексы:

пр – предельный;

ср – средний.

и ряд других ученых, чьи исследования обобщены в документе ИСО [6]. Все до сих пор полученные результаты относятся к простейшим законам пульсации – прямоугольному, синусоидальному и треугольному. Однако на практике ТСГ обычно работают в условиях пульсаций по сложным законам, как это показано Р. Чизрайтом, исследовавшим пульсации скорости в газопроводе вблизи регулятора давления [7]. Иногда встречаются пульсации, когда периодически меняется направление течения потока.

Разработанный нами метод [8], ранее примененный для численного моделирования отклика и динамической погрешности ТСГ при простых законах пульсации потока [9,10], на этот раз использован для расчетов при различных сложных законах пульсации.

Основы метода

1. Любая произвольно заданная кривая изменения расхода во времени заменяется ступенчатой линией вокруг заданной кривой, как показано на рис. 1.

2. На каждом шаге времени Δt_i для расчета показания счетчика применяется уравнение его отклика на прямоугольное (ступенчатое) изменение расхода. Как показывают эксперименты, для ТСГ этот отклик происходит по экспоненциальному закону [11].

Рис. 1. Замена произвольно заданной кривой изменения расхода (1) ступенчатой линией (2) с длиной ступеньки ∆t_..

3. Основным и единственным определяющим процесс параметром является показатель инерции ТСГ *T*, иногда называемый постоянной времени инерции и сравнительно несложно определяемый экспериментально [11].

4. Метод позволяет отказаться от используемого до сих пор традиционного дифференциального уравнения вращения счетчика, в которое входит ряд трудно определяемых параметров. Совокупность этих параметров заменяется единственным параметром *T*.

5. Метод является универсальным, он применим не только к счетчикам газа, но и к измерителям расхода и счетчикам различных жидкостей, не только вращающимися, но и с другими движущимися чувствительными элементами. Он в своей основе также применим к некоторым измерителям других параметров, например, температуры, давления и скорости потока. Единственным ограничением метода является требование, чтобы изменение показаний измерителя было регулярным с самого начала процесса, т.е. закономерность отклика должна быть постоянной.

Математическая модель

Для расчетов можно либо использовать метод конечных разностей, либо решать дифференциальное уравнения процесса [8]. В данном случае применен первый метод, имеющий некоторые преимущества в части обработки, обобщения и представления результатов расчетов.

Искалось распределение частоты вращения ω ротора ТСГ на отрезке времени, равном периоду пульсации потока $\Delta t_0 = 1/f$. Этот период был поделен на достаточно большое число *n* отрезков времени Δt_i :

$$\Delta t_i = \Delta t_0 / n. \tag{1}$$

На каждом таком *i*-ом отрезке (*i*-ом шаге во времени) конечная частота вращения $\omega_{\text{кон}i}$ определяется по известной из расчета на предыдущем (*i*-1)-ом шаге конечной частоте $\omega_{\text{кон}(i-1)}$, она же начальная $\omega_{\text{нач}i}$ для данного *i*-го шага, по уравнению:

$$\omega_{\text{кон}i} = \omega_Q + (\omega_{\text{Hav}i} - \omega_Q) \cdot \exp(-\Delta t_i/T).$$
(2)

Здесь ω_Q – частота вращения, соответствующая текущему расходу Q и определяемая с учетом коэффициента импульса $k_{\rm имп}$ по уравнению

$$\omega_Q = Q/k_{_{\rm WM\Pi}}.$$
(3)

Показатель инерции ТСГ *Т* определяется на каждом шаге в зависимости от текущего расхода по уравнению [10]

$$T = C_T / Q_i^m. \tag{4}$$

Параметры C_T и *m* в уравнении (4) определяются для данного ТСГ экспериментальным путем [10].

Как граничное условие используется равенство частот вращения на концах отрезка Δt_0 .

$$\omega_{\text{Hav}1} = \omega_{\text{KOH}n} \,. \tag{5}$$

Расчетные законы пульсации расхода

Расчеты были проведены для нескольких сложных законов пульсаций, близких к встречающимся на практике [7]. Каждый такой закон получен согласно принципу Фурье путем суммирования элементарных косинусоидальных законов с различными амплитудами и частотами. В табл. 1 приведены уравнения пульсации расхода и форма импульса для всех пяти исследованных законов. Здесь же для этих законов приведено рассчитанное значение коэффициента C_a , который в уравнении (6) характеризует предельное значение динамической погрешности.

Расчет отклика на пульсацию расхода, т.е. изменение во времени показаний ТСГ; динамической погрешности и амплитуды пульсации показаний проведены для ТСГ типа MZ100 с металлической крыльчаткой, DУ = 100 мм, при среднем расходе 400 м³/час в широких диапазонах частоты f и амплитуды $\Delta \overline{Q}$ пульсаций.

№ за- кона	Уравнение закона пульсации	Форма импуль- са	Коэф. <i>С_а</i> в уравне- нии (6)
1.	$\overline{Q} = 1 + \Delta \overline{Q}_{y} (\cos(2\pi tf) - 0, 25 \cdot \cos(4\pi tf) + 0, 09 \cdot \cos(6\pi tf) - 0, 05 \cdot \cos(12\pi tf) + 0, 07 \cdot \cos(14\pi tf)) - 0, 04 \cdot \cos(18\pi tf))$	R	42,71
2.	$\overline{Q} = 1 + \Delta \overline{Q}_{y} \left(\frac{2}{3} \Delta \cos(2\pi t f) + \frac{1}{2} \Delta \cos(4\pi t f) - \frac{1}{4} \Delta \cos(8\pi t f) \right)$	W	48,93
3.	$\overline{Q} = 1 + \Delta \overline{Q}_{y} (4/5\cos(2\pi tf) - 1/4\cos(8\pi tf) + 1/7\cos(16\pi tf) - 1/12\cos(20\pi tf))$	n r NV	38,26
4.	$\overline{Q} = 1 + \Delta \overline{Q}_{y}(\cos(2\pi tf) - 0,35\cos(6\pi tf) + 0,25\cos(28\pi tf) - 0,09\cos(46\pi tf) - 0,05\cos(96\pi tf) + 0,07\cos(120\pi tf)) - 0,04\cos(150\pi tf))$		35,60
5.	$\overline{Q} = 1 + \Delta \overline{Q}_{y}(\cos(2\pi tf) - 0, 25\cos(6\pi tf) + 0, 09\cos(10\pi tf) - 0, 05\cos(24\pi tf) + 0, 07\cos(30\pi tf)) - 0, 04\cos(38\pi tf))$	M	59,86

Табл. 1. Исследованные законы пульсаций

Отклик ТСГ

Результаты расчета отклика ТСГ приведены на рис. 2. При достаточно малых частотах пульсации (f = 0,001...0,01 Гц) инерционность счетчика практически не проявляется, и кривая изменения частоты вращения ротора ТСГ (показания счетчика) достаточно точно совпадает с частотой пульсации расхода. С увеличением частоты пульсации показания счетчика начинают все больше отставать от фактического моментного расхода. При всех законах пульсации потока ТСГ с увеличением частоты пульсации сначала перестает реагировать на составляющие пульсации с небольшой амплитудой, потом на составляющие со все большей амплитудой.

С увеличением частоты пульсации потока амплитуда пульсации показаний ТСГ уменьшается, наблюдается смещение этой пульсации

Рис. 2. Отклик ТСГ МZ100 с металлической крыльчаткой на пульсации расхода. I - V – законы пульсаций в соответствии с табл. 1; ∆ = 0,25; a, б, в, г, д – f = 0,01; 0,05; 0,2; 1; 10 Гц соответственно.

по фазе, а ее закон все более приближается к косинусоидальному. При достаточно больших частотах пульсации (порядка 1...10 Гц) из-за инерционности ТСГ практически не отслеживает пульсации потока, и частота его вращения остается постоянной, при этом превышая частоту, соответствующую среднему расходу. Это превышение определяет динамическую погрешность ТСГ.

Динамическая погрешность и амплитуда пульсации показаний ТСГ

Зависимость динамической погрешности и амплитуды пульсации показаний ТСГ MZ100 от частоты пульсации расхода при разных амплитудах пульсации и разных величинах расхода представлены на рис. 3 и 4 для исследованных законов пульсации из табл. 1.

Характер изменения динамической погреш-

ности качественно такой же, как в случаях простых законов пульсации. При достаточно малых частотах пульсации расхода, когда инерционность счетчика не проявляется, динамическая погрешность близка к нулю. С увеличением частоты пульсации динамическая погрешность возрастает с возрастающим темпом. При достижения некоторого значения частоты темп роста погрешности достигает своего максимального значения, после чего с дальнейшим ростом частоты начинает уменьшаться. Динамическая погрешность при этом продолжает расти до достижения при частоте порядка (1...10) Гц своего наибольшего предельного значения δ_{np} , далее оставаясь неизменной. Это происходит в то же время, когда частота вращения ротора ГСТ перестает пульсировать и зависить от частоты пульсаций. Т.о., зависимости динамической погрешности и отклика ТСГ от частоты пульса-

Рис. 3. Зависимость динамической погрешности ТСГ МZ100 от частоты пульсации; а, б, в, г, д – законы пульсации 1 - 5 по табл. 1; I, II, Ш – расход 10, 200, 400 м³/час; $1 - 3, 4 - 6, 7 - 9 - \Delta \overline{Q}_y = 0,25; 0,35; 0,5$ соответственно.

Рис. 4. Зависимость амплитуды пульсации показаний ТСГ MZ100 от частоты пульсации; обозначения те же, что и на рис. 3.

ции соответствует одна другой. Характер этих зависимостей точно тот же, что и для простых законов пульсации.

Также соответствуют одна другой зависимости динамической погрешности и амплитуды пульсации показаний от частоты пульсации, как это следует из совместного рассмотрения рис. 3 и 4. Зависимость суммы ($\Delta \overline{q} / \Delta \overline{Q} + \delta / \delta_{np}$) двух параметров в безразмерном виде от частоты для двух сложных законов представлена на рис. 5.

При достаточно малых и достаточно больших значениях частоты сумма равна единице, при промежуточных – отклоняется до 20% в ту или иную сторону, в зависимости от закона пульсации.

Предельная величина динамической погрешности

Предельная величина динамической погрешности δ_{np} зависит только от амплитуды пульсации расхода $\Delta \overline{Q}$:

$$\delta_{\rm np} = C_a \Delta \bar{Q}^2. \tag{6}$$

Константа C_a в этом уравнении зависит только от закона пульсации. Для простых законов пульсации – прямоугольного, косинусоидального и треугольного C = 100, 50 и 33,5 соответственно. Значения C_a^a для исследованных сложных законов пульсации приведены в табл. 1. Они близки к значениям C_a для косинусоидального и треугольного законов.

Рис. 5. Зависимость суммы динамической погрешности и амплитуды пульсации показаний от частоты пульсации. 1 и 2 – законы пульсации 1 и 4 соответственно.

Выводы

1. Ранее разработанный нами метод численного моделирования отклика и динамической погрешности ТСГ применен для близких к практике сложных законов пульсации.

2. Динамическая погрешность и амплитуды пульсации отклика ТСГ связаны между собой. Характер зависимостей для них в случаях сложных законов пульсаций тот же, что и простых.

3. Динамическая погрешность может быть рассчитана по приведенному методу для любых законов пульсации в различных, в том числе полевых условиях.

ЛИТЕРАТУРА

1. *Lehmann N.* Dynamisches Verhalten von Turbinenradgaszahlern // Das Gas und Wasserfach –GWF. – 131. – 1990, Nr.4. – pp. 160–167.

2. *McKee R. J.* Pulsation effects on singleand two rotor turbine meters, Flow Meas. Instrum. 1992, 3 No 3.– pp. 151–166.

3. *Cheesewright R., Bisset D., Clark C.* Factors which influence the variability of turbine flow-

meter signal characteristics, Flow Meas. Instrum. 1998, 9 No 2.– pp. 83–189.

4. Lee B., Cheesewright R., Clark C. The dynamic response of small turbine flowmeters in liquid flows, Flow Meas. Instrum. 2004, 15 No 5-6, pp. 239–248.

5. *Atkinson K. N.* A software tool to calculate the overregistration error of a turbine meter in pulsating flow, Flow Meas. Instrum. 1992, 3 No 3. – pp. 167–172.

6. *ISO/TR 3313:1998* Measurement of fluid flow in closed conduits – Guidelines on the effects of flow pulsations on flow-measurement instruments.

7. *Cheesewright R. et al.* Field tests of correction procedures for turbine flowmeters in pulsate flows, Flow Meas. Instrum. 1996, 7.– No 1.– pp. 7–17.

8. Тонконогий Ю. Новое уравнение вращения турбинного счетчика газа в нестационарных потоках // Энергетика. ISSN 0235-7208.– 2009, Т. 55.– № 3. – С. 172–177.

9. *Tonkonogij J., Pedišius A.* Numerical simulation of the turbine gas meters behavior in the pulsing flow // Journal of heat transfer research. ISSN 1064-2285, 2008. – Vol.39. – No 7. pp. 559–570.

10. Tonkonogij J., Pedišius A., and Stankevičius A. The New Semi-Experimental Method for Simulation of Turbine Flow Meters Rotation in the Transitional Flow // Proceedings of World Academy of science, engineering and technology – ISSN 1307-6884. Paris.– Vol. 30.– July 2008.– pp. 208–213.

11. Тонконогий Ю. и др. Динамическая погрешность турбинных счетчиков газа в пульсирующем потоке // Промышленная те-плотехника. ISSN 0204-3602. 2008.-Т.30.-№4.-С. 85-93.

Получено 01.03.2010 г.