УДК 536.24:533 Фиалко Н.М.^{1,2}, Прокопов В.Г.¹, Бутовский Л.С.², Шеренковский Ю.В.¹, Меранова Н.О.¹, Алёшко С.А.¹, Полозенко Н.П.¹

¹Институт технической теплофизики НАН Украины ²Национальный технический университет Украины «КПИ»

ОСОБЕННОСТИ ТЕЧЕНИЯ ТОПЛИВА И ОКИСЛИТЕЛЯ ПРИ ЭШЕЛОНИРОВАННОМ РАСПОЛОЖЕНИИ СТАБИЛИЗАТОРОВ ПЛАМЕНИ

Представлено результати комп'ютерного моделювання течії палива та окислювача в ешелонованій решітці плоских стабілізаторів полум'я. Викозіставлення характеринано стик течії при ешелонованому та відповідному неешелонованому розташуванні стабілізаторів. Наведено дані порівняльного аналізу картини течії за наявності і відсутності струменевої подачі природного газу в потік, що зно-СИТЬ.

Представлены результаты компьютерного моделирования течения топлива и окислителя в эшелонированной решетке плоских стабилизаторов пламени. Выполнено сопоставление характеристик течения при эшелонированном и соответствующем неэшелонированном расположении стабилизаторов. Приведены данные сравнительного анализа картины течения при наличии и отсутствии струйной подачи природного газа в сносящий поток воздуха. Results of computer modeling of fuel and oxidizer current in an echeloning lattice of flat flame stabilizers are presented. Comparison of characteristics of a current in echeloning and nonecheloning arrangements of stabilizers is fulfilled. The data on the comparative analysis of a flow picture with and without natural gas jet supplying in blowing off air stream are shown.

- *B*_{ст} ширина стабилизатора;
- *d* диаметр газоподающих отверстий;
- *D_i* коэффициент диффузии *i*-го компонента;
- *k* кинетическая энергия турбулентных пульсаций;
- k_{f} коэффициент загромождения проходного сечения канала, $k_{f} = B_{cr}/H$;
- Н-шаг расположения стабилизаторов;
- \overline{J}_{i} диффузионный поток *i*-го компонента;
- L длина;
- *N*-число компонентов смеси;
- *p* статическое давление;
- *S* шаг расположения газоподающих отверстий;
- *S_{ij}* компоненты тензора скоростей деформаций;
- Sc_{t} турбулентное число Шмидта;

Введение

Различным аспектам микрофакельного сжигания топлива с формированием факела за системой стабилизаторов пламени в последний период посвящается значительное количество исследований (см., например, [1-6]). При этом Ти – степень турбулентности;

- V-скорость;
- *Y_i* массовая доля *i*-го компонента;
- α коэффициент избытка воздуха;
- δ_{ii} символ Кронекера;
- μ, μ, μ_т молекулярная и турбулентная динамическая вязкость;
- ρ плотность среды;
- τ тензор напряжений.

Индексы верхние:

- в воздух;
- г газ.

Индексы нижние:

- вх вход;
- от зона обратных токов;
- ст стабилизатор;

тах – максимальное значение.

большое внимание уделяется анализу различных способов воздействия на протекание рабочих процессов в микрофакельных конструкциях стабилизаторного типа. Одним из таких способов является применение эшелонированного расположения стабилизаторов в решетке.

Особый интерес представляет рассмотрение ситуации, когда указанное эшелонирование используется для обеспечения относительно короткого факела при горении. Как известно, в горелочных устройствах стабилизаторного типа уменьшение длины факела может быть достигнуто за счет увеличения коэффициента загромождения k_e проходного сечения канала. В этом случае при фиксированном общем расходе природного газа уменьшается его расход, приходящийся на один стабилизатор, и соответственно, сокращается длина факела. Однако, при достаточно больших значениях k_c и расположении стабилизаторов без эшелонирования возникает так называемое спонтанное нарушение симметрии течения, которое носит случайный характер и в большой мере непредсказуемо, что может приводить к существенной неравномерности выгорания топлива по длине огнетехнического устройства и значительному увеличению протяженности зоны горения. При наличии же эшелонирования стабилизаторов отмеченная непредсказуемость течения устраняется. В такой физической обстановке длины зон обратных токов в ближнем следе за эшелонированными стабилизаторами и, в целом, поле скоростей характеризуются вполне определенной регулярной неравномерностью. Как следствие, в этом случае обеспечивается возможность получения требуемой относительно небольшой длины факела.

С другой стороны эшелонирование стабилизаторов может быть использовано в качестве средства воздействия на формирование необходимого поля температур в зоне горения в целом и, прежде всего, в поперечном сечении потока непосредственно за горелочным устройством. В зависимости от требований, предъявляемых к картине температурного поля продуктов сгорания, могут быть реализованы различные конструктивные схемы эшелонирования стабилизаторов, а именно, их полное или частичное эшелонирование. Так, например, последнее применимо для ситуаций, когда возникает необходимость обеспечения повышенного уровня температур в зонах огнетехнического устройства, находящихся в непосредственной близости от крайних стабилизатор вешетки. В этом случае указанный крайний стабилизатор должен быть смещен вниз по потоку с тем, чтобы в его ближнем следе имел место механизм горения, близкий к кинетическому, и соответственно, реализовывался короткий высокотемпературный факел. В остальных же несмещенных стабилизаторах такой решетки может быть обеспечен промежуточный механизм горения с преобладанием диффузионного и, соответственно, более длинный факел со смещенной вниз по потоку зоной максимальных температур.

Следует отметить, что в качестве средства формирования требуемых закономерностей температурных полей продуктов сгорания без эшелонирования стабилизаторов может быть также использовано эшелонированное расположение газоподающих отверстий. Однако, в этом случае остается нерешенной отмеченная выше проблема спонтанного нарушения симметрии течения, характерного для больших значений коэффициента загромождения k_{ϵ} .

Таким образом, ввиду широких возможностей использования эшелонированных решеток стабилизаторов пламени как средства воздействия на различные характеристики рабочих процессов в рассматриваемых горелочных устройствах актуальными являются исследования картины течения в данной физической ситуации.

Постановка задачи и методика проведения исследований

Настоящая работа посвящена математическому моделированию структуры течения топлива и окислителя при эшелонированном расположении стабилизаторов пламени в горелочных устройствах с подачей газа внедрением в воздушный поток через систему отверстий, находящихся на боковых плоскостях стабилизаторов (рис. 1). При этом в задачу исследования входило проведение сравнительного анализа картины течения при эшелонированном и соответствующем неэшелонированном расположении стабилизаторов. Подлежали также сопоставлению физические ситуации, отвечающие условиям наличия и отсутствия струйной подачи газа.

Математическая модель исследуемого процесса представима в виде

$$\nabla \cdot \left(\rho \vec{V} \vec{V} \right) = -\nabla p + \nabla \cdot \vec{\tau}, \qquad (1)$$

$$\nabla \cdot \left(\rho \vec{V} \right) = 0 , \qquad (2)$$

$$\nabla \cdot \left(\rho \vec{V} Y_i \right) = -\nabla \cdot \vec{J}_i, i = 1, 2, \dots, N-1,$$
(3)

где $\vec{J}_i = -\left(\rho D_i + \frac{\mu_i}{Sc_i}\right) \nabla Y_i$; компоненты тензора напряжений $\tau_{ij} = 2\left(\mu + \mu_T\right)S_{ij}$ –

тензора напряжений $\hat{\tau}_{ij} = 2(\mu + \mu_T)S_{ij} - \frac{2}{2}\left[(\mu + \mu_T)\nabla \cdot \vec{V} + \rho \cdot k\right]\delta_{ij}$.

Замыкание системы уравнений (1) - (3) осуществлялось с применением RNG *k*- ϵ модели турбулентности, обоснование использования которой базировалось на сравнении с результатами соответствующих экспериментальных данных. Для реализации решения сформулированной задачи использовался пакет прикладных программ FLUENT.

Расчетная область включала в себя два характерных элемента стабилизаторов, смещенных относительно друг друга по потоку. Геометрические характеристики каждого из этих элементов следующие: длина $L_3 = L_{\rm K}$, высота $H_3 = H/2$, ширина $S_3 = S/2$.

⁹ На боковых границах расчетной области задавались условия симметрии, а на омываемых поверхностях элементов двух рассматриваемых стабилизаторов – условия прилипания. Во входном сечении канала скорость воздуха V_{BX}^{B} принималась постоянной, а степень турбулентности равной Tu_{BX}^{B} , в выходном сечении ставились «мягкие» граничные условия. Что же касается газоподающих отверстий, то здесь задавались скорость V_{BX}^{Γ} и степень турбулентности Tu_{BX}^{Γ} .

Рис. 1. Схема эшелонированного расположения стабилизаторов в стабилизаторной решетке: 1 – плоский канал; 2 – стабилизатор; 3 – газоподающее отверстие.

Результаты исследований и их анализ

Рассмотрим вначале результаты исследований, касающихся сопоставления особенностей течения в эшелонированной решетке стабилизаторов при наличии и отсутствии струй газа, внедряемых в сносящий поток. Приводимые далее в качестве характерного примера данные отвечают следующим значениям исходных параметров: $B_{\rm cr} = 0,03$ м; $L_{\rm cr} = 0,22$ м; $L_{\rm k} = 0,665$ м; $L_{\rm n} = 0,05$ м; расстояние между срывной кромкой стабилизатора и центрами газоподающих отверстий для первого и второго по потоку ста-

билизатора составляло 0,025 м и 0,12 м соответственно; $L_{\rm CM} = 0,095$ м; шаг расположения стабилизаторов H = 0,0666 м, что отвечает коэффициенту загромождения проходного сечения канала $k_f = 0,45$; d = 0,002 м; S/d = 6,0; коэффициент избытка воздуха $\alpha = 1,1$; скорость воздуха на входе в канал $V_{BX}^{B} = 7,0$ м/с; скорость газа на входе в газоподающие отверсти $V_{BX}^{\Gamma} = 86,0$ м/с.

Струйная подача газа обусловливает существенную трехмерность течения и, соответственно, его более сложный характер в целом. Как видно из рис. 2, наибольшие отличия в закономерностях течения для сопоставляемых ситуаций имеют место в подобласти, непосредственно прилежащей к газоподающим отверстиям. Что же касается зон циркуляции в ближнем следе за стабилизаторами, то здесь для обоих рассматриваемых случаев картины течения в качественном отношении оказываются весьма сходными. Однако, количественные характеристики течения в этих зонах могут заметно отличаться. При наличии струйной подачи газа в основной части зон рециркуляции увеличивается степень разрежения. Соответственно этому уменьшаются длины зон обратных токов L_{ot} и возрастают максимальные скорости V_{max} в данных зонах. Это обстоятельство иллюстрируют результаты математического моделирования, приведенные в табл. 1. Здесь индекс *i* относит величины соответственно к первому (*i* = 1) и второму (*i* = 2) по ходу течения стабилизатору; значение *i* = 0 отвечает ситуации отсутствия взаимного смещения стабилизаторов.

Как видно из таблицы, указанный эффект изменения величин L_{ot} и V_{max} в связи со струйной подачей газа проявляется в несколько большей мере для второго по ходу течения стабилизатора. При этом величина изменения V_{max} (ее возрастание) оказывается большей, чем изменение L_{ot} (ее уменьшение) как для первого, так и для второго по потоку стабилизаторов. Так, значения L_{ot} и V_{max} изменяются при наличии струй газа, соответственно, в 1,24 и 1,38 раза для первого стабилизатора и в 1,3 и 1,46 раза для второго по ходу течения стабилизатора.

Рис. 2. Картина линий тока для эшелонированного расположения стабилизаторов при наличии (а) и отсутствии (б) струйной подачи газа.

	Наличие струйной подачи газа			Отсутствие струйной подачи газа		
i	0	1	2	0	1	2
L _{от_i} ,10 ⁻³ м	60,9	57,2	60,0	71,1	71,2	77,8
V _{max_i} , м/с	3,24	3,37	2,54	2,05	2,44	1,74

Табл. 1. Протяженность зон обратных токов L_{ot} и значения максимальных по абсолютной величине скоростей V_{max} в этих зонах при наличии и отсутствии эшелонированного расположения стабилизаторов

Анализ приведенных в табл. 1 данных свидетельствует также о том, что в обеих рассматриваемых ситуациях, отвечающих наличию и отсутствию струйной подачи газа, общие закономерности, касающиеся соотношения характеристик течения за первым и вторым по потоку стабилизаторами, оказываются одинаковыми. А именно, для первого из них несколько меньшими являются протяженности зоны обратных токов L_{or} при больших значениях V_{max} .

Остановимся далее вкратце на сопоставлении данных, отвечающих эшелонированному и неэшелонированному расположению стабилизаторов в условиях наличия струйной подачи газа. Здесь при отсутствии смещения стабилизаторов друг относительно друга расстояние L₁ между срывной кромкой и газоподающими отверстиями составляло 25.10-3 м. Это отвечает местоположению отверстий для первого по потоку стабилизатора в эшелонированной стабилизаторной решетке. Исследования показали, что, несмотря на существенные отличия сопоставляемых постановок задачи, тем не менее, картина течения в ближнем следе за первым по потоку стабилизатором эшелонированной решетки и при отсутствии эшелонирования оказывается весьма близкой как в качественном, так и в количественном отношении (см. данные в табл. 1). По-видимому, это объясняется тем, что при эшелонированном расположении стабилизаторов струи газа как бы экранируют гидродинамическое воздействие второго по потоку стабилизатора на картину течения в зоне циркуляции первого стабилизатора. Таким образом, здесь наблюдается эффект относительной локализации влияния особенностей течения вблизи второго стабилизатора на характеристики течения в закормовой зоне первого стабилизатора.

Причем, что следует особо подчеркнуть, данный эффект, как очевидно, может проявиться только при определенном сочетании условий однозначности и, в первую очередь, при определенных соотношениях значений скоростей V_{BX}^{B} и V_{BX}^{Γ} .

Выводы

В работе представлены результаты математического моделирования картины течения топлива и окислителя в горелочных устройствах стабилизаторного типа при эшелонированном расположении стабилизаторов пламени. При этом:

1. Выполнен сравнительный анализ характеристик течения в условиях, когда имеет место и отсутствует струйная подача природного газа в сносящий поток воздуха. Установлено, что при наличии такой подачи в зоне циркуляции за стабилизаторами увеличивается степень разрежения и, как следствие, уменьшаются протяженности L_{or} этих зон и возрастают максимальные по абсолютной величине значения скорости V_{max} в них. Показано также, что для обеих рассматриваемых ситуаций длины зон циркуляции L_{or} оказываются меньшими для первого по потоку стабилизатора при существенно больших по абсолютной величине значениях V_{max} .

2. Проведено сопоставление данных математического моделирования для эшелонированных и неэшелонированных стабилизаторных решеток при наличии струйной подачи природного газа. Показано, что при определенном сочетании параметров характеристики течения в зоне обратных токов первого по потоку стабилизатора в эшелонированной решетке являются близкими к условиям, когда такое эшелонированное расположение отсутствует. То есть, обнаружено явление относительной пространственной локализации влияния специфики течения в подобласти, прилежащей ко второму смещенному вниз по потоку стабилизатору, на картину течения в закормовой области первого стабилизатора. Предложена интерпретация отмеченного явления, согласно которой в случае эшелонированного расположения стабилизаторов наблюдается эффект частичного аэродинамического экранирования газовыми струями влияния второго по потоку стабилизатора на характеристики циркуляционной зоны первого стабилизатора.

ЛИТЕРАТУРА

1. Фиалко Н.М., Бутовский Л.С., Прокопов В.Г., Шеренковский Ю.В., Меранова Н.О., Алёшко С.А., Полозенко Н.П. Компьютерное моделирование процесса смесеобразования в горелочных устройствах стабилизаторного типа с подачей газа внедрением в сносящий поток воздуха // Пром. теплотехника. – 2011, №1. – С. 51-56.

2. Фиалко Н.М., Бутовский Л.С., Прокопов В.Г., Грановская Е.А., Шеренковский Ю.В., Алёшко С.А., Коханенко П.С. Особенности обтекания плоских стабилизаторов ограниченным потоком // Пром. теплотехника. – 2010, № 5. – С. 26-33.

3. *Микулин* Г.А., *Любчик* Г.Н. Аэродинамические характеристики и массообменные свойства трубчатых интенсификаторов горения и стабилизаторов пламени // Энергетика: экономика, технология, экология. – 2004. – Т. 15, № 2. – С. 54-62.

4. Любчик Г.Н., Микулин Г.А., Варламов Г.Б., Марченко Г.С. Использование трубчатой технологии сжигания топлива в аппаратах и системах децентрализованного теплоснабжения // В кн. «Малая энергетика в системе обеспечения экономической безопасности государства» / Под общей ред. Вороновского Г.К., Недина И. В. – К.: Знания Украины, 2006. – С. 139-151.

5. Бутовский Л.С., Грановская Е.А., Фиалко Н.М. Пусковые характеристики горелочных устройств стабилизаторного типа с подачей топлива в сносящий воздушный поток // Технологические системы. – 2010, № 4. – С. 32-37.

6. Фиалко Н.М., Прокопов В.Г., Алёшко С.А., Шеренковский Ю.В., Меранова Н.О., Абдулин М.З., Коханенко П.С. Математическое моделирование структуры течения при микрофакельном сжигании топлива // Мат. XVIII межд. конференции «Проблемы экологии и эксплуатации объектов энергетики». – Ялта, 10-14 июня 2008 г. – Киев, 2008.– С. 112-114.

Получено 09.03.2011 г.