УДК 536.7

Носач В.Г.¹, Шрайбер А.А.², Ярощук В.Г.²

¹ Институт технической теплофизики НАН Украины ² Национальный технический университет Украины «КПИ»

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ИСПОЛЬЗОВАНИЯ ЭНЕРГИИ АТОМНОГО ГЕЛИЕВОГО РЕАКТОРА ПУТЕМ КОНВЕРСИИ ПРИРОДНОГО ГАЗА В ПРОДУКТАХ СГОРАНИЯ

Розроблено нову схему використання енергії атомного гелієвого реактора для конверсії природного газу в продуктах згоряння. Схема дозволяє підвищити ефективність використання енергії на 8,75...16 % (абс.).

Разработана новая схема использования энергии атомного гелиевого реактора для конверсии природного газа в продуктах сгорания. Схема позволяет повысить эффективность использования энергии на 8,75...16 % (абс.). We propose a new scheme of using the energy of a nuclear helium reactor for natural gas reforming in combustion products. The scheme enables one to increase the efficiency of using energy by 8.75 to 16 % (abs.).

- А работа;
- *I* энтальпия;
- *J*-полная энтальпия;
- p давление;
- *Q* теплотворная способность;
- T температура;

В последнее время внимание исследователей привлекают газовые теплоносители для охлаждения активной зоны атомных реакторов (прежде всего диоксид углерода и гелий), которым свойственны благоприятные ядерно-физические и теплофизические характеристики. При этом теплопроводность гелия и интенсивность его теплообмена со стенкой в несколько раз выше по сравнению с другими теплоносителями, что позволяет обеспечить высокую энергонапряженность активной зоны. Кроме того, гелий отличается инертностью и высокой термостойкостью. Однако даже наиболее выгодный, прямой цикл (с расширением горячего гелия после реактора в газовой турбине) [1] имеет недостаточно высокий КПД. На рис. 1 показана принципиальная схема такой установки [1]. После атомного реактора 1 горячий гелий под давлением p_1 подается в газовую турбину 2, где расширяется до некоторого *p*₂, и далее – в теплообменник 3 и холодильник 4. Холодный газ сжимается в компрессоре 5 до p_1 , нагревается в теплообменнике и возвращается в реактор.

β, φ – коэффициенты;
η – КПД установки;
ПС – продукты сгорания;
РТО – реактор-теплообменник;
ТХР – термохимическая регенерация.

Для оценки эффективности этой схемы были проведены термодинамические расчеты в предположении об отсутствии потерь давления и тепла во всех аппаратах и трубопроводах. Внутренний КПД турбины принимался равным 0,92, а компрессора – 0,88. В соответствии с [1, 2] значения p_1 и p_2 принимались равными 5 и 2 МПа соответственно, а температура на выходе из реактора варьировалась в пределах 1000...1200 К. Расчеты показали, что при этих условиях КПД установки по схеме рис. 1 составляет $\eta^{\circ} = 44,28...53,21$ %. При этом следует подчеркнуть, что возможности повышения эффективности газоохлаждаемых реакторов традиционными методами близки к исчерпанию. На наш взгляд, единственный путь решения этой задачи связан с технологией термохимической регенерации (ТХР) – конверсией топлива в продуктах его сгорания за счет энергии, которая вырабатывается атомным реактором. Следует отметить, что технология ТХР позволяет попутно решить и экологические задачи: конвертированное топливо содержит значительное количество Н₂

Рис. 1. Схема газотурбинного цикла АЭС: 1 – атомный гелиевый реактор; 2 – турбина; 3 – теплообменник; 4 – холодильник; 5 – компрессор.

и CO, сжигание которых сопровождается небольшой эмиссией NO_x [3]. Ниже этот вопрос рассматривается на примере природного газа, который предполагается состоящим из чистого метана.

Схема установки для ТХР с использованием атомной энергии приведена на рис. 2. Здесь в отличие от рис. 1 горячий гелий не расширяется в турбине, а отдает тепло в реакторетеплообменнике (РТО) 4, после чего возвращается в атомный реактор 1. Продукты сгорания (ПС) из камеры 2 под давлением р, (индексы соответствуют номерам точек на рис. 2) расширяются в газовой турбине 5 и проходят паросиловую установку 6, после чего определенная часть их сбрасывается в атмосферу. Остальные ПС охлаждаются в холодильнике 7, сжимаются в компрессоре 8 до исходного давления p_3 и затем разделяются на два потока, обозначенные буквами А и Б. Поток А, представляющий собой стехиометрическое количество ПС в реакции конверсии, т.е. $(CO_2+2H_2O+7,52N_2)/3$, смешивается с метаном в смесителе 9 и подается в РТО 4, где и происходит нагрев смеси до температуры T_{12} и реакция конверсии. Другой поток ПС (Б) в количестве $\beta(CO_2+2H_2O+7,52N_2)/3$, который служит балластом, т.е. охлаждает продукты сгорания в камере 2 до требуемой температуры T_3 , также проходит через аппарат 4. Наконец, стехиометрическое количество воздуха для горения конвертированного топлива $(2O_2+7,52N_2)$ после компрессора 3 тоже нагревается в РТО.

Из рис. 2 следует, что полезная работа установки равна сумме работ турбины 5 и паросиловой установки 6 (A_5 , A_6) за вычетом работ обоих компрессоров (A_3 , A_8). При этом суммарный КПД схемы составит

$$\eta = (A_5 + A_6 - A_3 - A_8)/(Q + \varphi \cdot (I_1 - I_2)),$$

где Q – теплотворная способность метана; $A_6 = (I_4 - I_5) \cdot C$; I – энтальпия; C = 0,4 – КПД паросиловой установки; φ – количество киломолей гелия, приходящихся на 1 киломоль метана.

Для определения эффективности схемы рис. 2 были проведены термодинамические расчеты при тех же условиях, что и ранее. Дополнительно предполагалось, что время пребывания реагирующей смеси в РТО достаточно для достижения равновесного состава

Рис. 2. Схема установки для конверсии топлива за счет энергии атомного реактора: 1 – атомный гелиевый реактор; 2 – камера сгорания; 3 – воздушный компрессор; 4 – реактор-теплообменник; 5 – газовая турбина; 6 – паросиловая установка; 7 – холодильник; 8 – компрессор для ПС; 9 – смеситель.

Рис. 3. Зависимость КПД установки от температуры гелия после реактора: 1 – схема на рис. 2; 2 – схема на рис. 1.

конвертированного топлива, параметры которого определялись по методике [4, 5]. Принималось, что температуры трех потоков после нагрева в аппарате 4 равны: $T_{10} = T_{11} = T_{12}$. Значение параметра β определялось из уравнения теплового баланса камеры сгорания 2, а φ – из баланса реактора-теплообменника 4.

Некоторые результаты двух вариантов расчета при $T_1 = 1200$ и 1000 К представлены в табл. 1. Видно, что предлагаемая схема

Табл. 1. Параметры рабочих	тел
----------------------------	-----

№ точки	и Параметры		№ варианта	
на рис. 2			1	2
1	Температура Т, К		1200	1000
	Энтальпия <i>I</i> , МДж/кмоль Не		20,27	15,58
2	Температура Т, К		873	718,7
	Энтальпия I, МДж/кмоль Не		12,66	9,19
3	Давление <i>р</i> , МПа Температура <i>Т</i> , К Энтальпия <i>I</i> , МДж/кмоль СН ₄		2,24 1600 2557,1	1,5 1600 1629,5
4	Давление <i>р</i> , МПа Температура <i>Т</i> , К Энтальпия <i>I</i> , МДж/кмоль СН ₄		0,1 873,2 1046,7	0,1 944,6 755,9
5	Температура <i>Т</i> , К Энтальпия <i>I</i> , МДж/кмоль CH ₄		400 181,8	400 115,7
6	Температура <i>Т</i> , К Энтальпия <i>I</i> , МДж/кмоль CH ₄		300 9,5	300 5,2
7	Температура <i>T</i> , К Энтальпия <i>I</i> , МДж/кмоль CH ₄		720,5 610,5	649,3 277,0
8	Состав реагирующей смеси, кмоль/кмоль CH ₄	CH ₄	1	1
		CO ₂	0,333	0,333
		H ₂ O	0,667	0,667
		N ₂	2,507	2,507
9	Температура <i>Т</i> , К Энтальпия <i>I</i> , МДж/кмоль CH ₄		763 135,2	682,6 111,1
10	Температура <i>Т</i> , К Энтальпия <i>I</i> , МДж/кмоль CH ₄		1150 256,4	950 192,7
11	Энтальпия <i>I</i> , МДж/кмоль CH ₄		1190,5	456,4
12	Состав конвертированного топлива, кмоль/кмоль CH ₄	CH ₄	0,344	0,708
		N ₂	2,507	2,507
		H ₂	1,737	0,836
		CO ₂	0,102	0,293
		CO	0,888	0,333
		H ₂ O	0,242	0,415

12	Калорийность Q , МДж/кмоль CH_4	947,1	864,2
	Энтальпия <i>I</i> , МДж/кмоль CH ₄	162,9	116,2
	Полная энтальпия Ј, МДж/кмоль	1110,0	980,4
Работа газовой турбины A_5 , МДж/кмоль CH_4		1510,4	873,6
Работа паросиловой установки А ₆ , МДж/кмоль СН ₄		345,9	256,1
Работа компрессоров: А ₃ , МДж/кмоль CH ₄		133,3	109,2
$A_{_{8}}$, МДж/кмоль $\mathrm{CH}_{_{4}}$		601	272,8
Суммарная работа установки $A_{\Sigma},$ МДж/кмоль CH_4		1122	747,7
Коэффициент ф		132,6	68,6
Коэффициент β		11,63	5,96
КПД установки, %		61,96	60,29

Продолжение табл. 1

обеспечивает высокий КПД установки – до 62 %. Характерно, что КПД установки достаточно слабо зависит от исходной температуры T_1 – здесь энергия, поступающая от атомного реактора, используется значительно эффективнее, чем в прямом цикле (рис. 1). Сравнение эффективности схем рис. 1 и 2 показано на рис. 3 – здесь использование атомной энергии для проведения реакции конверсии позволяет повысить КПД установки на 8,75...16 % (абс.)

Выводы

Предложена новая схема использования энергии атомного гелиевого реактора для конверсии природного газа в продуктах сгорания. Термодинамические расчёты показали, что эта схема позволяет существенно (на 8,75...16 % (абс.)) повысить КПД установки по сравнению с традиционными прямыми циклами при одновременном снижении выбросов вредных веществ.

ЛИТЕРАТУРА

1. Пономарев-Степной Н.Н., Проценко А.Н., Гребенник В.Н. и др. Высокотемпературные реакторы с гелиевым теплоносителем (возможности, перспективы применения, технические проблемы) // Атомно-водородная энергетика. – 1978. – № 1. – С. 80–108.

2. Ковецкий В.М., Ковецкая М.М. Направления развития технологий ядерных энергетических установок. Тяжеловодные, жидкометаллические и газовые реакторы // Проблеми загальної енергетики. – 2006. – № 14. – С. 25–34.

3. *Сигал И.Я.* Защита воздушного басейна при сжигании топлива. – Л.: Недра. – 1988. – 293 с.

4. *White W.B., Johnson S.M., Dantzig G.B.* Chemical equilibrium in complex mixtures // J. Chem. Phys. – 1958. – Vol. 28, No. 5. – P. 751–755.

5. *Носач В.Г., Шрайбер А.А.* Повышение эффективности использования биогаза в теплоэнергетических установках с помощью термохимической регенерации // Пром. теплотехника. – 2009. – Т. 31, № 2. – С. 57–63.

Получено 18.10.2011 г.