В.А.Иванов, А.В.Прусов

Морской гидрофизический институт НАН Украины, г.Севастополь

АДАПТАЦИЯ ГИДРАВЛИЧЕСКОЙ МОДЕЛИ ВОДОСТОКА К БАССЕЙНАМ РЕК ДУНАЙ И ДНЕСТР

Гидравлическая модель водостока адаптирована к бассейну рек Дунай и Днестр. По данным орографии, атмосферных осадках или поверхностном стоке она позволяет рассчитывать объемы, расходы и уровни воды с пространственным разрешением 1 км. В модели возможно использование данные об экосистемах на земной поверхности, типах почвы. По данным наблюдений стока оценены среднемесячные величины расходов рек, которые соответствуют наблюдениям, что позволяет применять модель в дальнейших оценках стока, наносов и т.д.

В настоящее время, когда все большее количество глобальных данных о поверхностном стоке, атмосферных осадках и подстилающей поверхности становится доступным, появилась возможность создания гидрологических моделей суши, пригодных как при оценивании характеристик глобальных климатических моделей, речного стока и наносов, так и при прогнозировании региональных аномальных явлений, например, паводков. Для Европы (вспомним катастрофическое наводнение летом 2002 г.) и для Украины, в частности, проблема прогнозирования паводков и наводнений остается актуальной [1, 2].

Влияние речного стока на океаническую циркуляцию, а, следовательно, и на глобальный климат сейчас общепризнанно. Наблюдения [3 – 5] показывают, что поверхностный сток является важной составляющей климатической системы. Он вносит заметный вклад в региональный бюджет влаги из-за роста испарения, уменьшая тем самым сезонный и суточный ход температуры. Важность влияния стока рек на региональный климат подтверждают результаты численного моделирования. Не случайно параметризация подстилающей поверхности в моделях циркуляции атмосферы в последнее время стала дополняться его учетом на подсеточных масштабах [6 – 8]. Последние результаты глобального моделирования климата [8, 9] показали, что учет поверхностных вод улучшает результаты моделирования климата.

Для осмысленного управления речными и прибрежными водами необходимо знание процессов сохранения, размывания и переноса примесей речными стоками в прибрежные воды моря [10]. Получить такие знания возможно только с помощью систематических наблюдений и численного моделирования [11, 12]. Количественные оценки поступления речного стока в Черное море до сих пор являются весьма приблизительными и требуют уточнения. Речные наносы в Черное море и связанные с ними прикладные проблемы размыва берегов и загрязнения моря изучены еще меньше [13].

Таким образом, в настоящее время назрела потребность в модели, с помощью которой можно с достаточной точностью рассчитывать расходы рек в широком диапазоне пространственно-временных масштабов. Основная

© В.А.Иванов, А.В.Прусов, 2005

трудность при таких расчетах выявляется при попытке задать детальные характеристики ложа реки (уклона, ширины русла при разных уровнях воды, коэффициентов шероховатости, распределения глубин, извилистости). Для регионов площадью в сотни квадратных километров такая информация, как правило, отсутствует, а задание этих характеристик из общих соображений уничтожает все тонкости, ожидаемые от гидродинамической модели. Поэтому моделирование переноса в произвольных речных бассейнах в трёх или даже двухмерной гидродинамической постановке не реально, и мы будем применять простую гидравлическую модель.

Описание модели. Модель имитирует гидрологию на поверхности Земли. Реки, озера и болота на карте рассматриваются, как единая, непрерывная гидрологическая сеть, в которой локально возникший сток переносится по поверхности Земли реками, наполняя озера и болота и, в конечном счете, приходит в океан или внутреннее (бессточное) озеро. Исследуемый регион разбиваем на квадратные ячейки (x, y). Их размер диктуется имеющимися данными геоморфологии: среднее для ячейки (x, y) возвышение земной поверхности El(x, y), Fd(x, y) – направление потока из данной ячейки в соседнюю, Fa(x, y) – площадь водосбора для данной ячейки. Кроме того, необходимы данные об атмосферных осадках, испарении, поверхностном и подповерхностном стоках [14, 15].

Для описания поверхностного и подземного переноса в океан или внутреннее озеро применим гидравлическую линейную модель [16], в которой вычисляется перенос воды из ячейки в ячейку по данным о направлении потока Fd(x, y) и коэффициентам релаксации поверхностного, подземного и речного стоков $T_s(x, y, t)$, $T_d(x, y, t)$, $T_r(x, y, t)$. Общий расход воды (M^3/c) в каждой ячейке состоит из суммы: $R_s + R_d + (P_w - E_w) + F_{in}$, где R_s – сток с поверхности (склоновый сток), R_d – сток под поверхностью, ($P_w - E_w$) – осадки минус испарение с поверхности воды, F_{in} – приток из вышележащих ячеек. В каждой ячейке одновременно вычисляются изменения объемов воды в трех условных бассейнах:

– объем V_s (поверхностный бассейн) – в нем учитывается вода, стекающая в данную ячейку по поверхности;

– объем V_d (подповерхностный бассейн) – в нем учитываются грунтовые воды;

– объем V_r (русловый бассейн) – сумма всех потоков из соседних ячеек, плюс локальный поверхностный и подземный стоки, минус излишки после заполнения депрессий (ям).

Каждой ячейке (*x*, *y*) соответствует система из трех обыкновенных дифференциальных уравнений первого порядка:

$$\frac{dV_s}{dt}(x, y, t) + \frac{1}{T_s(x, y, t)} V_s(x, y, t) = R_s(x, y, t),$$
(1)

$$\frac{dV_d}{dt}(x, y, t) + \frac{1}{T_d(x, y, t)} V_d(x, y, t) = R_d(x, y, t),$$
(2)

$$\frac{dV_r}{dt}(x, y, t) + \frac{1}{T_r(x, y, t)}V_r(x, y, t) =$$

$$[1 - a(x, y, t)][\frac{V_s}{T_s} + \frac{V_d}{T_d}] + a(x, y, t)[P_w(x, y, t) - E_w(x, y, t)] + F_{in}(x, y, t),$$

$$V_s(x, y, 0) = V_{0s}(x, y), \quad V_d(x, y, 0) = V_{0d}(x, y), \quad V_r(x, y, 0) = V_{0r}(x, y). \quad (4)$$

где a(x, y, t) – доля площади поверхности ячейки, занятая водой, она может меняться от 1 (озеро, болото или река шириной > 1 км) до 0 (нет воды); T_s , T_d , T_r – характерные времена релаксации поверхностного, подземного и руслового стоков соответственно; P_w , E_w – осадки и испарение с поверхности воды, F_{in} – сумма потоков из соседних ячеек.

Данные для правых частей уравнений (1) – (3), т.е. поверхностный сток, осадки и испарение, в настоящее время стали доступными. Это получаются либо в результате численного моделирования, либо из наблюдений. Точность вычисления величин осадков в глобальных и региональных климатических моделях (и, как следствие, стоков) пока еще мала. Кроме того, при решении задач регионального краткосрочного прогноза необходимо учитывать многие важные детали, например, процессы таяния льда и снега, изменение скоростей подповерхностного стока, некоторые свойства почвы, транспирацию, задержку осадков кронами деревьев и т.д. Т.е. требуется использование той или иной (в зависимости от имеющихся данных гидрометеорологических наблюдений) модели водного баланса [17, 18]. Данные о локальных свойствах подстилающей поверхности с пространственным разрешением 1 км есть, например, в [19].

В принципе, задача (1) – (4) в каждом узле координатной сетки решается аналитически. Для примера рассмотрим задачу

$$\frac{dV(t)}{dt} + \frac{V(t)}{T(t)} = R(t), \ V(0) = V_o.$$
(5)

Ее решением будет: $V(t) = (C + \int R(t)e^{F}dt) \cdot e^{-F}$,

где
$$F'(t) = \frac{1}{T(t)}, \quad C = V_o e^{F(0)} - [\int R(t) e^F dt]_{t=0}$$

Пусть T(x, y, t) = T(x, y). На самом деле, коэффициенты релаксации T_d и T_s , вообще говоря, меняются со временем. Известно, например, что в начале ливня скорость инфильтрации может быть высокой, затем резко спадает, затухая по закону $t^{-0.5}$ [20]. Решением задачи (5) будет

$$V(t) = (C + \int R(t)e^{\frac{t}{T}}dt) \cdot e^{\frac{-t}{T}}, \quad \text{где} \quad C = V_o - \left[\int R(t)e^{\frac{t}{T}}dt\right]_{t=0}$$

Если допустить, что и R(x, y, t) = R(x, y) = const в каждом узле координатной сетки, то

$$V(t) = (V_o - R \cdot T)e^{\frac{-t}{T}} + R \cdot T,$$

394

т.е. изменение за время *t* объема $\Delta V = V(t) - V_o$ в ячейке равно

$$\Delta V = (R \cdot T - V_o)(1 - e^{\frac{-i}{T}}).$$

При больших *t* (для поверхностного стока это часы, для подземного стока – сутки, недели, месяцы) решение становится стационарным.

Время $T_r(x, y, t)$ руслового стока определяется как отношение расстояния D(x, y) между центрами данной ячейки и ячейки, лежащей ниже по течению, к средней скорости течения u(x, y, t) в данной точке, которая вычисляется по формуле Шези [7]:

$$T_{r}(x, y, t) = \frac{D(x, y)}{u(x, y, t)_{cp}},$$

$$u(x, y, t)_{cp} = C(x, y, t)\sqrt{R(x, y, t) \cdot i(x, y, t)},$$
(6)

где

R – гидравлический радиус, *i* – уклон, *C* – коэффициент трения, который зависит от глубины и шероховатости русла. Для его определения можно применять различные эмпирические формулы, в том числе и формулу Н.Н.Павловского [16]

$$C = R^{y} \cdot \frac{1}{n}$$
, где $y = 2,5n^{\frac{1}{2}} - 0,13 - 0,75R^{\frac{1}{2}}(n^{\frac{1}{2}} - 0,1),$ (7)

Коэффициент шероховатости *п* имеется в таблицах М.Ф.Срибного [21], данные о руслах рек – на картах масштаба 1:100000.

Рассмотрим выражение для вычисления средней скорости (6) с коэффициентом трения C по Павловскому (7). Можно показать, что при некотором, достаточно большом значении гидравлического радиуса $R(n) = R_{max}(n)$ (зависящем от коэффициента шероховатости n), скорость $u_{cp}(n)$ достигает максимума и далее медленно стремится к нулю. Т.е. для $R > R_{max}$ формула (6) с коэффициентом Шези по Павловскому (7) не применима (гидравлический радиус R растет, объем воды V в ячейке растет, скорость потока падает). Поэтому после достижения в данной ячейке гидравлическим радиусом (а значит и объемом воды) критического значения R_{max} параметры русла (гидравлический радиус) следует изменить (например, считать русло более широким ($H \ll b$), имитируя выход воды из русла в пойму реки).

Найдем выражение для определения R_{max} . Приравняем нулю производную $\partial u_{cp}/\partial R$ из выражения (6), получим

$$\frac{\partial}{\partial t}(R^{A-B\sqrt{R}}) = 0, \quad \text{где } A = 2,5n^{\frac{1}{2}} - 0,13 + 0,5, \quad B = 0,75(n^{\frac{1}{2}} - 0,10),$$
$$f(R_{max}) = \sqrt{R_{max}}(1 + \ln\sqrt{R_{max}}) - \frac{A}{B} = 0 \tag{8}$$

или

Найдем приближенное выражение для корня этого трансцендентного уравнения. Для этого воспользуемся методом Ньютона, который из-за моно-
тонности кривой
$$f(R_{max})$$
 как нельзя лучше подходит для приближенного ре-
шения уравнения (8). В качестве нулевого приближения берем $R_o = A/B$, тогда $R_o = A/B$, $R_k = R_{k-1} - f(R_k)/f'(R_k)$, где k – номер приближения. Уже при $k = 1$

получаются приемлемые значения искомого корня уравнения (8), исключая случай самого малого значения коэффициента $1/n \sim 5$ (селевые потоки, глухие поймы). Величины R_{max} , полученные во втором приближении, можно считать точными (для 7,90 м $< R_{max} < 38,59$ м при 7,5 < 1/n < 40 ошибка не превышает 1 мм). Заметим, что величина уклона *i* меняется в изучаемом регионе в пределах $1,24\cdot10^{-6} < i < 9,76\cdot10^{-1}$. В бассейне Дуная преобладают русловые уклоны, характерные для рек с течениями горного типа ($i > 10^{-2}$, их 62 % от общего числа из 901079 ячеек) и для рек равнинного типа с быстрыми течениями ($10^{-4} < i < 10^{-2}$, их 35 %).

На первых шагах калибровки модели зададим значения коэффициента *n* в каждой ячейке, зависимым от уклона согласно данным табл.1 (в дальнейшем это первое приближение можно уточнять).

В табл.2 приведены значений R_{max} для некоторых коэффициентов шероховатости *n* и уклонов *i*.

Заметим, что предлагаемые в справочной литературе приближения формул Павловского

 $y = 1,5\sqrt{n}$ при R < 1 м, $y = 1,3\sqrt{n}$ при R > 1 м,

пригодны лишь при значениях *R* << *R*_{max}.

Используемые данные. Данные о возвышении земной поверхности с разрешением 30" (из глобальной модели *GTOPO* 30) получены в U. S. Geological Survey's EROS Data Center. Они были спроецированы на сетку 1 км × 1 км с помощью азимутальной равновеликой проекции Ламберта [22] (Приложение 2). Для массива, описывающего Европу, построена карта возвышений земной поверхности El (точность 1 м), состоящая из 8319 × 7638 узлов сетки. Кроме того, с помощью процедуры, изложенной в [23], вычислены следующие переменные: As – направление максимального уклона, Fd – направление потока из данной ячейки в соседнюю, Fa – сумма площадей (км²) ячеек, лежащих выше по течению и втекающих в данную ячейку (по сути, это величина площади водосбора, а для точки в устье реки – площадь бассейна реки), Sl – наибольший уклон между данной ячейкой и ее 8-ю соседями.

Здесь первичной обработке подвергались данные, относящиеся к бассейнам рек Дунай и Днестр.

уклон і	доля в площа- ди бассейна, %	тип течения	характер- ные <i>U</i> , м/с	U_{cp} при $R = R_{max}$	1/n
$> 5 \cdot 10^{-3}$	71,39	горное быстрое	4 – 6 и >	> 4,0	12,5
$10^{-3} - 5 \cdot 10^{-3}$	17,48	горное среднее	2 - 4	2,1-4,8	15
$5 \cdot 10^{-4} - 10^{-3}$	3,14	равнинное очень быстрое	> 2	> 2,1	20
$5 \cdot 10^{-5} - 5 \cdot 10^{-4}$	5,94	равнинное быстрое	1 - 2	0,9 – 2,9	25
$5 \cdot 10^{-6} - 5 \cdot 10^{-5}$	2,01	равнинное среднее	0, 5 - 1	0,4 - 1,1	30
< 5.10-6	0,05	равнинное очень слабое	< 0,5	< 0,5	40

Таблица 1. Принятая в модели зависимость коэффициента шероховатости *n* от уклона *i*.

1/ <i>n</i>	P	<i>U_{cp}</i> при <i>i</i> =								
	R _{max}	10-1	10-2	10-3	10-4	10-5	10-6			
40	38,59			7,70	2,44	0,77	0,24			
30	25,83			5,01	1,58	0,50	0,16			
25	21,11			3,92	1,24	0,39	0,12			
20	17,14			2,98	0,94	0,30	0,09			
15	13,73		6,78	2,14	0,68	0,21	0,07			
12,5	12,19		5,58	1,76	0,56	0,18	0,06			
10	10,72	14,08	4,45	1,41	1,07	0,14	0,04			
7,5	9,30	10,72	3,39	1,07	0,34	0,11	0,03			
5	7,90	7,55	2,39	0,75	0,24	0,08	0,02			

Таблица 2. Максимально возможные скорости потока, соответствующие предельно допустимым значениям гидравлического радиуса R_{max} в формуле Павловского (по [16]).

Коррекция данных геоморфологии. Была проведена коррекция данных о возвышении El, направлении потока Fd и площади водосбора Fa. Неточности в данных, искажающие направления потоков (иногда даже на обратные), были, как правило, следствием недостаточной пространственной дискретизации данных (шага в один километр иногда не хватает особенно в местах с глубокими, узкими каньонами, резкими перепадами высот и т.п.). Иногда направления потоков были искажены из-за недостаточной точности измерения и осреднения данных El. При построении массива возвышений поверхности после округления осредненных высот до 1 м многие ячейки оказались на одном уровне с соседями. И, таким образом, при определении величины направления потока Fd возникли неопределенности (до восьми равноценных направлений на выбор), разобраться с которыми в автоматическом режиме нельзя. Эти ошибки бросаются в глаза при сравнении наблюденных и модельных величин площадей водосбора Fa, а также при сравнении направлений модельных потоков с истинными направлениями, которые получены по данным с карты бассейна Дуная масштаба 1:100000 (http://www.iad.gs/gismap4b.htm), а для рек Украины – с топографических карт. Площади водосборов получены для рек Дуная по данным ftp://daac.ornl.gov/data/rivdis/, для рек Днестра из [24]. Основные ошибки в файле направлений потоков Fd были устранены. Величина El на этом этапе, как правило, не корректировалась. После коррекции файла Fd все значения площадей водосбора Fa пересчитывались, при этом значения Fa на границе исследуемого региона не менялись. Результаты коррекции обобщены на рис.1.

Коррекция уклонов. После коррекции данных о направлениях потоков в данных геоморфологии остался еще один недостаток: наличие большого числа соседних ячеек, лежащих на одном уровне. Естественно, это могло привести не только к неопределенности выбора направления потока, но и фактически означает, что мы имеем дело с плоским дном. Отсюда новая проблема – как рассчитывать средние скорости (при нулевых уклонах средние скорости, вычисляемые по формуле Шези, равны нулю). Можно, ко-

Рис. 1. Сравнение величин площадей водосбора *Fa* до и после коррекции данных о направлений потока *Fd*.

нечно, исходя из каких-то разумных предположений, задать некие малые постоянные значения скоростей, как это делалось в [14, 15]. А можно применить следующую процедуру.

Будем продвигаться по карте возвышений слева направо и сверху вниз. Пусть ячейка (x_1, y_1) имеет возвышение $El[x_1, y_1]$ и впадает в ячейку (x_2, y_2) , которая имеет возвышение $El[x_2, y_2]$. Если $El[x_1, y_1] = El[x_2, y_2]$, то находим ту ячейку (x_0, y_0) , которая впадает в (x_1, y_1) , и если $El[x_1, y_1] = El[x_0, y_0]$, то продолжаем процедуру и находим ячейку, впадающую в (x_0, y_0) и т.д., до тех пор, пока величина El не изменится. Т.е. пока мы не найдем начало плоского русла. Далее, будем двигаться от точки начала плоского русла до его конца (ячейка x_n, y_n), т.е. пока величина El не станет другой (уменьшится). Теперь, зная возвышение в начале плоского дна и после его конца (ячейка x_n, y_n), «наклоняем» дно под углом ($El[x_0, y_0] - El[x_n, y_n]$) / (*пройденный путь*). Следует еще учитывать значения величины Fa в ячейках, где мы «наклоня-ем дном», т.е. начать «наклон» плоских участков с ячеек, где значения Fa наибольшие (крупные реки), постепенно вовлекая в процедуру все более и более мелкие притоки.

Для оценки точности полученных и скорректированных данных с помощью специальной программы были вычислены длины некоторых рек по нашим скорректированным данным, которые сравнивались с наблюдениями. Результаты сравнения приведены в табл.3.

Видно, что извилистость некоторых рек настолько высока, что пространственного разрешения 1 км не достаточно – длины некоторых модельных рек сильно занижены (исключением является сам Дунай). Т.е. при использовании данных геоморфологии с разрешением 1 км в дальнейшие оценки (например, при расчетах времени прихода паводковой волны) следует вносить соответствующие поправки.

Факторы, влияющие на сток после ливня. Величина стока непосредственно связана с величиной осадков, которые выпали за время «события дождя». При планировании инженерных расчетов обычно используют понятие «расчетный ливень» – это продолжительность ливня (ч или мин),

nara	плог	цадь	длина			
река	набл.	мод.	набл.	мод.		
Морава (чех.)	26600	26472	358	300		
Морава (серб.)	38000	34931	563	347		
Сава	95720	95673	940	763		
Драва	40400	38328	725	635		
Олт	25000	23146	709	542		
Сирет	45000	35433	706	501		
Муреш	30000	28279	883	570		
Прут	27500	6641	967	620		
Днестр	72100	65333	1352	980		
Дунай	817000	788739	2780	2700		
Тиса	157000	143484	966	840		

Таблица 3. Сравнение модельных длин рек с наблюденными длинами.

суммарные осадки (мм) и интенсивность (мм/ч). Пиковый расход водосбора обычно определяется интенсивностью дождя. Интенсивность дождя больше влияет на пик расхода, чем на величину стока. Интенсивный дождь, вызывающий высокий пик расхода в малых бассейнах, обычно не распространяется на большие площади. Поэтому одна и та же интенсивность дождя может вызывать паводок в малом притоке и ничего существенного в главной реке. Интенсивность дождя существенно меняется во время ливня и это, безусловно, нужно учитывать при моделировании.

Тип покрытия земной поверхности влияет на сток несколькими способами. Листья и подстилка из опавших листьев задерживают инфильтрацию, препятствуя проникновению капель дождя в почву. Часть капель дождя остается на поверхности листвы и, скорее всего, испарится назад в атмосферу. Кроме того, почвенная влага от предыдущих дождей забирается путем транспирации, освобождая в почве пустоты. Растения, включая их почвенный перегной, создают ряд барьеров на пути следования воды по поверхности земли. Таким образом, возрастает шероховатость поверхности, вода течет медленнее, что удлиняет время накопления и уменьшает пик расхода. При оценке стока из городских районов нужно учитывать долю непроницаемых поверхностей и даже способы переноса стока из непроницаемых зон в зоны дренажа. С ростом непроницаемости покрытия растет скорость стока, время добегания уменьшается, пик расхода вырастает.

Уклоны в водосборе оказывают главное влияние на пик расхода в точках, расположенных ниже по течению. Они мало влияют на то, сколько воды будет стекать. Если уклон водосбора возрастает, скорость растет, время стока становится меньше, а пик расхода возрастает. Относительно малые водосборы имеют форму веера. Если водосбор становится продолговатым или более прямоугольным, путь потока вырастает и пик расхода уменьшается. Депрессии возвышения на поверхности земли могут задерживать некоторую часть воды, сокращая ожидаемый сток. Если депрессии и заболоченные зоны составляют одну треть или меньше от площади водосбора и не мешают стоку из остальных двух третей, то они не будут значительно менять пик расхода. При оценке пика расхода эти площади могут быть исключены из дренажной зоны. Если депрессии занимают более одной трети общей площади стока или если они задерживают сток, то при оценке пика расхода их нужно учитывать.

Если нет данных наблюдений для более точной модели водного баланса или нет самой модели водного баланса, можно пользоваться нижеследую-

щими формулами [25] для расчета поверхностного стока R_s :

$$R_s = \frac{(P - I_a)^2}{(P - I_a) + S}, \quad I_a = 0.2S, \quad S = \frac{1000}{CN} - 10, \quad (9)$$

где CN – специальный коэффициент, значения которого для водосборов разных типов затабулированы; P – осадки (мм) для суточного ливня; R_s – поверхностный сток для данного водосбора (мм); S – потенциальный максимум задержания воды после начала стока (мм); I_a – начальный отбор (мм); потери перед началом стока (ямки на поверхности земли, задержание листьями, испарение, инфильтрация). Формулами типа (9) для оценки I_a пользуются в крайнем случае, когда нет данных о коэффициентах стока [25, 26].

В [25] выделяют два типа поверхностного стока в водосборе: склоновый и ручейковый. Склоновый сток наблюдается в верхних частях водосбора и имеет длину пробега не более 100 м. После течения тонким, сплошным слоем, вода начинает собираться в ручейки – образуется ручейковый сток, который затем переходит в русловый сток. Время пробега для каждого типа стока описывается в [25] отдельными выражениями:

для склонового стока:
$$T_t = \frac{61.122 \cdot (nL)^{0.8}}{(P_2)^{0.5} \cdot s^{0.4}}$$

для ручейкового стока: $T_t = L/V$,

где для мощеной поверхности $V = 6,1960 \cdot s^{\frac{1}{2}}$; для не мощеной поверхности $V = 4,9178 \cdot s^{\frac{1}{2}}$.

Здесь L – длина пробега (м); P_2 – суточная норма осадков (мм); s – усредненный уклон (м по вертикали)/(м по горизонтали); T_t – время добегания (с) для выбранного типа потока (склоновый, ручейковый или русловый); V – средняя скорость воды при каждом режиме (м/с). Значения коэффициента шероховатости n имеются в справочниках по гидравлическим расчетам (в [25] применялась формула Маннинга – частный случай формулы Павловского при y = 1/6, в уравнении (6)).

Все виды почв были поделены на 4 основных типа по степени убывания коэффициента инфильтрации – от крупного песка и гравия до глины (глобальные данные о фракциях глины и песка опубликованы, поэтому число градаций типов почв можно при необходимости увеличить).

Данные о поверхностном стоке. Для калибровки модели использовались данные исследования поверхностного стока (т.е. суммы склонового и ручейкового стока) из [18]. В ней информация о расходах рек объединена с моделью водного баланса (МВБ) и получены композитные поля стока, хорошо согласующиеся с измеренными расходами рек. Эти композитные поля стока сохранили точность, достигаемую при измерении расходов, и одновременно пространственное и временное распределение модельных стоков, давая тем самым «наилучшую оценку» стока на больших областях суши. Авторы воспользовались данными о речной сети с пространственным разрешением 0,5° для описания траекторий речных потоков и связи континентальных водных масс с океаном через реки. Выбранные станции наблюдения из архива [27] были «приспособлены» к моделируемой топологической сети (т.е. некоторые пункты наблюдений «сдвигались» в узлы равномерной сетки). Расход на станциях и сток вычислялись для сравнения наблюденного стока с результатом из модели водного баланса. Вычислялись коэффициенты коррекции, полученные на основе отношения наблюденных и модельных стоков для областей между станциями, они добавлялись к модельным стокам, в результате получились композитные поля стока.

Калибровка модели. Перед описанием результатов калибровки модели напомним основные сведения о бассейне реки Дунай. Длина 2850 км, площадь бассейна 817000 км². Протекает по территории Германии, Австрии, Словакии, Венгрии, Хорватии, Югославии, Болгарии, Румынии, Украины. Берет начало в отрогах Шварцвальда. Выше Вены Дунай – горная река, затем (до ущелья Железные Ворота) течет по Среднедунайской равнине, ниже – по Нижнедунайской равнине. Впадает в Черное море, образуя дельту. Средний расход воды 6430 м³/с. Имеет свыше 300 притоков (основные Драва, Тиса, Сава, Олт, Сирет, Прут). Дунай судоходен до верховьев. Имеется 2 крупные ГЭС Джердап (на границе Румынии и Сербии), каскад ГЭС в Австрии и Германии, несколько отводных каналов (на этапе настройки модели зарегулированность рек в модели не учитывается). Основные порты: Регенсбург, Вена, Братислава, Будапешт, Белград, Русе, Галац, Измаил.

При калибровке модели для сравнения модельных величин расхода с данными натурных наблюдений в основном использовались два массива многолетних среднемесячных значений расхода рек: массив из 2400 рек СССР [24] и массив из 1352 рек из [27], а также данные о реках с топографических карт Украины масштаба 1:100000 и другие справочные данные.

При настройке модели для региона Дунай-Днестр использовались три типа полей поверхностного стока из [18]: поля, полученные по наблюдениям о расходе; поля, полученные в результате численного моделирования, а также наилучшие – композитные поля, о которых говорилось выше. Поверхностное

Р и с. 2. Композитное поле годового поверхностного стока (мм/год) по данным [18]. Вместо рек тонкими линиями показаны ячейки, в которых $Fa > 100 \text{ км}^2$, жирными линиями – ячейки, в которых $Fa > 5000 \text{ км}^2$.

река	п.п.	координаты		Fa , км 2		<i>S</i> ,	Sco,	Sob,	Ssi,
	наблюдения	с.ш.	в.д.	набл.	мод.	м ³ /с	м ³ /с	м ³ /с	м ³ /с
Ипель	Ipelsky Sokolec	4804	1882	4838	4787	(21)	36	28	47
Вац	Sala	4843	1777	10620	10659	(151)	117	66	155
Хрон	Brehy	4843	1869	3821	3896	(50)	45	24	59
Энс	Steyr	4807	1445	5915	5321	(199)	154	126	158
Илл	Schaerding	4845	1343	25665	25770	607	544	495	604
rinn	Passau-Ingling	4857	1345	26084	26230	599	553	502	613
Салзаш	Burghausen	4815	1282	6649	6910	223	204	171	217
Самош	Csenger	4783	2270	15283	15742	(124)	134	102	145
Сава	Catez	4588	1564	10149	10679	292	283	119	337
Cubu	Sremska Mitrovica	4497	1962	87966	87681	1549	1419	1244	1602
Уна	Bosanski Novi	4507	1638	8507	9374	247	181	138	188
Драва	Donji Miholjac	4578	1820	37142	37017	473	510	400	760
Морава	Lubicevsky Most	4458	2112	34345	34841	349	249	308	205
Олт	Stoenesti	4410	2450	22683	21880	(161)	226	160	169
Сирет	Lungoci	4556	2751	36036	35433	(171)	204	108	277
Муреш	Arad	4617	2132	27061	28279	154	178	162	169
Сомеш	Satu Mare	4781	2307	15155	15223	95	133	100	143
Искар	Kunino	4318	2400	6697	6472	(59)	60	43	29
	Orahovica	4360	2440	8370	8345	(58)	64	60	31
	Бендеры	4683	2950	66100	65333	234	289	341	227
Пнестр	Галич	4913	2473	14700	14136	135	108	92	91
днеетр	Залещики	4863	2573	24600	23249	175	187	137	147
	Журавно	4925	2428	9910	10204	61	77	72	68
Гнилая Липа	Большовцы	4918	2473	848	857	3	3	3	2
Каменка	Каменка	4811	2872	387	385	1	1	2	0
Коропец	Подгайцы	4927	2515	227	218	1	1	1	1
Латорица	Чоп	4845	2222	2870	2142	28	24	19	29
Щирка	Щирец	4962	2389	307	276	1	1	1	1
Серет	Чортков	4902	2580	3170	3111	12	9	12	9
Смотрич	Купин	4914	2656	799	792	2	2	3	2
	Цыбулевка	4865	2660	1790	1959	5	6	9	6
Стрыпа	Каплинцы	4950	2528	411	396	1	1	1	1
Ушица	Зиньков	4908	2707	525	608	2	2	2	2
Золотая Липа	Бережаны	4943	2495	690	636	3	3	2	2
Нитра	Banov	4809	1820	3103	3123	15	26	24	34

Таблица 4. Результаты калибровки модели по данным о годовом стоке за 1984 г. [18].

Продолжение	таблицы	4.
-------------	---------	----

norro	п.п.	координаты		Fa, км ²		<i>S</i> ,	Sco,	Sob,	Ssi,
река	наблюдения	с.ш.	в.д.	набл.	мод.	м ³ /с	м ³ /с	м ³ /с	м ³ /с
Maarin	Кугаевцы	4897	2637	229	229	1	1	1	1
жванчик	Ластовцы	4858	2645	703	639	2	2	3	2
	Ingolstadt	4875	1142	20001	18912	306	234	262	240
	Regensburg	4902	1210	35399	33202	(437)	266	313	373
	Hofkirchen	4867	1312	47496	45481	592	481	544	641
	Achleiten	4858	1350	76597	74622	1259	1064	1082	1289
	Linz	4831	1430	79490	77427	(1509)	1113	1136	1342
	Kienstock	4838	1546	95970	93491	1586	1450	1495	1693
	Stein-Krems	4840	1559	96045	93879	(1866)	1453	1500	1698
	Wien-Nussdorf	4825	1637	101700	99639	(1942)	1493	1558	1744
	Bratislava	4812	1710	131338	127856	1753	1631	1699	1972
	Dunaalmas	4773	1833	171720	168779	(2302)	1918	1949	2358
	Nagymaros	4778	1895	183533	180430	1948	2009	2017	2475
Питой	Mohacs	4600	1867	209064	206350	(2401)	2064	2099	2539
Дунаи	Bezdan	4587	1882	210245	208288	1797	2065*	2104	2541
	Bogojevo	4553	1908	251593	249006	2250	2579*	2512	3317
	Pancevo	4484	2064	525009	517912	(5497)	4946	4785	6057
	Veliko Gradiste	4480	2140	570375	562997	(5762)	5201	5119	6282
	Orsova	4470	2242	576232	568336	5000	5210*	5131	6317
	Novo Selo	4417	2283	584900	576835	(5841)	5234	5164	6364
	Lom	4384	2324	588860	580676	(5766)	5244	5184	6373
	Svistov	4363	2535	650340	642058	(6152)	5678	5640	6686
	Ruse	4387	2595	669900	660647	(6263)	5708	5748	6708
	Silistra	4413	2727	689700	678788	(6210)	5788	5817	6826
	Vadu-Oii-Hirsova	4475	2787	709100	696045	(6217)	5813	5853	6874
	Ceatal Izmail	4518	2880	807000	788739	6105	6215	6145	7348
	Деловое	4793	2418	1190	1260	23	25	10	32
	Polgar	4787	2112	62723	63646	(522)	631	485	702
Тиса	Szolnok	4717	2023	75113	77416	654	653	538	726
	Szeged	4625	2017	138408	138492	606	896	822	1032
	Senta	4593	2010	140130	143484	609	898	832	1038

П р и м е ч а н и е : *S* – наблюденный расход, *Sco* – расход для композитных полей стока, *Ssi* – для модельных полей, *Sob* – расход для полей стока, построенных по данным наблюдений о расходе. В случаях, когда отсутствовали данные о расходах за 1984 г., использовались средние многолетние значения, они помечены круглыми скобками; * – отводной канал.

распределение композитного поля для годового стока (мм) приведено на рис.2. Данные [18] были пересчитаны из полуградусной сетки в равновеликую азимутальную проекцию Ламберта с шагом 1 км, используя процедуру билинейной аппроксимации (Приложения 1, 2). При этом использовались поля среднегодовых величин стока, а также 12 среднемесячных полей (для января, февраля и т.д.). Модель запускалась для среднегодовых значений стока на входе при отсутствии воды. «Заполнение» водой происходило с шагом по времени в 1 мин и продолжалось до достижения стационарного решения (около 2-х модельных месяцев), что примерно соответствует времени добегания воды от истока до устья Дуная. После достижения стационарного решения по данным о среднегодовом стоке рассчитывались стационарные решения по всем среднемесячным значениям стока. Фактически, мы «собрали и вернули назад» в русла рек воду, «размазанную» по поверхности Земли авторами [18]. Основные результаты настройки модели по данным годового стока за 1984 г. приведены в табл.4. Наилучшие результаты получились при использовании композитных полей, и они соответствуют данным наблюдений. Неожиданное превышение модельных расходов над измеренными в пунктах Bezdan (2065 вместо 1797 м³/с), Bogojevo (2579 вместо 2250 м³/с) и Orsova (5210 вместо 5000 м³/с) на Дунае объясняется наличием в этих пунктах отводных каналов с расходами порядка 200 м³/с, которые мы не учитывали.

Заключение. Гидравлическая модель водостока адаптирована к бассейну рек Дунай и Днестр. Она позволяет рассчитывать объемы, расходы и уровни воды с пространственным разрешением 1 км по данным о геоморфологии земной поверхности, поверхностном и подземном стоке (или по данным метеорологических наблюдений при наличии соответствующей модели водного баланса). В модели можно использовать данные о некоторых свойствах земной поверхности (тип почвы, растительность и т.д.). По данным наблюдений стока [18] оценены среднемесячные величины расходов рек, которые соответствуют наблюдениям, что позволяет применять модель в дальнейших оценках стока, наносов и т.д.

Приложение 1. Азимутальная равновеликая проекция Ламберта. Переход от географических координат (φ, λ) к координатам в равновеликой азимутальной проекции Ламберта осуществляется по формулам [22]:

$$x = \rho \cdot \cos a, \quad y = \rho \cdot \sin a, \quad \rho = 2R \cdot \sin (z/2),$$

где $tg \ a = \frac{\cos \varphi \cdot \sin(\lambda_o - \lambda)}{\sin \varphi \cdot \cos \varphi_o - \cos \varphi \cdot \sin \varphi_o \cdot \cos(\lambda_o - \lambda)}, \quad \sin a \cdot \sin z = \cos \varphi \cdot \sin(\lambda_o - \lambda),$

 $(\varphi_{0}, \lambda_{0})$ – географические координаты опорной точки (в нашем случае $\varphi_{0} = 55^{\circ}$ с.ш., $\lambda_{0} = 20^{\circ}$ з.д.); *х*, *у* – координаты проекции вверх и направо от опорной точки соответственно, *R* = 6370997 м – радиус Земли.

Приложение 2. Билинейная аппроксимация. Перевод данных о поверхностном стоке из сетки в географических координатах $0,5^{\circ} \times 0,5^{\circ}$ на сетку в проекции Ламберта 1 км × 1 км проводилась следующим образом: берем точку (*x*, *y*) на карте в проекции Ламберта. Определяем ее географические координаты (φ , λ):

 $\varphi = \arcsin(\sin\varphi_o \cos z - \cos\varphi_o \sin z \cos a),$

$$\lambda = \lambda_o + \arcsin(\sin z \sin a / \cos \varphi),$$

где a = arctg(x/y), $\rho = \sqrt{x^2 + y^2}$, $z = 2 \arcsin(\rho/2R)$.

Находим четыре ближайшие к (φ , λ) точки полуградусной сетки: (φ_1 , λ_1), (φ_2 , λ_2), (φ_3 , λ_3), (φ_4 , λ_4). Пусть R_1 , R_2 , R_3 , R_4 – известные нам значения поверхностного стока в этих точках. Величину поверхностного стока $R_s(x, y) = R_s(\varphi, \lambda)$ получаем в результате билинейной интерполяции:

$$R_{s}(x, y) = R_{s}(\varphi, \lambda) = \frac{R_{5}(\Delta \varphi - \varphi) + R_{6}\varphi}{\varphi},$$

 $\text{где} \quad R_5 = \frac{R_1(\Delta \lambda - \lambda) + R_2 \lambda}{\Delta \lambda}, \quad R_6 = \frac{R_3(\Delta \lambda - \lambda) + R_4 \lambda}{\Delta \lambda}, \quad \Delta \varphi = \Delta \lambda = 0.5^{\circ}.$

Список литературы

- Соседко М.Н. Особенности пространственной структуры полей осадков на территории Украинских Карпат // Тр. УкрНИГМИ.– 1980.– вып. 180.– С.81-85.
- Соседко М.Н. Особенности моделирования процессов формирования талодождевого стока на горном водосборе // Тр. УкрНИГМИ.– 1987.– вып.220.– С.3-15.
- Carpenter D.M. An introduction to Great Salt Lake effect snowfall // Problems of and prospects for predicting Great Salt Lake levels. Eds. P.A.Kay and H.F.Diaz.– Center Public Affairs Administration, University of Utah, 1984.– P.155-165.
- Mc Coy W.D., Williams L.D. Application of an energy-balance model to the late Pleistocene Little Canyon glacier with implications regarding the paleohydrology of Lake Bonneville // Problems of and prospects for predicting Great Salt Lake levels. Eds. P.A.Kay and H.F.Diaz.– Center Public Affairs Administration, University of Utah, 1984.– P.40-53.
- Benson L.V., Thompson R.S. The physical record of lakes in the Great Basin // North America and adiacent oceans during the last deglaciation, Eds. W.F.Ruddiman and H.E.Wright.– Geological Society of America, 1987.– P.241-260.
- Pitman A.J. A simple parameterization of sub-grid scale open water for climate models // Climate Dyn.- 1991.- 6.- P.99-112.
- Henderson-Seller A., Pitman A.J. Land-surface schemes for future climate models: Specification, aggregation, and heterogeneity // J. Geophys. Res.- 1992.- 97(D).-P.2687-2696.
- Bonan G.B. Sensitivity of a GCM to inclusion of inland water surface // J. Climate.– 1995.– 8.– P.2691-2704.
- Kutzbach J.E., Ziegler A.M. Simulation of late Permian climate and biome with an atmosphere-ocean model: Comparisons with observations // Philis. Trans. Roy. Soc. London.– 1993.– ser.B, 341.– P.327-340.
- 10. Land Ocean Interaction. Measuring and Modelling Fluxes from River Basins to Coastal Seas. Eds. D.Huntley, G.Leeks, D.Walling.- IWA Publishing, 2001.- 286 p.
- 11. Воскресенский К.П. Норма и изменчивость годового стока рек Советского Союза.– Л.: Гидрометеоиздат, 1962.– 544 с.

- 12. Раткович Д.Я. Многолетние колебания речного стока. Л.: Гидрометеоиздат, 1976. 256 с.
- 13. Джаошвили Ш.В. Реки Черного моря. Тбилиси, 2003. 186 с.
- Coe M.T. Simulating continental surface waters: An application to Holocene northern Africa // J. Climate.– 1997.– 10.– P.1680-1689.
- 15. *Coe M.T.* Modeling terristrial hydrological systems ay continental scale: Testing the accuracy of an atmospheric GCM // J. Climate.– 2000.– 13.– P.686-704.
- 16. *Киселев П.Г.* Справочник по гидравлическим расчетам. М.: Госэнергоиздат, 1957. 352 с.
- 17. Мировой баланс и водные ресурсы Земли.– Л.: Гидрометеоиздат, 1974.– 638 с.
- Fekete B.M., Vörösmarty C.J., Grabs W. Global, composite runoff fields based on observed river discharge and simulated water balances.– WMO-Global Runoff Data Centre.– Report #22.– Koblenz, Germany, 1999.
- 19. *Masson V., et al* Global database of land surface parameters at 1 km resolution in meteorological and climate modeles // J. Cimate.- 2003.- v.16, № 9.- P.1261-1282.
- 20. Давыдов Л.К., Дмитриева А.П., Конкина Н.Г. Общая гидрология. Л.: Гидрометеоиздат, 1973. 462 с.
- 21. Клибашев К.П., Горошков И.Ф. Гидрологические расчеты. Л.: Гидрометеоиздат, 1970. – 460 с.
- 22. Вахрамеева Л.А., Бугаевский Л.М., Казакова З.Л. Математическая картография: Учебник для вузов. М.: Недра, 1986. 286 с.
- 23. *Danielson J.J.* Delineation of drainage basins from 1 km African digital elevation data // Pecora Thirteen, Human Interactions with the Environment Perspectives from Space, Sioux Falls, South Dakota, August 20-22, 1996.
- 24. *Monthly* Discharges for 2400 Rivers and Streams of the former Soviet Union [FSU] 1.1, September, 2001.Byron A. Bodo.babodo@eol.caToronto, Canada
- Urban Hydrology for Small WaterSheds.- US Department of Agriculture, Natural Resources Conservation Service, Conservation Engineering Division.- Technical Release 55, 1986.- 152 p.
- 26. Атлас мирового водного баланса. Л.: Гидрометеоиздат, 1974. 126 с.
- 27. *Global* Runoff Data Centre and Institute for Study of Earth Ocean and Space, University of New Hampshire, Durham, USA.

Материал поступил в редакцию 23.02.2005 г.