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By the example of a mathematical model of a biochemical process,
the structural instability of dynamical systems is studied by cal-
culating the full spectrum of Lyapunov indices with the use of the
generalized Benettin algorithm. For the reliability of the results
obtained, the higher Lyapunov index determined with the orthog-
onalization of perturbation vectors by the Gram–Schmidt method
is compared with that determined with the overdetermination of
only the norm of a perturbation vector. Specific features of these
methods and the comparison of their efficiencies for a multidimen-
sional phase space are presented. A scenario of the formation of
strange attractors at a change of the dissipation parameter is stud-
ied. The main regularities and the mechanism of formation of a
deterministic chaos due to the appearance of a fold or a funnel,
which leads to the uncertainty of the evolution of a biosystem, are
determined.

1. Introduction

One of the main physical problems is the appearance of
ordered structures from the chaos in systems different
by their nature due to the self-organization. The syn-
ergy was follow from theoretical physics [1]. The first
model of synergy was the Turing model (“Morphogenesis
model”) [2]. The next was the Prigogine’s “Brusselator”,
where self-organization regimes were considered in an
abstract chemicothermal system [3]. Synergy allows one
to find common physical rules for the self-organization
of opened nonlinear systems [4–7].

To a significant extent, the problem concerns the ques-
tion of the self-origination of life, the evolutionary de-
velopment of the alive, and the basic mechanisms of
structural-functional regularities of transformations in
various biochemical systems. In the general case, bio-
chemical systems are described by ordinary nonlinear

differential equations of the form dX
dt = f(X, a), where

X = (X1, ...Xn) ∈ Rn is a vector of variables of states
(phase variables), and a = (a1, ..., ak) ∈ Rk) is the vec-
tor of parameters of the system. The results of numerical
solutions of the equations can be compared with exper-
iments and would clarify self-organization laws.

Works [8–18] considered the mathematical model of a
bioreactor transforming steroids [19] under flow condi-
tions depending on a change of the dissipation, the ki-
netic membrane potential of cells, and the input flows of
a substrate and oxygen. Various scenarios of the transi-
tion from stationary modes to self-oscillatory modes with
different multiplicities were presented, and the regions of
the formation of strange attractors were determined. It
is worth noting an experiment that proved the existence
of self-oscillations in a population of Arthrobacter globi-
formis cells [20].

The studies were performed with the use of the
method of phase portraits. The determined regions with
qualitatively identical phase portraits and the points of
bifurcation do not characterize the dynamics of a biosys-
tem sufficiently completely. The most complete informa-
tion about the stability of various modes is contained in
the full spectrum of Lyapunov indices. But since a math-
ematical model of the given biochemical system contains
a lot of variables and parameters, the limitations on the
solution of such problems on a computer arise due to
a small volume of the work memory for the processing
of a matrix of small perturbations. In addition, any er-
ror made in the programming will essentially influence
the overdetermination of perturbation vectors and their
orthogonalization.

To attain the reliable results, we carried out the in-
dependent calculations of both the higher Lyapunov in-
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dex with the same parameters, by using the Benettin
algorithm with the overdetermination of only the norm
of perturbation vectors, and the full spectrum of Lya-
punov indices with the orthogonalization of these vectors
by the Gram–Schmidt method [21–23]. The higher Lya-
punov indices obtained were practically identical, which
confirms the correctness of the developed computer pro-
gram.

The essence of the calculation of a higher Lyapunov
index with the overdetermination of only the norm of
perturbation vectors consists in the determination of the
evolution of an arbitrarily small deviation from a stud-
ied trajectory of the system λ = 1

nτ

∑n
k=1 ln ‖uk‖

ε . After
each step of calculations, it is necessary to overdeter-
mine a deviation so that its direction will remain the
same, and the norm will be equal to the input value ε,
namely: u0k = εuk

‖uk‖ .
The algorithm of calculations of the full spectrum of

Lyapunov indices consisted in the following. Taking
some point on the attractor X0 as the initial one, we
traced the trajectory outgoing from it and the evolu-
tion of N perturbation vectors. In our case, N = 10
(the number of variables of the system [18]). The initial
equations of the system supplemented by 10 complexes
of equations in variations were solved numerically. As
the initial perturbation vectors, we set the collection of
vectors b01, b02,... b010 which are mutually orthogonal and
normed by one. In some time T , the trajectory arrives
at a point X1, and the perturbation vectors become b11,
b12,... b110, Their renormalization and orthogonalization
by the Gram–Schmidt method are performed by the fol-
lowing scheme:

b11 =
b1

‖ b1 ‖
,

b′2 = b02 − (b02, b
1
1)b

1
1, b

1
2 =

b′2
‖ b′2 ‖

,

b′3 = b03 − (b03, b
1
1)b

1
1 − (b03, b

1
2)b

1
2, b

1
3 =

b′3
‖ b′3 ‖

,

b′4 = b04 − (b04, b
1
1)b

1
1 − (b04, b

1
2)b

1
2 − (b04, b

1
3)b

1
3, b

1
4 =

b′4
‖ b′4 ‖

,

......................................................................................

Then the calculations are continued, by starting from
the point X1 and perturbation vectors b11, b12,... b110. Af-
ter the next time interval T , a new collection of perturba-
tion vectors b21, b22,... b210 is formed and undergoes again
the orthogonalization and renormalization by the above-
indicated scheme. The described sequence of manipula-
tions is repeated a sufficiently large number of times, M .
In this case in the course of calculations, we evaluated
the sums

S1 =
M∑
i=1

ln ‖ b′i1 ‖, S2 =
M∑
i=1

ln ‖ b′i2 ‖, ...,

S10 =
M∑
i=1

ln ‖ b′i10 ‖,

which involve the perturbation vectors prior to the renor-
malization, but after the normalization. The estimation
of 10 Lyapunov indices was carried out in the following
way:

λj =
Sj
MT

, i = 1, 2, ...10.

As the test calculations for the verification of a pro-
gram, we reproduced the well-known results for the
finite-dimensional Lorentz system.

2. Mathematical Model

A mathematical model of the process under flow con-
ditions in a bioreactor was developed by the general
scheme of metabolic processes in Arthrobacter globi-
formis cells at a transformation of steroids [8-18].

dG

dt
=

G0

N3 +G+ γ2Ψ
− l1V (E1)V (G)− α3G, (1)

dP

dt
= l1V (E1)V (G)− l2V (E2)V (N)V (P )− α4P, (2)

dB

dt
= l2V (E2)V (N)V (P )− k1V (Ψ)V (B)− α5B, (3)

dN

dt
= −l2V (E2)V (P )V (N)− l7V (Q)V (N)+

+k16V (B)
Ψ

K10 + Ψ
+

N0

N4 +N
− α6N, (4)
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dE1

dt
= E10

G2

β1 +G2

(
1− P +mN

N1 + P +mN

)
−

−l1V (E1)V (G) + l4V (e1)V (Q)− a1E1, (5)

de1
dt

= −l4V (e1)V (Q) + l1V (E1)V (G)− α1e1, (6)

dQ

dt
= 6lV (Q0 + q0 −Q)V (O2)V (1)(Ψ)−

−l6V (e1)V (Q)− l7V (Q)V (N), (7)

dO2

dt
=

O20

N5 +O2
− lV (O2)V (Q0 + q0 −Q)V (1)(Ψ)−

−α7O2, (8)

dE2

dt
= E20

P 2

β2 + P 2

N

β +N
(1− B

N2 +B
−

−l10V (E2)V (N)V (P )− α2E2, (9)

dΨ
dt

= l5V (E1)V (G) + l9V (N)V (Q)− αΨ. (10)

where: V (X) = X/(1+X); V (1)(Ψ) = 1/(1+Ψ2); V (X)
is a function involving the adsorption of an enzyme in the
region of a local bond; V (1)(Ψ) is a function character-
izing the influence of the kinetic membrane potential on
the respiratory chain. In the modeling, it is convenient to
use the following dimensionless quantities [1–11] which
are set as follows: l = l1 = k1 = 0.2; l2 = l10 = 0.27;
l5 = 0.6; l4 = l6 = 0.5; l7 = 1.2; l9 = 2.4; k2 = 1.5;
E10 = 3; β1 = 2; N1 = 0.03; m = 2.5; α = 0.0033;
a1 = 0.007; α1 = 0.0068; E20 = 1.2; β = 0.01; β2 = 1;
N2 = 0.03; α2 = 0.02; G0 = 0.019; N3 = 2; γ2 = 0.2;
α5 = 0.014; α3 = α4 = α6 = α7 = 0.001; O20 = 0.015;
N5 = 0.1; N0 = 0.003; N4 = 1; K10 = 0.7.

Equations (1)–(9) describe a change in the concentra-
tions of (1) – hydrocortisone (G); (2) – prednisolone (P );
(3) – 20β-oxyderivative of prednisolone (B); (4) – re-
duced form of nicotinamideadeninedinucleotide (N); (5)
– oxidized form of 3-ketosteroid-4-dehydrogenase (E1);
(6) – reduced form of 3-ketosteroid-4-dehydrogenase
(e1); (7) – oxidized form of the respiratory chain (Q);
(8) – oxygen (O2); (9) – 20β-oxysteroid-dehydrogenase

(E2). Equation (10) describes a change in the kinetic
membrane potential (Ψ).

The initial parameters of the system are as follows:
G0 = 0.17; P 0 = 0.844; B0 = 0.439; N0 = 1.789; E0

1 =
0.216; e01 = 1.835; Q0 = 2.219; O0

2 = 0.309; E0
2 = 1.645;

Ψ0 = 0.300.
The reduction of parameters of the system to dimen-

sionless quantities is given in works [8,9]. To solve this
autonomous system of nonlinear differential equations,
we applied the Runge–Kutta–Merson method. The ac-
curacy of solutions was set to be 10−12. To get the re-
liable results, namely in order that the system, being in
the initial transient state, approach the asymptotic at-
tractor mode, we took the duration of calculations to be
100000. For this time interval, the trajectory “sticks” the
corresponding attractor.

3. Results of Studies

In work [18], the diagram of states of the system in the
parametric space of input flows of the substrate and oxy-
gen was constructed. By varying the input flow, it was
established that the scenario of the formation of autope-
riodic and chaotic modes is regularly repeated. Numer-
ical calculations showed that the same scenario is pre-
served for fixed flows, but under a change of the dis-
sipation of a kinetic membrane potential. Such a sce-
nario is presented in Table 1 together with the spectra
of Lyapunov indices for the given modes. As the dissipa-
tion coefficient decreases from 0.84 down to 0.04131, the
stationary state is destroyed, the attractor of a single-
valued autoperiodic mode is formed as a result of the
Andronov–Hopf bifurcation, and then the bifurcations
with the doubling of the period from a single cycle to
an 8-fold cycle appear. A subsequent decrease in the
dissipation coefficient leads to the formation of strange
attractors with the corresponding multiplicity between
regular attractors. After the attainment of the 14-fold
period, a single cycle is formed again, and then it passes
to the stationary state. The examples of the correspond-
ing attractors and the kinetic curves are given in Fig.
1,a–d. The shape of all regular attractors n∗20 is analo-
gous to those in Fig. 1,b, where n = 1, 2, ..., 14. Strange
attractors n ∗ 2∞, where n = 8, 9, ..., 13, are analogous
to those in Fig. 1,c. It is of interest that, after the ap-
pearance of a strange attractor 13∗2∞ at α = 0.032160,
a regular attractor 22 ∗ 2∞ is formed (see Fig. 1,d), af-
ter which the attractor 14 ∗ 20 appears further. One
more specific feature of the dynamics of biosystems is
shown in Fig. 1,a. It is revealed at small input flows of
the substrate and oxygen. We observe the appearance
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of a strange attractor which differs from the previous
ones and possesses a complicated structure. It arises
regularly at various input flows on the boundary of the
transition from a stationary state to 1 ∗ 20. At small
input flows, in addition to oscillations due to the desyn-
chronization of the processes of transformation and ac-
cumulation of substrates in the biosystem, there appears
the desynchronization between the processes of respira-
tion and transformation of the substrate. Two unsta-
ble points appear. The trajectories rotate chaotically
around them, by passing from one center of rotation to
another one. By comparing Fig. 1,a and Fig. 1,c, it
is worth noting that the chaotic mode in this biosys-
tem is formed by two means: in the first case, the at-
tractor creates folds inside itself, whereas a funnel is
formed in the second case. Due to this circumstance,
the chaotic motion mixes the trajectories in the phase
space.

In addition to the phase portraits, the figures show
the kinetics of one of the variables of the system. It is
seen that the curves differ from one another in differ-
ent modes. For strange attractors, the plots represent
irregular oscillations. We indicate a combination of os-
cillations and jumps. The figures demonstrate also the
dependence of the chaotic kinetics on the initial condi-
tions.

An important role in the analysis of the scenario of
the formation of various modes is played by Lyapunov
indices. For characteristic modes, Table 1 presents their
full spectra λ1, λ2,...,λ10, and the value of their sum Λ =∑10
j=1 λj . Figure 2,a-d gives the plots of the dependence

of λ1, λ2, λ3, and Λ on the dissipation coefficient α in
the interval from 0.0321 to 0.033.

By analyzing the results obtained, we note that all
autoperiodic modes corresponding to regular attractors
n ∗ 2∞ have higher Lyapunov indices practically equal
to zero. But the chaotic modes corresponding to strange
attractors n∗2∞ have higher Lyapunov indices which are
positive and greater by one order. It is seen in Fig. 2,a
how the “windows of periodicity” are formed at λ1 < 0.
At the given α, the regular attractors appear, whereas
the strange attractors arise outside them. The most pro-
nounced chaotic modes correspond to maximal peaks of
λ1. By the given plot, it is possible to choose beforehand
the corresponding mode of functioning for a bioreactor
making no calculations again.

In Fig. 2,b, we show the plot for the second Lyapunov
index. There, λ2 changes accordingly to λ1. For strange
attractors, n ∗ 2∞, λ1 > 0, whereas λ2 ≈ 0. That is,
the diverging trajectories hold themselves closely to the
given limiting cycle, which preserves the multiplicity of a
strange attractor. The transition from the limiting cycle
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Fig. 1. Phase portraits and kinetic curves of attractors of the biosystem: a – strange attractor at α = 0.033; G0 = 0.009; O20 = 0.00209;
b – regular attractor 14 ∗ 20 at α = 0.0321149; G0 = 0.019; O20 = 0.015; c – strange attractor 13 ∗ 2∞ at α = 0.032165626064;
G0 = 0.019; O20 = 0.015; d – regular attractor 22 ∗ 20 at = 0.032160; G0 = 0.019; O20 = 0.015

ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 5 603



V.I. GRYTSAY

Fig. 2. Lyapunov indices versus the dissipation coefficient α: a – λ1(α); b – λ2(α); c – λ3(α); d – Λ(α)
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to the chaotic mode occurs by means of the intermit-
tence. The kinetics of the variable in Fig. 2,b, shows
how the periodic limiting cycle is suddenly broken by
the chaotic motion; but then the periodicity is restored
again. On the phase portrait, we can separate a clearly
pronounced region, whose shape is close to that of the
disappeared limiting cycle, relative to which a chaotic
trajectory was formed.

The variation of the third Lyapunov index is shown in
Fig. 2,с. The behavior of λ3 is characteristic by that this
index is changed oppositely to λ1 and λ2. When these
two indices grow, λ3 decreases, and vice versa. For all
α, the index λ3 is negative.

We may imagine that a 10-dimensional parallelepiped
P

10
is constructed in the given phase space R

10
at the

beginning of a trajectory on the base of the perturbation
vectors b01, b02,... b010, which are orthogonal to one another
and are normed by one. The value of each index λj char-
acterizes a deformation of this parallelepiped along the
corresponding perturbation vector bi1, bi2,... bi10, after
i steps of the motion along the trajectory. The paral-
lelepiped spreads along the given vector for a positive
Lyapunov index and shrinks for a negative Lyapunov
index.

The sum of all indices Λ as a function of α is given
in Fig. 2,d and in Table 1. This quantity determines
the flow divergence and, hence, the evolution of a phase
volume along a trajectory. For the given dissipative sys-
tem, the divergence is negative and increases with the
growth of the dissipation α. This means that the phase
volume element shrinks, on the whole, along a trajec-
tory for all values of α. The greater the dissipation, the
greater the contraction. For the regular attractors n∗20,
the contraction is greater than that for the correspond-
ing strange attractor n ∗ 2∞.

Since we deal with a dissipative system, whose diver-
gence must be negative in any modes, the phase vol-
ume must always shrink. But b

i

1 > 0 in the modes
of a strange attractor, and there occurs the exponen-
tial spreading in this direction. Because two adjacent
orbits cannot permanently exponentially diverge, the
strange attractor organizes itself so that it creates a fold
(Fig. 1,a) or a funnel (Fig. 1,c) in itself, where the
mixing of trajectories is realized. Even a slight devia-
tion of the initial data influences essentially the evolu-
tion of the trajectory, namely the deterministic chaos
is created. Such a chaos characterizes the appearance
of a random nonpredictable behavior of a system con-
trolled by deterministic laws. We note that, in real
biosystems, the fluctuations are permanently present

and, in unstable modes, create chaotic states. Thus,
the given mathematical model adequately describes sta-
ble autoperiodic modes, as well as unstable chaotic
ones.

4. Conclusions

Due to the successful development of an algorithm of
calculations of the full spectrum of Lyapunov indices on
an ordinary personal computer for a multidimensional
phase space not bounded by the number of variables, we
manage to reliably calculate these indices. This allows
one to extend the possibilities to forecast the dynamics of
complicated systems. By the example of a mathematical
model of biosystems, we have found two different scenar-
ios of the formation of the modes of a strange attractor:
the creation of a fold or a funnel, where the formation of
a deterministic chaos is realized. The self-organization
of the phase flow of a strange attractor occurs under the
action of two mutually competitive processes: the expo-
nential extension (of one of the components, in the given
case) and the dissipative contraction of the whole phase
space. Any fluctuation which has appeared there causes
the nonpredictability of the evolution of the system on
the whole.
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СТРУКТУРНА НЕСТIЙКIСТЬ БIОХIМIЧНОГО ПРОЦЕСУ

В.Й. Грицай

Р е з ю м е

У роботi на прикладi математичної моделi бiохiмiчного про-
цесу проведено дослiдження структурної нестiйкостi динамi-
чних систем за допомогою розрахунку повного спектра пока-
зникiв Ляпунова узагальненим алгоритмом Бенеттина. Для до-
стовiрностi отриманих результатiв проведено порiвняння стар-
ших показникiв Ляпунова, знайдених з урахуванням ортого-
налiзацiї векторiв збудження методом Грамa–Шмiдта, та при
перевизначеннi лише норми вектора збудження. Наведено осо-
бливостi використання цих методiв та дано їх порiвняння за
ефективнiстю для багатовимiрного фазового простору. Дослi-
джено сценарiй формування дивних атракторiв при змiнi пара-
метра дисипацiї. Знайдено основнi закономiрностi виникнення
детермiнованого хаосу в системах рiзної фiзичної природи.
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