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The problem of the description of a local structure of granular
materials is discussed within the concept of existence of structural
invariants. The superimposition of this approach with the prob-
abilistic arguments concerning the crossover to the kinetics of a
transition between states with different measures gives a relevant
picture of the evolution with a reminiscence of the first-order phase
transition between states with different structural orderings.

1. Introduction

Granular materials are large assemblies of solid macro-
scopic particles. If they are non-cohesive, the forces be-
tween them are strictly repulsive. The particles are usu-
ally surrounded by a fluid, most often air, which may
play a role in the dynamics of a system. Examples of
such materials include sand, stones, soil, ores, pharma-
ceuticals, and variety of chemicals. The global behavior
of a large number of grains that only interact through
collisions and friction is typically nonlinear and different
from that of the other standard and familiar forms of
matter. Vibrated granular materials are perfect exam-
ples of this multiscale nonlinearity. Despite the long-
term tradition among engineers, granular media have
attracted a considerable amount of attention within the
physics community over the last decade. This is partly
due to the realization that some methods of statisti-
cal mechanics under appropriate circumstances could be
useful in the understanding of certain phenomena which
are observed in granular materials. The unique status of
granular materials is based on two characteristics: the
ordinary temperature plays no role, and the interaction
between grains are dissipative because of the static fric-
tion and the inelasticity of collisions. There are no long-
range interactions between individual grains or between
individual grains and the walls of a confining container.
Yet despite this seeming simplicity, a granular material
behaves itself differently from any of the other familiar
forms of matter – solids, liquids, or gases. For instance,
one can cite internal stress fluctuations, strain localiza-
tion, non-Newtonian rheology, spontaneous clusteriza-

tion, size segregation, or creation of spatial patterns. All
these phenomena have no equivalent in classical solid- or
liquid-state physics. Therefore, granular material could
be even considered as an additional state of matter in
its own right [1–5].

Attempts toward understanding and controlling both
static and dynamic properties of granular materials are
thus of the highest interest to many fields of physics
(both theoretical and experimental), applied science,
and engineering. We are focused here on the understand-
ing of the ways of description of the local structures of
granular materials and the crossover between the macro-
scopic behavior of granular materials (g.m.) and their
microstructures.

The present state of the theory of physical processes
which occur in g.m. when they are subjected to gentle
internal perturbations of different types is mainly based
on the intuitive concepts of the isomorphic character of
the physical processes which occur in g.m. and in typical
gases, liquids, and solids.

To study the local structure of g.m., contrary to typ-
ical condensed matter objects, like liquids or solids, it
is not enough to know the positions of the centers of
grains which would allow one to reconstruct their space
arrangements.

Even being at rest, g.m. have a complex topology of
the interparticle space (free volume) which contributes
to the formation of a local order in the form of coex-
istence of the clusters of a different symmetries on the
appropriate scales.

When being weakly shaken, the conglomeration of
beads shows a complex dynamic behavior which is char-
acterized by transitions between the different symme-
tries in local arrangements of grains within certain
scaled-domains.

In addition of the grain shape, dimension of the sys-
tem, and boundary conditions, the important role in the
complex dynamic behavior of g.m. is played the effects
of inelastic intergrain collisions, the presence of inter-
grain media (vacuum, water, another species, etc.), and
magnetization.
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The complex structure of g.m. makes their description
impossible in terms of one structural parameter only. In
what follows, we are going to show a possible way to
introduce the statistical-like measure for a local order
in g.m., which leads to a respective kinetics of the pro-
cesses with a transformation of local structures of differ-
ent types.

Note that the modern concepts of a local structure of
condensed phases of matter include also a diversity of
models which have mostly an intuitive (ad hoc) origin.
The majority of such approaches has a quite solid back-
ground, i.e., they are based on the idea of that the order
is convenient, and the information about a crystalline
structure can be obtained in a very compact way, by re-
taining only the information about a single fundamental
cell plus some translational symmetry operations.

2. Definition of the Order Parameter in Terms
of Structural Invariants

We now restrict our analysis, by considering the discrete
set {Gi}(i = 0, 1, 2, ...) of points with coordinates r(i)
representing the centers of particles (grains) which sur-
round the central one located at the origin of the coor-
dinate frame.

We will follow the common paradigm that the geomet-
rical structure of {Gi} can be determined by comparing
of {Gi} with an alternative set of points {Γi} which form
a collection of familiar ideal (ordered) structure patterns
(say, fcc, hcp, etc.).

Such a collection {Γi} can be chosen from alternative
phenomenological sources of information about a local
construction of the selected units. It is worth noting
that there is a limited direct information, for example,
about the local structure of typical liquids [6].

On the contrary, the local structure of g.m., especially
in 2D case, and its transformations are observable al-
most by the naked eye. Furthermore, the problem of
the analysis of a local structure is reduced to the di-
rect observation and classification with respect to a set
of ordered domains of given (crystallographic) symme-
tries. The mapping of the structure is realized by means
of scaled superimpositions of resemblant figures, so it
looks like a many-particle system structured on meso-
and even macroscales.

Having made the mentioned construction, each state
of the ensemble of grains which is stroboscopically ob-
served can be quantitatively interpreted as fluctuational,
i.e. as a deviation from the given set of {Γi}.

In other words, one can see the local structure as an
excitation of one of the selected so-called “ideal” ordered
states.

In the phase space, those picture looks like a divi-
sion into domains, each of which represents the deformed
state of one of the patterns {Γi}.

The formal quantitative description within the above-
outlined approach can be made by means of introducing
the relevant local order parameter [7, 8].

Consider the structure of a selected group consisting
of a finite number of particles. The structure of such an
object is uniquely determined by the set of the coordi-
nates of its constituent particles (grains) or by the finite
set of algebraically independent invariants.

Selecting the appropriate central particle, we direct
the vectors {r(α)} centered in this grain to the particles
in their neighborhood limited by the certain distance r0.

The role of r0 could be played by the radii of coor-
dinate shells (spheres) or experimentally observed do-
mains which have some specific crystallographic order-
ing. Formally, the set {r(α)} is already the order param-
eter which describes the structural order.

Strictly speaking, {r(α)} is a strongly fluctuating value
in gases. For the crystals, it has the same value for every
vortex.

In the case of granular perturbed materials, one can
adopt the conception typical of the physics of condensed
matter: the fluctuations of {r(α)} are weak enough.

Moreover, the weak fluctuations are prescribed both
for the length and for the relative angles between the
vectors from the set {r(α)}.

For the description of a structure on a larger scale,
more convenient are tensor values which can be con-
structed as follows:

T (t)
α1...αl

=
∑
(α)

ω(r(a))t(a)α1...αl
, (1)

and

T
(0)
lm =

∑
ω̃(r(a))tlm, (2)

where

t(a)α1...αl
= r(a)

α1 ...r
(a)
αl , (3)

and r(a)
α1 ...r

(a)
αl is a Cartesian tensor,

t
(a)
lm = Ylm(Ω(a)), (4)

Ω(a) = {ϕ(a), θ(a)} denotes the polar and azimutal angles
that correspond to the direction r(α)/

∣∣r(α)
∣∣.
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In (3) and (4), ω(r(a)) and ω̃(r(a)) are the weight func-
tions which define the probabilities of the contributions
to T (t)

α1...αl from different coordination shells and to T (0)
lm

from the different orientational configurations, respec-
tively.

The tensors T (t)
α1...αl and T (0)

lm can be treated as trans-
lational and orientational components of the global or-
der parameter which characterize the considered system.
Moreover, t(a)α1...αl and Tα1...αl are the linear combina-
tions of t(a)lm and Tlm, respectively. The tensor Tα1...αl

belongs to the basis of the 3D rotational symmetry group
O3. The translational and orientational order parame-
ters given by Eqs. (1) and (2) adopt the construction
of 2(l − 1) independent (structural) invariants {Ψ(k)

l },
l = 0, 1, ...2(l − 1).

Furthermore, the structural invariants characterize
the relative positions of all the particles of the structure.

Note that the value of T (0) gives us the number density
of particles which is averaged over V0. The quantity

T
(2)
ij = T̃

(2)
ij −

1
3
δij T̃

(2)
ij (5)

is the density of quadrupole moments.
The quantities T (4)

λ1λ2λ3λ4
and T

(5)
λ1λ2λ3λ4

describe the
ordered states in the systems of given crystallographic
symmetries.

The definitions given by Eqs. (1)–(4) have been con-
structed under the assumption that all the particles-
grains are equivalent to each other. If this condition
does not hold, one has to determine a relevant set of
tensor values κT (n) for every component κ (κ = 1, 2, ...).

The intensive experimental investigations of the struc-
ture of granular materials show that both ordered and
disordered domains coexist in most cases. Undergo-
ing the external perturbations, these domains possess
a plenty of transformations which can be described as
transitions between quasistationary states.

3. Probabilistic Analysis and Recognition
Problems in Studying a Local Structure in
the Space of Structural Invariants

2(l − 1) independent invariants {Ψk
l } constructed from

the order parameters given by (1) and (2) create a struc-
tural invariants in the phase space. These structural in-
variants characterize the relative positions of the grains
(without taking their spatial orientation into account).

Considering the sensitivity of structural invariants to
the scale-hierarchy of fluctuations and concluding that

the high-rank invariants are not significant for the struc-
tural analysis as compared with the low-rank ones, we
expect that, for each value of l, there exists a character-
istic scale ξl of the grain displacement which corresponds
to the selected deviation of {Ψk

l }. In the semiquantita-
tive scenario of fluctuations of the structural invariants,
ξl decrease with increase in l to the border, where ξ be-
comes comparable with a relevant ξl. Under this condi-
tion, the respective invariant {Ψk

l } fluctuates so strongly
that the system is able to move to other states.

For instance, let us consider a 3D cluster with the
fcc, hcp, and icosahedral symmetries as possible ones for
structured domains. Each cluster include 1 central and
12 “inner outer” granules equidistantly positioned from
the central one. The expected scenario of the evolution
looks as follows. Initially, each of 12 particles which
belong to the considered domain are randomly displaced
relative to the surface of a sphere with radius ξ around
the central grain.

Along the line discussed in Section 2, we can intro-
duce two order parameters, namely, the space order-
parameter Rlm defined as

Rlm =
1
N

∑
a

Ylm(Ω(a))
∣∣∣r(a)

∣∣∣l , (6)

and the orientational order-parameter Qlm:

Qlm =
1
N

∑
a

Ylm(Ω(a)). (7)

The relevant structural invariants are

R2
l =

4π
2l + 1

l∑
m=−l

|Rlm|2 , (8)

Q2
l =

2π
2l + 1

l∑
m=−l

|Qlm|2 , (9)

where Ylm are spherical harmonics, and the angle Ωa ≡
{ϕ(a), θ(a)} fixes the direction r(α)/

∣∣r(α)
∣∣.

The nonfluctuating group of grains (Rl = Ql) are char-
acterized by the values collected in Table.

Structure invariants {Qi}

Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

fcc 0 0.1909 0 0.5745 0 0.4039 0 0.0129
hcp 0.0761 0.0972 0.2516 0.4848 0.3108 0.3170 0.1379 0.0102
ics 0 0 0 0.6633 0 0 0 0.3629
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Fig. 1. Nonoverlapping distributions for Γ1 and Γ2

The analysis of data presented in Table shows that,
indeed, Q6 is very sensitive to any considered kind of
crystallization (ordering).

If we look for the statistics of independent fluctua-
tions of grain positions, then it is clear that the proba-
bility density of fluctuations of the invariants is different
from the statistics of thermal fluctuations in the molec-
ular systems, where correlations are present due to the
interparticle interaction.

4. General Concept of a Quasistatistical
Approach

In order to study a finite collection {Γi} of selected pat-
terns, we describe the probability distribution of fluctu-
ations of the invariants Ψl ρ(Ψ) in the phase space. Let
the distribution ρ(Ψ) have the neighboring distribution
ρn(Ψ) at some distance that can represent the current
observable states (which can be interpreted as deformed
patterns with selected symmetries of their distributions).
Along this line, by definition, we have

dW = ρn(Ψ(0); ξ)dΨ(0). (10)

Let us fix that Eq. (10) gives the probability to find
the values of Ψl(l = 0, ...) which represent, in turn, fluc-
tuations of the selected pattern {Γn} in a vicinity of the
space volume dΨ(0) =

∏
(l)

dΨ(0)
l which surround the point

Ψ(0).
Then, the collection of inequalities

ρn(Ψ) < const, n = 1, 2, ..., (11)

defines the domains in the phase space which represent
the observable current states (deformed of {Γn}).

Fig. 2. Overlapping distributions for Γ1 and Γ2

A further possible scenario of the above-described
probabilistic analysis could be qualitatively the following
one.

When the radius ξ is small, the distributions do not
overlap with one another (Fig. 1).

In such a case, each point Ψ represents a deformed
state of some selected pattern (namely, denoted as Γ1

and Γ2). Moreover, each pattern Γi cannot simultane-
ously correspond to another one Γj (i 6= j).

As ξ increases, two neighboring distributions at the
appropriate values of ξ > ξ̃ start to overlap with each
other (Fig. 2).

In this case, Ψ can correspond with a certain prob-
ability to two different patterns, and this real physical
situation happens for gently shaken granular materials.

For the numerical analysis, the classification of the
types of local structures can be made, for instance, by
adopting some statistical (recognition) hypotheses. This
can be done by means of introducing the error function
of recognition among two selected patterns, say, Γ1 and
Γ2:

E =
∫

min{ρ1(Ψ); ρ2(Ψ)}dΨ. (12)

The integral in (12) is defined over the whole phase
space of invariants, and the densities ρi(Ψ) (i = 1, 2)
characterize fluctuations of the patterns Γ1 and Γ2. The
total error function E given by (12) minimizes a mistake
in the recognition.

The statistics of fluctuations of the invariants is gov-
erned by the effective Hamiltonian. Adopting the general
concepts of the theory of fluctuations in vicinities of the
selected collection of states {Ψ(0)

i } which are supposed
to be stationary ones, we write the probability density
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for fluctuations in the form

ρ(Ψ) ∼ exp{−F (Ψ)}. (13)

One can expand the function F (Ψ) in a Taylor series
in vicinities of the set of states {Ψ(0)} up to the terms
associated with the most probabilistic ones:

F (Ψ) = F (Ψ(0)) +
1
2!

∑
k,l

βklΨ′kΨ
′
l+

+
1
4!

∑
k,l,m,n

γklmnΨ′kΨ
′
lΨ
′
mΨ′n. (14)

Terminating expansions (14) by quadratic terms and
substituting (14) in (13) yields the multidimensional
Gaussian distribution

ρi(Ψ) =
∏
(l)

ρ
(l)
i (Ψl);

ρ
(l)
i (Ψl) =

1√
2πσ(l)

i

exp

{
− (Ψl − 〈Ψl〉i)2

2(σ(l)
i )2

}
, (15)

where σ
(l)
i are the mean-root-square deviations, Ψ′ =

Ψ−Ψ(0), βkl and γklmn are the matrices, whose eigenval-
ues can be extracted from the experimental data (obser-
vation) related to measurements of the local structure.

The trivial fluctuation kinetics which describes the re-
laxation of the structural invariants introduced above
can be viewed as follows.

The simplest kinetic equation for fluctuations of the
structural invariants Ψ in a vicinity of the stationary
state Ψ(0) based on concept (13)–(15) looks as follows:

∂Ψ′

∂t′
= ρ{−F (Ψ′)} ∼ exp{−F (Ψ′)}. (16)

Equations (16) and (14) bring us to the relevant type
of kinetics which is governed by the differential equations
familiar from the fluctuation theory of phase transitions
[9,10].

5. Free Volume Kinetic Model

The possibilities of the approach given above can be esti-
mated by its comparing with the mean-field free-volume
kinetic scenario [17]. Namely, in order to model a com-
pact gently agitated granular material, a free-volume ki-
netics is often in use. In this framework, one can describe

the process, where a solid particle (associated with a
grain) with volume ω can jump into a hole of the ap-
propriate size Ω distributed with a certain distribution
function f(ω/Ω). The simplest rate equation of type
(16) which describes such a free volume kinetics in this
case takes a form

dη

dn
= kf, (17)

where the variable η is the packing fraction, and k is
a kinetic coefficient. Introducing the limiting maximum
values for the compactivity ηm and estimating the sim-
plest Poisson distribution for the free volume

Ω = ω

(
1
η
− 1
ηm

)
, (18)

one has

dη

dn
= k exp

(
− ηmη

ηm − η

)
. (19)

The rigorous analytical solution of this equation which
connects the packing fraction η with the number of taps
n can be obtained in the following functional form:

(ηm − η1) exp
(
− η2

m

ηm − η1

)
+ η2

mE1

(
− η2

m

ηm − η1

)
−

−(ηm − η) exp
(
− η2

m

ηm − η

)
− η2

mE1

(
− η2

m

ηm − η

)
=

= k exp(ηm)n. (20)

Here, η1 is the initial compactivity, and E1(z) is an in-
tegral exponent. If the initial state is already densified,
i.e. η1 → ηm

(
η2
m

ηm−η1 � 1, η2
m

ηm−η � 1
)
, Eq. (20) yields

η = ηm −
η2
m

lnγ + ln
(
a
γ + n

) , (21)

where

a =
∣∣∣∣(ηm − η1) exp

(
− η2

m

ηm − η1

)
+ η2

mE1

(
− η2

m

ηm − η1

)∣∣∣∣ ,
and γ = k exp(ηm). This logarithmic law for the granu-
lar compaction has been reported many times either by
experimentalists or by theoreticians [1–3, 5–17]. When
the system is initially diluted, so that η2

m/(ηm− η1) < 1
and η2

m/(ηm − η) < 1, we obtain

η = η1 + γn, (22)
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i.e. the behavior deviates strongly from a logarithmic
one.

We note that if η2
m/(ηm− η1) < 1, but η2

m/(ηm− η) >
1, Eq. (20) again yields the logarithmic law given by
(21). Independently from how the system was initially
prepared (diluted or densified), the model gives the slow
logarithmic growth rate of η in the limit when η tends
to ηm .

This simple argumentation demonstrates the basic
possibility to get different kinetic scenarios, i.e. the
logarithmic dynamics and more faster stages of com-
paction, already known in the framework of mean-field
arguments, including the free-volume kinetic model. Dif-
ferent scenarios are found in experiments, and a mixture
of those dynamics is more appropriate for describing the
experimental data. This will be discussed in the next
sections.

6. A Quasistatistical Model of Inherent States

In order to connect the dynamics of granular systems
with the geometrical and topological properties of their
local configurations, we write firstly the configurational
partition function Q for N undistinguishable particles
in a volume V as a sum over contributions associated
with a set of ideal states ”α” which was introduced in
Section 2, as the measure of a local structure. This col-
lection of states {Γα} can be associated with local min-
ima of the energy of a granular system U(r1..., rN ). One
can observe these states experimentally by means of sim-
ple stroboscopical observations of gently shaken granular
systems. Every stop-picture which escorts the granular
dynamics makes our system be frozen in some state. The
nature of these states is normally considered quasista-
tionary [11–14]. This phenomenological evidence forces
us to adopt the concept that the probability to find the
particles-granules in the states which correspond to given
configurations is locally maximum:

Q =
∑
α

e−βF
α

=

=
∑
α

1
N !Λ3N

∫
{Γα}

dr1...

∫
drNe−βU(r1...,rN ), (23)

where β = (kBT )−1, Λ = h/(2πmkBT )1/2, m is the
granule mass, and the integral in Eq. (23) is taken
over the regions {Γα} which are characterized by the
volumes in the configuration space defined around the
states {r1...rN}. In the limit when {Γα} do not overlap

one another, relation (23) can be considered as a config-
uration integral.

For a given state α, we divide the volume V into N
cells Cα1 ...CαN constructed around the positions r1...rN .
They are characterized by a set of parameters nαi which
carry the complete information about the geometrical
and topological properties.

The volume of the cell Cαi is v(nαi ) =
∫
Cαi

dr, and the
total volume is V =

∑
i

v(nαi ).

The configuration integral (23) is taken over the acces-
sible packing configurations associated with each state
α. In each configuration, the number of particle in a
given cell can vary within the interval (mi = 0, N), with
the constraint

∑
i

mi = N . Note that these cells are

constructed around particular positions that maximize
the probability to find one particle in that given region.
Therefore, we assume that the configurations with the
cells singly occupied would maximally contribute to Fα.
Superimposing the concepts of the free volume with the
probability of finding the distinguished cell singly occu-
pied, we have reduced the expression for the free energy
to a sum over the contributions from each cell ıiȷ which
is fully characterized by its geometrical and topological
parameters nαi . As a consequence, we obtain

Fα = F ({Nα(n)}),

where Nα(n) is the number of cells, each of which char-
acterized by the set of n. Different α are associated with
distinct cellular partitions.

Therefore, Q can be written as

Q =
∑
{N(n)}

Ω({N(n)})e−βF ({N(n)}), (24)

where Ω({N(n)}) define the number of distinct space
partitions made with the set {N(n)}.

The cells from the states associated with disordered
(noncrystalline) structures have, in general, different
shapes and volumes. For instance, for cells identical to
the fcc crystalline packing, Ω = 1.

Note that, rigorously speaking, this quantity can be
only modeled or calculated numerically to estimate its
extrema, but it is not evaluated in general.

Indeed, the maximum number of distinct configura-
tions (different arrangements of N cells distributed in
groups of N(n)) is

Ω({N(n)}) =
N !∏

(n)

N(n)
. (25)
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This maximal value cannot be achieved generally, and
the total number of distinct configurations can only be
approximated by its quality.

Since the total number of distinct configurations must
correspond to the total number of minima of the poten-
tial energy, the configuration energy per particle can be
given by Sc = ln Ω

N .
Therefore, in order to calculate the dynamics within

the outlined approach, one must firstly to extract (from
the experiment or alternative sources) a set of attainable
domain-cell shapes associated with the above-described
so-called inherent states and then to estimate their com-
binations in numbers and sizes with the help of (24)
which maximally contribute to the partition function.

As for the patterns of a given selected symmetry which
follows from the experimental observations of a granular
packing [15-17], it can be shown that the relevant dy-
namics of the relaxation in vicinities of quasistationary
states follows the Vogel–Fulcher behavior.

The analysis of possibilities of the above-described ap-
proach and its attitude to the experimental observations
of granular kinetics will the matter of a separate paper.

7. Random Close Packing of Hard Spheres and
Phase Transitions in Granular Materials

Experimental researches [15–17] discovered a first-order
phase transition in a 2D granular fluid excited by vi-
bration from below and confined by a floating plate
above. The steady-state transition occurs between a
crystal and a gas and is characterized by discontinuous
changes in the density and the temperature. It shows a
rate-dependent hysteresis and obeys the Lindemann cri-
terion for a melting. Although the granular systems do
not conserve the energy, and the concept of free energy is
not properly applicable even at steady-state situations,
since there is a constant flow energy through the sys-
tem, the idea of applying the thermodynamic ideas to a
nonequilibrium steady-state is at the forefront of current
statistical physics.

The phenomenon of random close packing is normally
associated with samples produced by shaking. More-
over, it is known that the volume fraction beyond the
value 0.64 can be attained by cyclic shearing, and this
phenomena also accompanied by the appearance of small
crystal-like domains. For instance, during the horizontal
shaking, the volume fractions up to 0.70 accompanied by
a crystalline ordered domains have been observed [17]. It
is commonly observed in experiments that, above a vol-
ume fraction of 0.64, the boundary between two regimes
(states) is observed: at volume fractions below 0.64, the

structures of g.m. are random. Above 0.64, there ap-
pears some ordering in the form of domains with a crys-
talline order. To the best of our knowledge, no exper-
iments with g.m. just above a volume fraction of 0.64
were reported till now. The numerous experimental ob-
servations and the numerical analysis yield the idea of
the random close packing as a phase transition. This
phase transition seems to occur by the following sce-
nario. Let the distribution p(m)η describe the mixed
phase which corresponds, as follows from experimental
data, to the interval of volume fractions 0.49 ≤ η ≤ 0.54.

By definition, we adopt that the distribution p(m)η is
represented by the average of the distributions of pure
phases 1 and 2:

p(m)η = cp1 + (1− c)p2, (26)

where p1 corresponds to a distribution of the highest
density phase (η = 0.54) and p1 is a distribution of the
lowest density phase (η = 0.49). Respectively, 0 ≤ c ≤ 1
is such that p(m)η corresponds to volume fraction η. In
a certain sense, relation (26) is merely a statement of the
fact that distinct phases are separated, when coexisting
in equilibrium, and each phase occupies a definite vol-
ume. The role of distributions p1 and p2 can be played
by the probability functions described in Section 5.

Furthermore, the distribution p(m)η is for the infinite
system, and this means that the fraction c of samples
would represent an infinite system at the volume frac-
tion, say, η1 = 0.54. Respectively, the fraction 1 − c
would represent an infinite system at the volume frac-
tion η2 = 0.49. Along this line, we assume, as generally
believed, that the value η1 = 0.49 is the volume frac-
tion of “freezing” (i.e. “highest random density”), and
the solid phase could have a crystalline order (e.g., fcc).
Intuitively, at any volume fraction above the freezing
point, there is a nonzero probability to see an infinite
ordered crystal. It is the use of the infinite-volume limit
together with the probabilistic formalism that produces
a sharp phase transition between disorder and order in
equilibrium statistical mechanics [9–10].

So, we emphasize that there is a sphere packing with
the volume fraction η = 0.49 which might be random.
However, the total of all such packings has probability
zero as compared with the uniform distribution at the
packing with volume fraction η.

We note, while this hard-sphere model argumentation
is not directly applicable to the granular matter which
is our proper subject, it shows, nevertheless, that the
intuitive notion of random close packing is not inherently
inconsistent, as it was claimed some times.
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At the same times, it is clear that traditional hard-
sphere model does not include the effect of gravity and
thus cannot represent properly the properties of granular
matter. However, a slightly modified ensemble frame-
work was proposed in [18] as a model for granular sys-
tems. This approach use a uniform distribution of static
monodisperse sphere packings with a fixed volume frac-
tion, which are mechanically stable under gravity.

8. Conclusions

The introduction of a local measure for the granular ma-
terials in a vicinity of the quasistationary state, being
superimposed with a probabilistic measure for interstate
transitions, has given the relevant kinetics which has a
reminiscence of phase transitions. It is a wide spectra of
structural invariants that can be used as elements for the
classification of the symmetry of the stationary states. A
numerous experimental evidences indicate the existence
of certain features in the relaxation picture for the rel-
evant order parameters which belong to the scenario of
phase transitions [5,16,19].

It is shown that the kinetics of the formation of com-
pacted states in vibrated granular systems can be sat-
isfactorily described within a mean-field free-volume ki-
netic model [16]. The structural transformations in gen-
tly vibrated granular materials in vicinities of ordered
domains show a strong visual analogy with a morphol-
ogy of phase ordering systems [19], which is described
in the present paper. As a next step, the quantitative
parametrizations of the experimentally observed crystal-
lization and the pattern formation in terms of stereospe-
cific parameters within the above-proposed approach are
strongly required.

The role played by inelasticity in the determination
of a local structure and the selective dispersive kinetics
should be examined separately.

The author expresses his gratitude to N. Vandewalle
for the valuable discussions.
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СТРУКТУРА ТА ДИНАМIКА ГРАНУЛЬОВАНИХ
МАТЕРIАЛIВ ЗА НАЯВНОСТI ЗОВНIШНIХ
ЗБУРЮЮЧИХ ПОЛIВ

О.I. Герасимов

Р е з ю м е

Проблема опису локальної структури гранульованих матерiа-
лiв запропонована до розгляду з концепцiєю iснування стру-
ктурних iнварiантiв. Доповнений iмовiрнiсним сценарiєм пере-
ходiв мiж квазiстацiонарними станами пiдхiд дає можливiсть
опису зв’язкiв мiж параметрами локальної структури у вигля-
дi iнварiантiв з кiнетикою змiн станiв впорядкування, що має
ознаки фазових перетворень першого роду.
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