ТЕХНИКА И ТЕХНОЛОГИИ СВЧ

Конструктивная и общая емкость диодов определяется на тестовых модулях, которые изготавливаются в едином технологическом цикле на пластинах GaAs.

Монолитные умножители частоты. Монолитно-интегральная схема умножителя частоты функционально реализована на основе волноводно-щелевой и копланарной линий передачи.

Для преобразователя частоты (**ПРЧ**) диапазона 60—68 ГГц разработана МИС удвоителя частоты, которая характеризуется следующими параметрами: $f_{\rm BX}$ =32±2,0 ГГц, $f_{\rm BbIX}$ =60...68 ГГц, КПД η ≥25%.

Для предотвращения излучения второй гармоники МИС удвоителя частоты формируется на волноводно-щелевом резонаторе фильтра нижних частот. Подавление ближайших нечетных гармоник составляет не менее 25 дБ.

Для ПРЧ диапазона 90—100 ГГц разработана МИС утроителя частоты ($f_{\rm Bx}$ =32±2,0 ГГц, $f_{\rm Bbix}$ =90... 104 ГГц, η ≥15%), подавление второй и четвертой гармоник составляет не менее 20 дБ.

Диодная умножительная структура характеризуется следующими параметрами:

- нелинейная емкость $C_i = 50...60 \ \phi \Phi;$
- коэффициент модуляции $C_{0,0} = 3,5...4,0;$
- активное сопротивление потерь 4—5 Ом;
- обратное напряжение при токе 1 мкА 12—15 В.

Функционально МИС утроителя частоты реализована комбинацией подвешенной полосковой и копланарной линий передачи.

На **рис. 1, 2** приведены зависимости потерь преобразования L_{np} от частоты *f* экспериментальных образцов преобразователей частоты 5- и 3-миллиметрового диапазонов, соответственно.

Характеристики преобразователей частоты:

— диапазон рабочих частот, ГГц	60—68;
	90—100
— потери преобразования (для обоих диапазонов),	дБ 8
 полоса промежуточных частот, ГГц 	0,5-4,0
 — динамический диапазон, дБ 	80
— КСВН входа, ед.	≤2,0
— интервал рабочих температур, °С	-50+50

Разработанные конструкторско-технологические решения преобразователей частоты 5- и 3-миллиметрового диапазонов ориентированы на применение в качестве функционально завершенных узлов приемопередающей аппаратуры диапазона крайне высоких частот, построенной по модульному принципу.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Асеева Е. Н., Май В. И., Май А. В. и др. Монолитный балансный смеситель диапазона частот 80—100 ГГц // Технология и конструирование в электронной аппаратуре.— 2003.— № 3.— С. 39—40.

2. Porterfield W., Crowe T. W., Bradley R. F., Erick N. R. A highpower fixed-tuned millimeter-wade balanced frequency doubler // IEEE Trans.— 1999.— Vol. 47, N 4.— P. 419—425.

НОВЫЕ КНИГИ

Богатырев Е. А., Ларин В. Ю., Лякин А. Е. Большие интегральные схемы: Энциклопедия электронных компонентов.— Том 1 / Под ред. А. Н. Еркина.— М.: Издание журнала «Chip News», 2006.— 224 с.

Книга начинает серию энциклопедических справочников по современной элементной базе электронной техники. Отличительной особенностью справочника является широкое

использование ссылок на электронные базы компонентов фирм-производителей: в книге приводятся все необходимые сведения, позволяющие понять принципы работы, систему классификации, терминологию, типовые параметры и схемы включения, а вся фактическая информация о конкретных микросхемах содержится в виде ссылок на сайты производителей. Такой подход позволил в книге небольшого формата разместить данные о 10 видах современных БИС: ЦАП, АЦП, синтезаторах частот, ИМС памяти, микропроцессорах, микроконтроллерах, программируемых логических матрицах, схемах с квадратурной обработкой и кодеках. Книгу нельзя рассматривать как конспект учебника или справочник инженера, это именно энциклопедия, в которой приведены необходимые теоретические по-

нятия об основных принципах построения и структурные схемы БИС и имеется много справочной информации: типовые схемы включения, обозначения контактов, перечень ведущих фирм-производителей.

Книга может быть использована как учебное пособие по курсу ЭК, в качестве руководства по выбору элементной базы для менеджера, занимающегося поставками ЭК, а также может быть полезна как краткий справочник для разработчиков РЭА.

КНИГИ

HOBBIE

Рис. 2. Монолитный усилитель промежуточной частоты: *а* — электрическая схема; *б* — типовая схема включения

УПЧ структурно состоит из двух усилительных каскадов МИС.

МИС УПЧ представляет собой монолитный двухкаскадный усилитель, собранный на полевых транзисторах с барьером Шоттки (ПТШ) по схеме с общим истоком (ОИ). Оба каскада охвачены отрицательной обратной связью по напряжению. Помимо отрицательной обратной связи, для компенсации входной емкости ПТШ используются отрезки микрополосковых линий, выполненные на кристалле GaAs и обеспечивающие требуемую АЧХ усилителя.

На **рис. 2** приведены электрическая схема и типовая схема включения монолитного усилителя промежуточной частоты. Размеры кристалла МИС — 2,8×3,0×0,1 мм.

ТЕХНИКА И ТЕХНОЛОГИИ СВЧ

В рабочем диапазоне частот коэффициент передачи МИС не менее 18 дБ, а коэффициент шума не превышает 2,5 дБ. Выходная мощность МИС при компрессии коэффициента усиления на 1 дБ составляет 16,0 дБм. Это позволяет получить динамический диапазон усилителя не менее 90 дБ и КСВН входа/выхода МИС менее 2, а также непосредственно каскадировать МИС для получения требуемого значения коэффициента усиления УПЧ.

Кристаллы МИС УПЧ монтируются на миниатюрное позолоченное основание с последующей термокомпенсацией внешних выводов для стабилизации "нуля", что позволяет проводить измерение параметров МИС в измерительной оснастке.

Технические характеристики монолитного приемного модуля

Диапазон рабочих частот, ГГЦ	33,037,0
Диапазон промежуточных частот, ГГЦ	0,52,5
Коэффициент шума, дБ	68
Коэффициент передачи, дБ	35,0
Динамический диапазон, дБ	60,0
Селективность по зеркальным и комбинационным	
каналам приема, дБ	-40,0
КСВН входа/выхода, отн. ед.	2,0/2,0
Интервал рабочих температур, °С	-40+50
Напряжение питания, В	+15
Масса, кг	0,15

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Maas S. A., Chang K. W. A broadland, planar, doubly balanced monolithic Ka-band diode mixer // IEEE Trans. MTT.— 1993.— Vol. 41, N 12.— P. 2330—2335.

2. Porterfield W., Crowe T. W., Bradley R. F., Erick N. R. A highpower fixed-tuned millimeter-wade balanced fregnency doubler // Ibid.— 1999.— Vol. 47, N 4.— P. 419—425.

3. Асеева Е. Н., Май В. И., Май А. В. и др. Монолитный балансный смеситель диапазона частот 80—100 ГГц // Технология и конструирование в электронной аппаратуре.— 2003.— № 3.— С. 39—40.

4. Yhland K., Rorsman N., Garcia M., Merkel H. F. A symmetrical nonlinear HFET/MESFET model suitable for intermodulation analysis of amplifiers and resistive mixers // IEEE Trans. MTT.— 2000.— Vol. 48, N 1.— P. 15—21.

НОВЫЕ КНИГИ

Дмитриков В. Ф., Сергеев В. В., Самылин И. Н. Повышение эффективности преобразовательных и радиотехнических устрои́ств.— М.: Радио и связь; Горячая линия — Теком, 2005.— 424 с.

Изложены энергетическая теория реактивных фильтрующих цепей и на этой основе методы расчета LC-фильтров с минимальной массой, габаритными размерами, потерями энергии и нестабильностью характеристик. Рассматриваются схемы и методы дискретного выходного напряжения ключевых генераторов с улучшенным спектральным составом. С использованием разработанного метода гармонической «стационаризации» проведен анализ ключевого генератора напряжения с учетом цепей постоянного тока, сводящегося к нестационарным системам с периодически изменяющимися коэффициентами; найден и исследован режим с улучшеным спектральным составом и улучшенной электромагнитной совместимостью. Изложены вопросы проектирования ключевых источников питания; проведен анализ их устойчивости и динамических характеристик при использовании однозвенных и двухзвенных сглаживающих фильтров с характеристиками Чебышева, Баттерворта и равнозвенных фильтров.

Книга адресуется специалистам в области радиотехнических и преобразовательных устройств. Будет полезной преподавателям вузов, аспирантам и студентам соответствующих специальностей.

КНИГИ

HOBBIE