Д. ф.-м. н. А. В. КАРИМОВ, к. ф.-м. н. Д. М. ЁДГОРОВА, к. т. н. Р. А. САИДОВА, Ф. А. ГИЯСОВА, Ш. А. ХАЙДАРОВ

Узбекистан, г. Ташкент, НПО «Физика–Солнце» E-mail: karimov@uzsci.net Дата поступления в редакцию 18.06—12.09 2007 г. Оппонент д. х. н. В. Н. ТОМАШИК (ИФП им В. Е. Лашкарёва, г. Киев)

ОПТИМИЗАЦИЯ РАСПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ НОСИТЕЛЕЙ ПО ТОЛЩИНЕ ЭПИТАКСИАЛЬНЫХ СЛОЕВ

Модифицировано устройство для жидкостной эпитаксии полупроводниковых соединений типа А^{ШВV}. Показана возможность управления градиентом концентрации примесей, создающим внутренние электрические поля в фотоприемной и активной областях структур.

Необходимость регистрации слабых оптических сигналов, поступающих от волноводных излучателей в волоконно-оптических системах, требует дальнейшего повышения эффективности полупроводниковых фотоприемных структур, что может быть достигнуто за счет создания внутренних электрических полей в известных и модифицированных структурах. Внутренние электрические поля могут быть получены на фронтальной поверхности методами диффузии [1]. Однако при этом ожидаемые эффекты могут быть сведены к минимуму из-за увеличения последовательного сопротивления за счет перекомпенсации определенного объема фронтальной части.

Используя возможности известных устройств [2-4], можно переориентировать их для достижения новых целей. Так, специальное устройство жидкостной эпитаксии [3], позволяющее вертикально подавать дополнительные порции растворов-расплавов с отличающимся составом, использовалось для получения варизонных эпитаксиальных слоев комбинированным способом — как в изотермических условиях, так и принудительным охлаждением [4]. Вместе с тем известные методы жидкостной эпитаксии не позволяют управлять направлением градиента или крутизной изменения внутреннего электрического поля. Так, при постоянной скорости охлаждения раствора-расплава с фиксированным объемом, из которого выращивается эпитаксиальный слой, концентрация носителей склонна к увеличению по толщине в слоях, легированных теллуром, и к уменьшению — при легировании оловом [5, с. 44—46], что обусловлено отличием коэффициентов распределения этих примесей. Заданное направление и градиент концентрации носителей можно получить, если в основной раствор-расплав, контактирующий с подложкой, добавлять с определенной закономерностью дополнительные порции растворов-расплавов с отличающейся концентрацией примесей.

В настоящей работе рассматривается способ получения заданного распределения носителей заряда по толщине выращиваемых эпитаксиальных слоев с помощью модифицированного двухпоршневого устройства путем смешивания двух растворов-расплавов (основного и дополнительного), в которых концентрации примесей отличаются не менее чем на два порядка.

Направление вектора градиента концентрации изменяется при смене мест основного и дополнительного растворов-расплавов. Если для получения положительного градиента в направлении роста концентрация носителей дополнительного раствора-расплава должна быть больше, чем основного (т. е. контактирующего с подложкой), то для получения отрицательного градиента концентрация носителей дополнительного раствора-расплава должна быть меньше, чем основного. Одновременное использование двух поршней позволяет получить в едином процессе сменяющийся градиент примесей по толщине эпитаксиального слоя, а при необходимости — усилить градиент примеси в заданном тонком слое.

Профиль и крутизна изменения градиента определяются как закономерностями смешивания порций и задаваемым количеством порций дополнительного раствора-расплава, так и возможностями устройств для жидкостной эпитаксии слоев.

Возможности устройств для жидкостной эпитаксии слоев

Известно, что рост эпитаксиальных слоев с гетеропереходом и с изменяющейся по координате запрещенной зоной получают с помощью устройства, позволяющего смешивать растворы-расплавы различного состава при изотермических условиях [6]. Эпитаксиальные слои с гомопереходами, а также с гетеропереходами, параметры которых зависят от составов растворов-расплавов, выращиваются с помощью сдвигового устройства с одним или несколькими слайдерами, попеременно контактирующими с подложкой, при принудительном охлаждении с постоянной скоростью [7, с. 18—30]. Многослойные структуры с резким *р-п*-переходом получают с помощью сдвигового устройства путем последовательного выращивания эпитаксиальных слоев при принудительном охлаждении раствора-расплава с переменной скоростью [8, 9]. Принципиальные возможности различных типов устройств выращивания

Возможности устройств для жидкостной эпитаксии слоев					
Типы устройств	Условия выращивания	Получаемые слои			
	Изотермические. Моментальное смеши- вание двух растворов-расплавов с раз- личным составом	Структуры с гетеропере- ходами на основе Ga _{1-x} Al _x As [6]			
	Изотермические. К основному раствору- расплаву добавляют несколько дополни- тельных с различными составами	Многослойные структуры с гетеропереходами. Ши- рина зоны зависит от со- става дополнительного раствора-расплава [10]			
3 →	Принудительное охлаждение одного раствора-расплава с постоянной и пере- менной скоростью	Структуры с гомо- и гете- ропереходами [11, с. 133— 139]			
	Принудительное охлаждение одного раствора-расплава с постоянной скоро- стью. Охлаждение с переменной скоро- стью используют для подавления диффу- зионных процессов	Многослойные изотипные и <i>p</i> - <i>n</i> -переходы [5, с. 70— 71]			
5. Универсальное сдвиговое устройство	Изотермическое смешивание двух раство- ров-расплавов. Принудительное охлаж- дение с различной скоростью	Структуры с резким <i>p–n</i> - переходом [9]			
6. → — — — — — — — — — — — — — — — — — — —	Комбинированное смешивание раство- ров-расплавов: изотермическое и сдви- говое с принудительным охлаждением с различной скоростью	Варизонные по толщине эпитаксиальные слои [3, 4]			
7 Модифицированное двухпоршневое устройство	Принудительное охлаждение (с различ- ной скоростью) двух растворов- расплавов с различной концентрацией примесей. Возможно выращивание слоев с положительным и отрицательным гра- диентом как в отдельности, так и в еди- ном процессе	Структуры с активными и фотоприемными областя- ми с различным градиен- том примесей по толщине			

эпитаксиальных слоев из жидкой фазы сведены в **табл. 1**.

Из анализа таблицы видно, что выращивание слоев из растворов-расплавов с фиксированным объемом позволяет получать лишь слои со ступенчатым изменением параметров по толщине. Следовательно, замена этих растворов-расплавов на растворырасплавы с управляемо изменяющимся во времени (возрастающим) объемом (заданной концентрацией примесей) позволит при различных условиях выращивать слои с плавно изменяющимися в широких пределах параметрами. При изотермических процессах рост слоя осуществляется за один прием в момент смешивания растворов-расплавов.

В устройствах выращивания слоев за счет охлаждения растворов-расплавов с фиксированным объемом, контактирующих с подложкой, параметры выращиваемых слоев определяются изменением растворимости материала [12, с. 139—141]. При этом постоянным остается отношение массы растворителя к площади подложки — P_a/S =Const, что приводит к неминуемому уменьшению концентрации компонента в расплаве, и процесс роста становится плохо управляемым. Например, примеси олова и теллура по толщине слоя распределяются с противоположным направлением градиента концентрации носителей [5, с. 76—89]. Учитывая зависимость выходных параметров полупроводниковых структур от профиля распределения концентрации носителей, которое путем управляемой подачи на подложку порций растворов-расплавов с различной массой позволило бы получить заданный профиль распределения концентрации носителения концентрации носителения концентрации носителем с различной массой позволило бы получить заданный профиль распределения концентрации носителем.

Таблица 1

Новое комбинированное двухпоршневое устройство [4] обеспечивает вертикальную подачу (как в изотермических, так и в неизотермических условиях) дополнительного раствора-расплава с концен-

трацией примесей N_2 на горизонтально расположенный основной раствор-расплав с концентрацией примесей N_1 . В ячейку горизонтально перемещающейся линейки, расположенной в нижней части устройства, помещается основной раствор-расплав с заданной массой

$$m_1 = P_1 + P'_1,$$
 (1)

а в цилиндрическую емкость, размещенную в верхней части устройства, помещается дополнительный раствор-расплав с массой

$$m_{2 \max} = P_2 + P'_2,$$
 (2)

где *P_n* — масса растворителя; *P'_n* — масса растворенного вещества.

Дополнительный раствор-расплав капает порциями. Масса порции m_0 зависит от диаметра капиллярного отверстия в цилиндре. (В нашем эксперименте m_0 =0,04 г.) Под действием поршня дополнительный раствор-расплав может выдавливаться по задаваемому закону (частота и скорость подачи порций, интервал времени между подачами). Необходимая при этом мера выдавливания раствора-расплава определяет шаг поршня. Масса порции выдавленного раствора-расплава зависит от отношения растворенного вещества, находящегося в цилиндрической емкости, к растворителю — P'_2/P_2 и определяется по формуле

$$m_{2x} = km_0 l^n + km_0 l^n \frac{P'_2}{P_2}.$$
 (3)

Здесь *lⁿ* — мера выдавливания раствора-расплава. Путем выбора различных значений меры выдавливания (**табл. 2**) задается динамика подачи дискретных порций, которая определяет профиль распределения концентрации примесей (носителей заряда). Концентрация смешанного раствора-расплава рассчитывается по известной формуле

$$N_{X} = \frac{m_{1}N_{1} + m_{2x}N_{2}}{m_{1} + m_{2x}},\tag{4}$$

т. е. принимает значение между N_1 и N_2 .

Таблица 2

Зависимость массы порций выдавленного раствора-расплава m_{2x} от закономерности их подачи при $m_0=0,04$ г

23		*		× 0
<i>l</i> , мм	$m_0 l^{1/2}$	$m_0 l$	$0,1m_0l^2$	$0,025m_0l^3$
4	0,08	0,16	0,064	0,064
8	0,113137	0,32	0,256	0,512
12	0,138564	0,48	0,576	1,728
16	0,16	0,64	1,024	4,096
20	0,178885	0,8	1,6	8
24	0,195959	0,96	2,304	13,824
28	0,21166	1,12	3,136	21,952
32	0,226274	1,28	4,096	32,768
36	0,24	1,44	5,184	46,656
40	0,252982	1,6	6,4	64

Пользуясь табл. 2, рассмотрим концентрационный профиль смешанных растворов-расплавов в зависимости от меры выдавливания (шага поршня) для конкретных значений смешиваемых растворов-расплавов.

Первый раствор-расплав состоит из растворителя массой $P_1=1,3$ г и растворенного вещества $P'_1=0,075$ г с концентрацией $N_1=4\cdot10^{17}$ см⁻³, а второй добавляемый раствор-расплав состоит из растворителя массой $P_2=2,5$ г и растворенного вещества $P'_2=0,145$ г с концентрацией $N_2=4\cdot10^{15}$ см⁻³. Находим из (3) массу добавляемых порций раствора-расплава m_{2x} . Далее, подставляя значения массы m_{2x} в (4), определим концентрацию смешанных раствороврасплавов.

Таблица 3

Данные для расчета концентрации (N, 10 ¹⁷ см ⁻³)
смешанных растворов-расплавов в зависимости
от меры выдавливания

<i>l</i> , мм	$m_0 l^{1/2}$	km_0l	$0,1m_0l^2$	$0,025m_0l^3$
0	4	4	4	4
4	3,77037	3,56591	3,81414	3,81414
8	3,68287	3,2176	3,34832	2,88083
12	3,61847	2,93191	2,78389	1,73985
16	3,56591	2,69335	2,25486	9,93829
20	3,52088	2,49116	1,81489	5,9341
24	3,48114	2,31759	1,46815	3,80296
28	3,44539	2,16699	1,20027	2,6134
32	3,41277	2,03506	9,93829	1,91067
36	3,38271	1,91854	8,3377	1,47318
40	3,35476	1,81489	7,0841	1,18814

Результаты зависимости концентрации смешанных растворов-расплавов от динамики их смешивания сведены в **табл. 3**. Видно, что в соответствии с изменением показателя степени меры выдавливания изменяется значение концентрации носителей. При этом коэффициент k подбирают так, чтобы выбранные массы порций смешиваемого второго растворарасплава m_{2x} не превышали $m_{2 \max}$, что наглядно показано на **рис. 1**. Кроме того, видно, что чем больше

Технология и конструирование в электронной аппаратуре, 2007, № 6

показатель степени меры выдавливания, тем больше градиент концентрации носителей в заданном шаге выдавливания порций растворов-расплавов.

Создание подобного управляемого распределения носителей в базовых областях полупроводниковой структуры способствует получению внутренних электрических полей, обеспечивающих увеличение фоточувствительности. Выбранное для реализации этой цели комбинированное устройство, благодаря возможности управления дозой и закономерностью смешивания растворов-расплавов, позволяет управлять взаимосвязью характеристических параметров эпитаксиальных слоев с технологическими процессами их выращивания.

Полученные результаты свидетельствуют о возможности выращивания эпитаксиальных слоев с управляемым градиентом концентрации носителей как в изотермических, так и в неизотермических условиях путем концентрационного смешивания растворов-расплавов.

Взаимосвязь толщины эпитаксиальных слоев и условий смешивания растворов-расплавов

Известно, что толщина эпитаксиального слоя, выращиваемого из жидкой фазы, существенно зависит от технологических условий роста. В случае когда эпитаксиальные слои выращиваются из раствора-расплава с фиксированным объемом принудительным охлаждением, скорость роста слоев с понижением температуры уменьшается [2]. Однако в предлагаемом способе концентрационного смешивания одного раствора-расплава со вторым в ходе смешивания наряду с изменением концентрации примеси последовательно увеличивается масса раствора-расплава, контактирующего с подложкой, поэтому толщина выращиваемого слоя, соответствующая каждому последующему интервалу температуры, стремится к увеличению. При этом закономерности роста приобретают иной характер.

Толщина *d* выращенного слоя в каждом интервале температуры $T_1 - T_2$ связана с изменением концентрации примеси в растворе-расплаве и определяется уравнением [5]

$$d = \frac{P_{\rm of}}{S\rho A} \left(\frac{C_1}{1 - 2C_1} - \frac{C_2}{1 - 2C_2} \right), \tag{5}$$

где µ — молекулярный вес кристаллизуемого вещества;

- S площадь подложки, см²;
- ho плотность выращенного слоя, г/см⁻³;
- *А* атомный вес растворителя;
- C_1 концентрация растворенного компонента при T_1 , ат. %;
- C_2 концентрация растворенного компонента при T_2 , ат. %.

Используя данные, приведенные в работе [12], определим необходимые для (5) значения концентрации растворенного компонента (GaAs) в растворителе (Ga) в зависимости от интервала температуры роста (**табл. 4**). При выращивании эпитаксиального слоя принудительным охлаждением по мере изменения температуры растворимость арсенида галлия в галлии изменяется. Масса смешанного раствора *P*_{общ} в нашем случае представляет собой возрасЗависимость концентрации растворенного компонента в растворителе от интервала температуры роста

ΔT , °C	$\frac{C_1}{1-2C_1}$	$\frac{C_2}{1-2C_2}$
0	0,03763	0,03763
1	0,03763	0,03729
2	0,03763	0,03694
4	0,03763	0,03625
6	0,03763	0,03556
8	0,03763	0,03487
10	0,03763	0,03419

тающую сумму. К заданной массе растворителя первого раствора-расплава P_1 последовательно (по закону табл. 2) добавляются массы порций из второго раствора-расплава:

$$P_{\text{общ}} = P_1 + P_2, \tag{6}$$

масса второго растворителя определяется по формуле (2)

$$P_2 = m_2 \max_{\max} - P'_2.$$
 (7)

Масса второго раствора-расплава, изменяющаяся по закону km_0^{ln} , определяется формулой (3). Учитывая (3) и подставляя (7) в (6), определим общую массу растворителя:

$$P_{\text{offul}} = P_1 + km_0 l^n. \tag{8}$$

Как видно из (5), толщина выращиваемого слоя прямо пропорциональна массе растворителя ($P_{\rm общ}$) и обратно пропорциональна площади подложки. В нашем случае масса растворителя увеличивается за счет добавляемых порций из второго раствора-расплава, поэтому толщина, соответствующая каждому заданному следующему интервалу температуры $\Delta T_1 = \Delta T_2 = ... = \Delta T_n$, будет возрастать.

Анализируя полученные в табл. 2, 4 и исходные данные массы и концентрации арсенида галлия в галлии с помощью (5), получим взаимосвязь толщины выращиваемых слоев и интервала температуры роста при различных вводимых дискретных массах по закону km_0l (рис. 2). Из рис. 2 видно, что по мере

Таблица 4

увеличения ΔT толщина выращенных слоев увеличивается линейно, а с увеличением массы вводимых растворов-расплавов крутизна роста возрастает. С другой стороны, по мере увеличения интервала температуры ($\Delta T \neq C$ onst) соответствующие толщины выращенных слоев увеличиваются в зависимости от концентрации смешанных растворов-расплавов (рис. 3).

Рис. 3. Зависимость толщины выращенных слоев арсенида галлия от концентрации смешанных растворов-расплавов для различных интервалов температуры:

вов для различных интервалов температуры: μ_{GaAs} =144,64; *S*=1,0 см²; ρ_{GaAs} =5,32 г/см⁻³; A_{Ga} =69,72

Таким образом, при изменении условий роста эпитаксиальных слоев (например интервала температуры, массы добавляемого раствора-расплава) толщина выращиваемых слоев изменяется по задаваемому закону меры выдавливания раствора-расплава. В частности, с увеличением градиента температуры толщина выращиваемых слоев возрастает, а по мере увеличения толщины выращиваемых слоев концентрация примесей уменьшается.

Заключение

Сопоставляя известные и предложенные нами устройства, можно заключить, что чем шире возможность варьировать состав и массу рабочих растворов-расплавов, тем шире функциональные свойства устройства. Если с помощью однопоршневого устройства можно получать комбинированным способом варизонные эпитаксиальные слои [4], то с помощью исследуемого двухпоршневого устройства можно управлять профилем распределения концентрации носителей по толщине выращиваемых слоев путем смешивания растворов-расплавов с различной концентрацией примесей. Универсальность модифицированного устройства в том, что с его помощью можно осуществить эпитаксиальный рост слоев не только различными способами (изотермическим смешиванием, принудительным охлаждением), но и получать в едином процессе эпитаксиальные слои с переменным градиентом концентрации по толщине. В изотермических условиях необходимо создать условия пересыщения растворов-расплавов, и можно получить эпитаксиальные слои путем их смешивания. Материал растворителя выбирают так, чтобы растворимость полупроводникового материала в первом растворе была выше, чем во втором (например за счет добавления висмута, если основной раствор-расплав содержит примеси олова, а дополнительный — примеси теллура).

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. http://solidstate.karelia.ru/~tutorials/moel/seminars/2001_2002/ SolBat FE/Fotoelectro/fotodiods.htm. Фотодиоды.

2. Грачев В. М., Сабанова Л. С. Методы и аппаратура жидкостной эпитаксии.— М.: Цветмет-информация, 1974.— С. 7—13.

3. А. с. 913759 СССР. Устройство для жидкостной эпитаксии / А. В. Каримов, М. Мирзабаев, Ш. З. Миртурсунов, Н. Ф. Мухитдинова.— 1981.

4. Ёдгорова Д. М., Каримов А. В., Гиясова Ф. А., Саидова Р. А. Комбинированный способ выращивания эпитаксиальных слоев полупроводниковых соединений А^{III}В^V // Технология и конструирование в электронной аппаратуре (ТКЭА).— 2007.— № 3.— С. 56—58.

5. Андреев В. М., Долгинов Л. М., Третьяков Д. Н. Жидкостная эпитаксия в технологии полупроводниковых приборов.—М.: Сов. радио, 1975.

6. Woodal I. M. Solution growth $Ga_{1-x}AI_xAs$ superlattice structures // J. Crystal Growth.— 1971.— Vol. 12, N 1.— P. 32—38.

7. Материалы для оптоэлектроники / Пер. с англ. Е. И. Геваргизова, С. Н. Горина.— М.: Мир, 1976.

8. Каримов А. В., Ёдгорова Д. М., Юлдашев Ш. Ш. Болтаева Ш. Ш. Физико-технологические основы получения резкого *p*−*n*перехода // Технология и конструирование в электронной аппаратуре (ТКЭА).— 2006.— № 4.— С. 59—60.

9. А. с. 1037795 СССР. Способ эпитаксиального наращивания полупроводниковых соединений типа A^3B^5 / А. В. Каримов, Ш. З. Миртурсунов.— 1983.

10. А. с. 460826 СССР. Устройство для изготовления многослойных структур методом жидкостной эпитаксии / В. М. Андреев, Ю. В. Жиляев, В. Р. Ларионов, В. Г. Никитин.— 1977.

11. Каримов А. В., Ёдгорова Д. М. Физические явления в арсенидгаллиевых структурах с микрослойным квазиизопериодическим переходом.— Ташкент: Фан, 2005.

12. Черняев В. М., Кожитов Л. В. Технология эпитаксиальных слоев на арсениде галлия и приборы.— М.: Энергия, 1974.

 в портфеле редакции Перспективы украин петровск; Польша, г 	в портфеле редакции в портфеле редакции в портфеле редакции ско-польского научно-технического сотрудничества. (Украина, г. Днепро- . Варшава)	акции
портфеле ред	 Методика калибровки УФ-радиометров энергетической освещенности. (Украина, г. Черновцы) Цифровые генераторные преобразователи повышенной чувствительности для систем управления и контроля. (Россия, г. Тольятти) Автоматизированная система регистрации циклов при усталостных испытаниях. (Украина, г. Одесса) 	портфеле ред
^а в портфеле редакции	в портфеле редакции в портфеле редакции в портфеле редакции	B