С. А. ДУШКИН, А. М. КУРОВ, В. А. ОДИНЕЦ, к. ф.-м. н. А. Н. ОРОБИНСКИЙ

Украина, г. Харьков, Нац. науч. центр «Институт метрологии»; Ин-т медицинской радиологии им. С. П. Григорьева E-mail: orobin@mail.ru; imr@online.kharkiv.net

Дата поступления в редакцию 08.07 2008 г. Оппонент к. т. н. Б. А. ДЕМЬЯНЧУК (ОНУ им. И. И. Мечникова, г. Одесса)

РАСЧЕТ ХАРАКТЕРИСТИК РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ

Приведен алгоритм расчета характеристик рентгеновского излучения: спектрального разрешения, средней энергии, коэффициента гомогенности, первого и второго слоя половинного ослабления.

Режимы работы рентгеновских установок, которые определяют характеристики рентгеновского излучения, заданы нормативными документами [1, с. 8—10] и [2, с. 9—12].

Актуальность данной работы связана со следующими аспектами.

При лечении онкологических заболеваний и медицинских обследованиях применяется рентгеновское излучение. Для эффективного лечения или обследования, а также для безопасности пациентов и медицинского персонала, который обслуживает рентгеновские установки, необходимо знать разрешение, среднюю энергию, коэффициент гомогенности, толщину первого и второго слоя половинного ослабления (СПО1 и СПО2) рентгеновского излучения. Кроме того, нужно знать поглощенные дозы рентгеновского излучения, которые отпускают пациентам при той или иной процедуре, и эффективные дозы [3, табл. 5.1], которые получает персонал.

Необходимость расчета характеристик рентгеновского излучения возникает при создании нового оборудования:

- медицинских рентгеновских установок с заданными характеристиками;

- дозиметров рентгеновского излучения с минимальной энергетической зависимостью показаний лозы:

- метрологических рентгеновских установок с заданными характеристиками для настройки, аттестации и поверки дозиметров рентгеновского излучения:

 средств противорадиационной защиты медицинского персонала.

В [4, 5] приведены результаты расчета спектров рентгеновского излучения в диапазоне напряжений на аноде рентгеновской трубки от 30 до 140 кВ с помощью алгоритма TASMIP, который основан на полиномиальной интерполяции экспериментальных спектров рентгеновской трубки с вольфрамовым анодом.

Научная новизна данной работы состоит в том, что:

 на основе теоретических исследований разработан алгоритм, позволяющий рассчитать спектральное разрешение, среднюю энергию, коэффициент гомогенности, СПО1 и СПО2 при помощи построения спектров тормозного рентгеновского излучения и определения средних энергий без учета и с учетом фильтра, необходимого для определения СПО1;

при построении спектров применялись аналитические зависимости линейных коэффициентов ослабления воздуха, материалов фильтров и слоев половинного ослабления от энергии независимо от материала анода рентгеновской трубки;

теоретически исследованы характеристики спектров рентгеновского излучения в более широком энергетическом диапазоне (от 12 до 300 кэВ), чем приведено в [4, 5];

- расчет выполнен с помощью стандартных математических пакетов типа MathCAD и Origin Pro, что значительно упрощает процедуру расчета по сравнению с [4, 5];

 определен критерий применимости разработанного алгоритма.

Спектр рентгеновского излучения

Флюэнс частиц пропорционален интенсивности тормозного рентгеновского излучения, а максимальная энергия рентгеновского излучения в кэВ численно равна напряжению на аноде рентгеновской трубки в кВ (*E*_{max, кэВ}=*U*_{а, кВ} [6, с. 12]). С учетом этого, флюэнс частиц тормозного рентгеновского излучения в зависимости от энергии частиц, начиная с энергии Е≈12 кэВ, без учета фильтрации на заданном расстоянии от фокуса рентгеновской трубки можно представить в виде [6, с. 16—17]

$$\Phi(E, U_a) = \Phi_{\max}\left(1 - \frac{E}{U_a}\right)$$
 при $E \ge 12$ кэВ. (1)

Нормированное к энергии Е=300 кэВ значение флюэнса запишем в виде

$$\Phi_{N}(E) = \Phi_{N}(E, U_{a}) = \frac{\Phi(E, U_{a})}{\Phi_{\max} |_{U_{a} = 300 \text{ kB}}} = \left(1 - \frac{E_{\text{K3B}}}{U_{a, \text{ kB}}}\right) \frac{U_{a, \text{ kB}}}{300}$$

при Е≥12 кэВ.

Для получения спектров рентгеновского излучения с заданной средней энергией применяются фильтры. Общая фильтрация образуется из собственной

МЕТРОЛОГИЯ. СТАНДАРТИЗАЦИЯ

(фиксированной) фильтрации плюс дополнительная фильтрация.

Обычно, для собственной фильтрации рентгеновской трубки применяют бериллиевый фильтр толщиной 1 мм, дополнительно могут применять фильтры из алюминия толщиной до 4 мм [2, табл. 3].

Для дополнительной фильтрации рентгеновского излучения применяются фильтры из Al, Cu, Sn и Pb. Кроме этого, при расчете средней энергии рентгеновского излучения необходимо учитывать фильтрацию, получаемую за счет воздуха.

Измерение средней энергии выполняют, как правило, на расстоянии *R*=1 м от фокуса рентгеновской трубки.

Нормированное значение флюэнса частиц рентгеновского тормозного излучения с учетом собственной и дополнительной фильтрации определим как

$$\Phi_{\Sigma N}(E) = \Phi_N(E) \cdot K_{\text{осл}}(E), \qquad (3)$$

где $K_{\text{осл}}(E)$ — коэффициент ослабления рентгеновского излучения, прошедшего через фильтры [7, с. 218] — $K_{\text{осл}}(E)$ =exp[- $\mu(E)d$];

d — толщина фильтров;

 $\mu(E)$ — линейный коэффициент ослабления для энергий, меньших 1500 кэВ [7, с. 220] — $\mu(E)=\tau(E)+\sigma_{\text{ког}}(E)+\sigma_{\text{неког}}(E);$

 т(E) — линейный коэффициент ослабления за счет фотоэффекта;

$$\sigma_{\text{неког}}(E) = \sigma_{\text{неког.}k}(E) + \sigma_{\text{неког.}s}(E);$$

k, *s* — индексы, указывают на истинное поглощение
и рассеяние, соответственно.

Коэффициент ослабления рентгеновского излучения, прошедшего через фильтры, представим в виде

$$K_{\rm ocn}(E) = e^{-\mu_{\rm Be}(E) \cdot d_{\rm Be}} \cdot e^{-\mu_{\rm B}(E) \cdot R} \cdot e^{-\mu_{\rm Al}(E) \cdot d_{\rm Al}} \times e^{-\mu_{\rm Cu}(E) \cdot d_{\rm Cu}} \cdot e^{-\mu_{\rm Sn}(E) \cdot d_{\rm Sn}} \cdot e^{-\mu_{\rm Pb}(E) \cdot d_{\rm Pb}},$$
(4)

где $\mu_{\text{Be}}, \mu_{\text{B}}, \mu_{\text{Al}}, \mu_{\text{Cu}}, \mu_{\text{Sn}}$ и μ_{Pb} — линейные коэффициенты ослабления Be, воздуха, Al, Cu, Sn и Pb; $d_{\text{Be}}, d_{\text{Al}}, d_{\text{Cu}}, d_{\text{Sn}}$ и d_{Pb} — толщина фильтров из Be, Al, Cu, Sn и Pb.

Зная линейные коэффициенты ослабления для воздуха, Be, Al, Cu, Sn и Pb [1, c. 17; 7, c. 222, 226, 234, 246, 266, 267], при помощи кусочно-линейной аппроксимации получим зависимости этих коэффициентов в диапазоне энергий от $E_0=1$ кэВ до $E_n=300$ кэВ:

$$\mu(E) = \begin{cases} k0_1 \cdot E + k0_0, \text{ если } E_0 \leq E \leq E_1 \\ k1_1 \cdot E + k1_0, \text{ если } E_1 \leq E \leq E_2 \\ \dots \\ kn_1 \cdot E + kn_0, \text{ если } E_{n-1} \leq E \leq E_n \end{cases},$$
(5)

Технология и конструирование в электронной аппаратуре, 2008, № 6

МЕТРОЛОГИЯ. СТАНДАРТИЗАЦИЯ

- где $E_n = 10; 20; 30; 40; 50; 60; 80; 100; 150; 200 и 300 кэВ для воздуха;$
 - $E_n=$ 1; 1,5; 2; 3; 4; 5; 6; 8; 10; 15; 20; 30; 40; 50; 60; 80; 100; 150; 200 и 300 кэВ для Ве, Аl, Сu, Sn и Pb.

Спектральный состав рентгеновского излучения зависит от U_a , собственной и дополнительной фильтрации. После подстановки (5) в (4), (4) в (3) и (2) в (3) можно получить зависимости $\Phi_{\Sigma N} = f(E)$ при любой комбинации фильтров и U_a . На **рис. 1**—4 приведены рассчитанные авторами данной работы спектры стандартного рентгеновского излучения различных серий: L—с низким содержанием кермы в воздухе, N—с узким спектром, W—с широким спектром, H—с высоким содержанием кермы в воздухе [2, с. 9—12].

Спектральное разрешение — это отношение ширины спектра при половине максимума к энергии максимума (рис. 2: *I* соответствует $E_1, 2 - \tilde{E}, 3 - E_2$) [2, c. 4]:

$$R_{E} = \frac{\Delta E \Big|_{\Phi=0,5\Phi_{\max}}}{\tilde{E} \Big|_{\Phi=\Phi_{\max}}} = \frac{E_{2} \Big|_{\Phi=0,5\Phi_{\max}} - E_{1} \Big|_{\Phi=0,5\Phi_{\max}}}{\tilde{E} \Big|_{\Phi=\Phi_{\max}}}, \quad (6)$$

где $\tilde{E} = \tilde{E} \Big|_{\Phi = \Phi_{\max}}$ — энергия максимума спектра рент-

геновского излучения.

Среднюю энергию рентгеновского излучения определим как [7, с. 34]

$$\overline{E} = \frac{\int_{0}^{E_{\max}} \Phi_{\Sigma N}(E) E dE}{\int_{0}^{E_{\max}} \Phi_{\Sigma N}(E) dE}.$$
(7)

После подстановки (5) в (4), (4) в (3), (2) в (3) и (3) в (7) получим среднюю энергию для любой комбинации фильтров и U_a .

Коэффициент гомогенности

Коэффициент гомогенности характеризует однородность (моноэнергетичность) рентгеновского излучения применительно к средней энергии и определяется как отношение СПО1 к СПО2 [2, с. 5]:

$$h = \frac{\text{C\PiO1}}{\text{C\PiO2}};\tag{8}$$

$$C\Pi Ol = d_{1/2 \text{ Al},Cu}(\overline{E}) = \frac{\ln 2}{\mu_{Al,Cu}(\overline{E})};$$

 $C\Pi O2 = d_{1/4 \text{ Al},Cu}(\overline{E}) - d_{1/2 \text{ Al},Cu}(\overline{E}),$

где
$$\mu_{Al,Cu}(\bar{E})$$
 — линейный коэффициент ослабления фильтра из
Al или Cu;
 $d_{VQ,VQ}(\bar{E})$

и $d_{1/4 \text{ Al},Cu}(\overline{E})$ — толщина фильтров, при которых флюэнс рентгеновского излучения ослабляется в 2 и 4 раза, соответственно.

Толщина слоев половинного поглощения для Al и Cu приведена в [8, с. 92—93].

Толщина СПО1 и СПО2 соответствует толщине (в мм) фильтров из Al или Cu.

СПО2 можно определить как

CTIO2 =
$$\tilde{d}_{1/2 \text{ Al}, \text{Cu}}(\bar{E}_{d_{1/2}}) = \frac{\ln 2}{\mu_{\text{Al}, \text{Cu}}(\bar{E}_{d_{1/2}})},$$
 (9)

где $\overline{E}_{d_{1/2}}$ — средняя энергия заданного спектра с учетом фильтра, необходимого для определения СПО1.

Зная СПО1 для Al и Cu [8, с. 92—93], при помощи кусочно-линейной аппроксимации получим зависимости $d_{1/2 \text{ Al,Cu}} = f(E)$ в диапазоне энергий от $E_0 = 1$ кэВ до $E_n = 1200$ кэВ:

$$d_{1/2\text{Al},\text{Cu}}(E) = \begin{cases} \alpha 0_1 E + \alpha 0_0, & \text{если } E_0 \le E \le E_1 \\ \alpha 1_1 E + \alpha 1_0, & \text{если } E_1 \le E \le E_2 \\ \dots \\ \alpha n_1 E + \alpha n_0, & \text{если } E_{n-1} \le E \le E_n \end{cases}, (10)$$

где *n*=80.

Аналогично выражению (10) можно представить

зависимость $\tilde{d}_{1/2 \text{ Al,Cu}} = f(\overline{E}_{d_{1/2}}).$

Результаты расчета характеристик рентгеновского излучения

На основе теоретических исследований разработан алгоритм расчета характеристик рентгеновского излучения:

— при помощи выражений (2), (3), (4) и (5) получить спектр рентгеновского излучения для заданной комбинации фильтров и напряжения на аноде;

 по выражению (6) определить спектральное разрешение;

— при помощи выражений (2), (3), (4), (5) и (7) определить среднюю энергию рентгеновского излучения \overline{E}_{p} ;

— по зависимости (10) определить СПО1, зная \overline{E}_{p} ;

— при помощи выражений (2), (3), (4), (5) и (7) определить среднюю энергию рентгеновского излучения с учетом фильтра, необходимого для определения СПО1, $\bar{E}_{d_{1/2p}}$;

— по зависимости (10) определить СПО2, зная $\overline{E}_{d_{1/2p}}$; — по выражению (8) определить коэффициент гомогенности h_p .

Анализ алгоритма позволяет сделать следующие выводы.

1. Погрешность при расчете спектрального разрешения зависит от погрешности аппроксимации $\mu(E)$.

2. Погрешность при расчете СПО1, СПО2 и *h* зависит от погрешности при расчете $\overline{E}_{\rm p}$, $\overline{E}_{d_{\rm l/2p}}$ и погрешности аппроксимации $d_{\rm l/2 \ Al,Cu}(E)$.

3. Погрешность при расчете \vec{E}_{p} и $\vec{E}_{d_{1/2p}}$ зависит от погрешности аппроксимации $\mu(E)$ и от того, насколько спектр рентгеновского излучения симметричен относительно \tilde{E} , потому что выражение (7) математически определяет центр спектра по оси энергий.

МЕТРОЛОГИЯ. СТАНДАРТИЗАЦИЯ

Таблица 1

Характеристики	рентгеновского	излучения	серии 1	- -
----------------	----------------	-----------	---------	--------

$U_{\rm a}$, кВ	$R_E, \% [2]$	R_{Ep} , %	δR_{Ep} , %	\overline{E} , кэВ [2]	$\overline{E}_{\mathfrak{d}}$, кэВ	$\overline{E}_{d_{1/2\delta}}$, кэВ	$\delta \overline{E}_{\delta}, \%$	$h_{\rm p}$
20	21	24,5	16,7	17	17,3	17,6	1,8	0,965
30	21	13,8	-34,2	26	26,9	27,3	3,5	0,965
35	21	16,7	-20,6	30	30,8	31,1	2,7	0,977
55	22	17,5	-20,3	48	47,9	48,7	-0,2	0,948
70	22	20,2	-8,0	60	60,3	61,1	0,5	0,973
100	22	21,1	-4,1	87	87,3	88,2	0,3	0,978
125	21	22,5	7,2	109	107,9	108,7	-1,0	0,986
170	18	13,8	-23,3	149	152,1	153,2	2,1	0,990
210	18	12,8	-28,7	185	188,1	189,1	1,7	0,994
240	18	18,3	1,4	211	212,3	212,9	0,6	0,998

Таблица 2

Характеристики рентгеновского излучения серии N

$U_{\rm a}$, кВ	$R_E, \% [2]$	R_{Ep} , %	$\delta R_{Ep}, \%$	\overline{E} , кэВ [2]	$\overline{E}_{\mathfrak{d}}, $ кэВ	$\overline{E}_{d_{1/2\delta}}$, кэВ	$\delta \overline{E}_{\delta}, \%$	$h_{ m p}$	h	$\delta h_{\rm p},\%$
15	33	32,4	-1,9	12	12,3	12,7	2,5	0,914	0,875	4,4
20	34	29,2	-14,2	16	16,5	17,0	3,1	0,935	0,895	4,5
25	33	26,4	-20,0	20	20,3	20,8	1,5	0,938	0,904	3,8
30	32	35,6	11,2	24	24,5	25,2	2,1	0,917	0,885	3,7
40	30	28,2	-5,9	33	33,5	34,1	1,5	0,948	0,923	2,7
60	36	33,6	-6,5	48	48,2	49,8	0,4	0,895	0,923	-3,1
80	32	31,5	-1,6	65	65,4	66,9	0,6	0,939	0,935	-0,4
100	28	24,4	-12,7	83	84,4	85,9	1,7	0,963	0,949	1,5
120	27	23,1	-14,5	100	100,4	101,8	0,4	0,968	0,966	0,2
150	37	38,6	4,3	118	118,6	121,5	0,5	0,952	0,955	-0,4
200	30	27,4	-8,6	164	168,1	169,8	2,5	0,987	0,985	0,2
250	28	24,8	-11,3	208	210,0	211,4	1,0	0,994	0,992	0,2
300	27	23,8	-11,8	250	254,7	256,5	1,9	0,995	0,995	0

Таблица 3

Характеристики рентгеновского излучения серии W

$U_{\rm a}$, кВ	$R_E, \% [2]$	$R_{Ep}, \%$	$\delta R_{Ep}, \%$	<i>Ē</i> , кэВ [2]	$\overline{E}_{\mathfrak{d}}, $ кэВ	$\overline{E}_{d_{1/2\delta}}$, кэВ	$\delta \overline{E}_{\delta}, \%$	$h_{ m p}$	h	$\delta h_{\rm p},\%$
60	48	39,8	-17,2	45	45,6	47,8	1,3	0,861	0,857	0,5
80	55	59,5	8,1	57	57,6	61,1	1,1	0,896	0,853	5,0
110	51	42,9	-15,9	79	82,4	86,3	4,3	0,903	0,865	4,4
150	56	56,0	0	104	107,7	112,7	3,6	0,917	0,886	3,6
200	57	48,2	-15,5	137	143,3	150,1	4,6	0,936	0,931	0,6
250	56	46,2	-17,5	173	181,1	186,7	4,7	0,966	0,959	0,8
300	57	54,2	-4,9	208	215,2	220,5	3,5	0,978	0,974	0,5

Таблица 4

Характ	еристики	рен	тгеновского	изл	лучения	сери	u H	

$U_{\rm a}$, кВ	R_{Ep} , %	\overline{E} , кэВ [2]	$\overline{E}_{\mathfrak{d}}$, кэВ	$\overline{E}_{d_{1/2\delta}}$, кэВ	$\delta \overline{E}_{\mathfrak{d}}, \%$	$h_{ m p}$	h	$\delta h_{\rm p},\%$
20	101,7	12,9	13,8	15,2	7,0	0,820	0,750	10,9
30	57,3	19,7	20,4	22,0	3,6	0,832	0,725	14,8
60	66,4	37,3	38,7	42,3	3,8	0,796	0,745	6,9
100	84,5	57,4	60,8	65,6	5,9	0,905	0,815	11,0
200	96,1	102	116,1	130,9	13,8	0,788	0,708	11,3
250	113,7	122	140,4	159,1	15,1	0,839	0,751	11,7
280	92,1	146	162,6	179,7	11,4	0,881	0,845	4,3
300	101,8	147	167,3	187,3	13,8	0,873	0,819	6,6

Технология и конструирование в электронной аппаратуре, 2008, № 6

4. Погрешность аппроксимации $\mu(E)$ и $d_{1/2 \text{ Al}, \text{Cu}}(E)$ зависит от интервала дискретизации по энергии рентгеновского излучения (ΔE_{μ}) при аппроксимации линейных коэффициентов ослабления.

С использованием данного алгоритма, численными методами были рассчитаны характеристики стандартных рентгеновских излучений серий L, N, W и H, которые приведены в **табл. 1—4**. При этом принималось во внимание, что для серии L не нормируется коэффициент гомогенности, а следовательно, и СПО2; для серии H не нормируется спектральное разрешение [2, с. 9—12].

Для анализа полученных результатов вычислены значения δR_{Ep} , $\delta \overline{E}_p$ и δh_p — отклонения рассчитанных значений R_{Ep} , \overline{E}_p и h_p от R_E , \overline{E} и h, приведенных в [2].

Проанализировав рассчитанные характеристики стандартных рентгеновских излучений серий *L*, *N*, *W* и *H*, и сравнив их с характеристиками, приведенными в [2] (табл. 1—4), определим критерий применимости алгоритма расчета характеристик рентгеновского излучения с учетом выражений, приведенных в данной работе.

Для рентгеновских установок коэффициент гомогенности h, как правило, должен быть в пределах $0,8 \le h < 1$ [2]. Поэтому за критерий применимости алгоритма расчета характеристик рентгеновского излучения примем коэффициент h.

Как видно из табл. 1-4,

$$- \text{при } 0,9 \le h_p < 1 | \delta \overline{E}_p | \le 5,0\% \text{ и } | \delta h_p | \le 5,0\%;$$
$$- \text{при } 0,8 \le h_p \le 0,9 | \delta \overline{E}_p | \le 15,0\% \text{ и } | \delta h_p | \le 15,0\%$$
$$- | \delta R_{\text{max } Ep} | \le 35\%.$$

Для более точного определения спектрального разрешения необходимо уменьшать интервал дискретизации по энергии рентгеновского излучения ΔE_n , кото-

рый можно определить как $\Delta E_{\ddot{a}} \leq \left| \delta R_{E_p} \right| \cdot \tilde{E}$ (рис. 2).

Выводы

1. На основе теоретических исследований разработан алгоритм расчета характеристик рентгеновского излучения — спектрального разрешения, средней энергии, первого слоя половинного ослабления, второго слоя половинного ослабления и коэффициента гомогенности. Эти характеристики можно определить, построив спектр рентгеновского излучения для заданной комбинации фильтров и напряжения на аноде, рассчитав среднюю энергию заданного спектра и среднюю энергию заданного спектра и ловинного ослабления.

 Рассчитать характеристики рентгеновского излучения можно, зная аналитические зависимости линейных коэффициентов ослабления воздуха и материалов фильтров от энергии и зависимости толщины слоев половинного ослабления от энергии, что можно получить при помощи кусочно-линейной аппроксимации этих функций.

3. Чем меньше интервал дискретизации по энергии рентгеновского излучения при аппроксимации линейных коэффициентов ослабления и чем более однороден, применительно к средней энергии, спектр рентгеновского излучения, тем ближе к истинным рассчитанные значения спектрального разрешения, средней энергии, коэффициента гомогенности, толщины СПО1 и СПО2.

4. Критерием применимости алгоритма расчета характеристик рентгеновского излучения является коэффициент гомогенности h_p . В диапазоне энергий от 12 до 300 кэВ:

— при 0,9
$$\leq h_{\rm p} < 1$$
 $\left| \delta \overline{E}_{\rm p} \right| \leq 5\%$ и $\left| \delta h_{\rm p} \right| \leq 5\%;$

— при 0,8 $\leq h_{\rm p} \leq 0.9$ $\left| \delta \overline{E}_{\rm p} \right| \leq 15\%$ и $\left| \delta h_{\rm p} \right| \leq 15\%$.

5. По спектру рентгеновского излучения можно оценить значение флюэнса (мощности дозы) рентгеновского излучения.

6. Рассчитав спектральное разрешение и коэффициент гомогенности по алгоритму, приведенному в данной работе, можно определить, является ли спектр рентгеновского излучения стандартным [2], и если да, то к какой серии этот спектр относится: с низким содержанием кермы в воздухе, узким спектром, широким спектром или с высоким содержанием кермы в воздухе.

7. Приведенный алгоритм расчета не учитывает нестабильности напряжения на аноде и тока анода рентгеновской трубки и особенности каждой рентгеновской установки (геометрические размеры, место расположения, диаметр однородного поля) с точки зрения коэффициентов рассеяния рентгеновского излучения. Поэтому окончательно определить характеристики рентгеновского излучения и их погрешности можно только экспериментальным путем при их измерениях.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

 ГОСТ 8.087—2000. Государственная система обеспечения единства измерений. Установки поверочные дозиметрические фотонного и электронного излучений. Методы и средства поверки.

 ДСТУ ISO 4037-1:2006. Стандартні рентгенівське та гамма-випромінення для калібрування дозиметрів і вимірювачів потужності дози та для визначення їх чутливості в залежності від енергії фотонів. Частина 1. Характеристики випромінень та методи, що їх створюють.

 ГГН 6.6.1-6.5.001—98. Нормы радиационной безопасности Украины. НРБУ-97.

4. Sanchez del Rio M., Dejus R. J. XOP: recent developments // SPIE proceedings.— 1998.— Vol. 3448.— P. 340—345.

5. Boone J. M., Seibert J. A. An accurate method for computergenerating tungsten anode X-ray spectra from 30 to 140 kV // Medical Physics.— 1997.— Vol. 24, N 11.— P. 1661—1670.

6. Рентгеновские лучи: Пер. с нем. и англ. Л. Н. Бронштейн / Под ред. М. А. Блохина.— М.: Издательство иностранной литературы, 1960.

7. Немец О. Ф., Гофман Ю. В. Справочник по ядерной физике. Киев: Наукова думка, 1975.

8. Кронгауз А. Н., Петров В. А., Линчевская Г. А., Палладиева Н. М. Измерение и расчет поглощенных доз при внешнем и внутреннем облучении. — М.: Медгиз, 1963.