материалы электроники

О. Ю. НАЛИВАЙКО, к. т. н. А. С. ТУРЦЕВИЧ

Республика Беларусь, г. Минск, НПО «Интеграл» E-mail: aturtsevich@integral.by

Дата поступления в редакцию 26.08 2009 г.

Оппонент *д. ф.-м. н. Н. И. КЛЮЙ* (ИФП им. В. Е. Лашкарёва, г. Киев)

АДСОРБЦИОННО-КИНЕТИЧЕСКАЯ МОДЕЛЬ ОСАЖДЕНИЯ ПЛЕНОК ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ, ЛЕГИРОВАННЫХ ФОСФОРОМ В ПРОЦЕССЕ РОСТА

Определена область оптимальных соотношений потоков PH_3/SiH_4 и температуры осаждения, обеспечивающих приемлемую скорость и однородность осаждения, высокий уровень легирования и конформное заполнение топологического рельефа пленками $\Pi K \Pi \Phi$.

Пленки поликристаллического кремния (ПК), получаемые при пониженном давлении, широко используются в технологии изготовления активных и пассивных элементов интегральных микросхем [1—4]. Большой интерес вызывает процесс осаждения пленок поликристаллического кремния с одновременным его легированием [2-8]. Однако, несмотря на большое количество публикаций о процессе осаждения и свойствах пленок ПК, легированных в процессе роста фосфором (ПКЛФ), сведения о кинетике их осаждения при пониженном давлении являются недостаточно полными. Полученные в ряде работ аналитические выражения на основе предположений о гетерогенности реакции и адсорбции Ленгмюра не позволяют количественно описать зависимости скорости осаждения ПКЛФ от парциальных давлений моносилана и фосфина [9, 10]. С другой стороны, как показано в [11], модель Ленгмюра непригодна для описания адсорбции большинства газов на реальной поверхности твердого тела.

Настоящая работа посвящена исследованию кинетики процессов осаждения нелегированных пленок ПК и пленок ПК, легированных в процессе роста фосфором, в горизонтальном реакторе пониженного давления с горячими стенками.

В качестве подложек использовались кремниевые пластины диаметром 100 мм с ориентацией (100) и удельным сопротивлением 12 Ом·см, легированные бором, на которых предварительно выращивался термический окисел кремния толщиной 42,5±2,5 нм. В качестве реагентов использовались концентрат моносилана и газовая смесь фосфина с аргоном электронного класса чистоты. Температура осаждения изменялась от 560 до 650°С. Температурный профиль поддерживался с точностью ± 1 °С. Рабочее давление P_{Σ} изменялось в диапазоне 33,25—49,9 Па. При осаждении ПК без легирования парциальное давление моносилана (P_{SiH4}) изменялось путем добавления в га-

зовую смесь азота. При осаждении пленок ПК, легируемых в процессе роста фосфором, соотношение потоков $\mathrm{PH_3/SiH_4}$ (γ) изменялось от 0,001 до 0,012 путем изменения потока смеси фосфина с аргоном. Для повышения однородности толщины и удельного сопротивления пленок ПКЛФ использовались кварцевые кассеты специальной конструкции. Загрузкавыгрузка подложек — бесконтактная с использованием консоли из карбида кремния. Толщина осажденных пленок определялась при помощи спектрофотометра MPV-SP «Leitz».

Для описания кинетики роста нелегированных пленок ПК, полученных пиролизом концентрированного моносилана, наиболее полно подходит адсорбционно-кинетическая модель, предложенная в [12, 13], которая базируется на следующих допущениях:

- химическая реакция осаждения ПК является гетерогенной реакцией 1-го порядка;
- реакции в газовой фазе не рассматриваются, т. к. их роль в используемых практически диапазонах давления и температуры ничтожно мала;
- при соударении с поверхностью молекула может оказаться в слабосвязанном (подвижном) предсорбционном состоянии, в котором она диффунди-

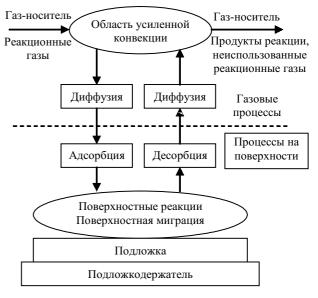


Рис. 1. Блок-схема химического осаждения пленок ПК из газовой фазы

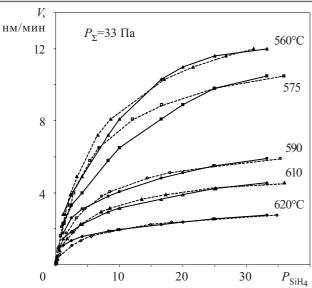


Рис. 2. Зависимости скорости осаждения нелегированных пленок ПК от парциального давления моносилана при различных температурах осаждения (сплошные — эксперимент; пунктир — расчет)

рует до тех пор, пока не хемосорбируется или не десорбируется.

Блок-схема химического осаждения из газовой фазы пленок поликристаллического кремния представлена на **рис. 1** [3, с. 4], а зависимости скорости осаждения нелегированных пленок ПК от парциального давления моносилана — на **рис. 2**. Здесь видно, что скорость осаждения монотонно возрастает с увеличением температуры и $P_{\rm SiH4}$.

Для гетерогенной реакции 1-го порядка скорость роста пленки может быть выражена как

$$V=K\Theta n_0,$$
 (1)

где К — константа скорости гетерогенной реакции;

 n_0 — концентрация адсорбционных центров на поверхности;

 Скорость роста пленки, выраженная в количестве атомов кремния, осажденных на площадь 1 см² за 1 с;

 θ — степень заполнения адсорбционных центров.

Степень заполнения адсорбционных центров моносиланом определяется выражением

$$\theta = \alpha \tau S/n_0;$$
 (2)

где
$$\alpha = P_{\Sigma}/(2\pi mkT)^{1/2} = \gamma P_{\Sigma},$$
 (3)

 число ударов молекул реагента о поверхность единичной площади в единицу времени;

 т — среднее время пребывания молекул моносилана на поверхности:

 S — вероятность «прилипания» молекулы моносилана к поверхности:

т — масса молекулы моносилана;

k — постоянная Больцмана;

T — температура газа.

Пронормировав уравнение (1) на начальную вероятность прилипания S_0 и учитывая формулы (2) и (3), получим

$$V = \beta P S / S_0, \tag{4}$$

где $\beta = K\gamma \tau S_0$ — константа, которая не зависит от давления моносилана, а S зависит от степени заполнения поверхности, определяемой процессами адсорбции-десорбции молекул моносилана и водорода, являющегося продуктом химической реакции.

При малых θ вероятность прилипания не зависит от θ , а при достаточно больших θ она резко уменьшается и становится бесконечно малой вблизи насыщения поверхности. Модели, основанные на представлениях Ленгмюра, не позволяют объяснить подобные зависимости. В [11, с. 313—326] предложена модель адсорбции, учитывающая поверхностную диффузию и взаимодействие адсорбированных молекул. Такая модель позволяет качественно и количественно описать экспериментальные зависимости вероятности прилипания от коэффициента заполнения.

Для диссоциативной адсорбции с возможной адсорбцией фрагментов молекул без учета взаимодействия «адсорбат — адсорбат» [11] зависимость $S(\theta)$ может быть представлена выражением

$$S/S_{0} = \left[1 + K_{1} \left(\frac{1}{(1-\theta)^{2}} - 1\right)\right]^{-1},$$
(5)

где
$$K_1 = k_d/(k_a + k_d) = 1 - S_0/C;$$
 (6)

 k_d и k_a — константы скорости десорбции и адсорбции на хемосорбционных центрах;

С — коэффициент конденсации.

При малых давлениях θ <<1, S/S_0 =1, поэтому зависимость скорости осаждения от давления линейная. По тангенсу угла наклона линейных участков зависимостей $V(P_{\mathrm{SiH_4}})$ (рис. 2) были определены численные значения β для различных температур осаждения T_{oc} нелегированных пленок ПК при суммарном давлении 33,25 и 49,9 Па (см. **табл. 1**). Подставляя эти значения β в уравнение (4), можно рассчитать соответствующие величины S/S_0 .

Таблица 1 Значения констант, характеризующих процесс осаждения пленок ПК

T _{oc} , °C	K , c^{-1}	K_1	τS_0 , 10^{-15} c	β , $10^{23} \text{H}^{-1} \text{c}^{-1}$		
при Р _∑ =33,25 Па						
560	0,44	1,47	10,77	0,764		
575	0,67	0,8	9,411	1,007		
590	0,88	0,8	8,97	1,25		
610	1,5	0,47	7,01	1,67		
620	1,9	0,67	6,576	1,944		
650	4,29	1,01	5,07	3,33		
при $P_{\Sigma}\!\!=\!\!49$ Па						
560	0,45	1,53	12,21	0,8854		
575	0,69	0,82	10,4	1,146		
590	0,93	0,8	9,76	1,438		
610	1,585	0,54	7,895	1,958		
620	2,06	0,67	7,473	2,396		
650	4,33	1,06	5,736	3,802		

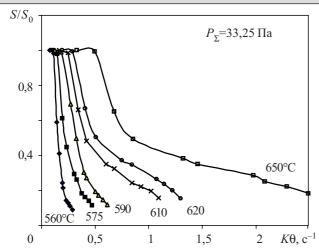


Рис. 3. Зависимости S/S_0 от $K\theta$ при различных температурах осаждения

С другой стороны, принимая величину n_0 , равной поверхностной плотности атомов кремния $(8\cdot 10^{14}~{\rm cm}^{-2})$, можно определить величину $K\theta$ и построить зависимость $S/S_0=f(K\theta)$, иллюстрирующую изменение вероятности прилипания по мере роста степени заполнения поверхности осаждения, т. к. при фиксированной температуре K=const. Такие зависимости для различных температур осаждения при суммарном давлении 33,25 Па приведены на **рис. 3**. Здесь видно, что увеличение температуры осаждения приводит к смещению кривых в сторону увеличения величины $K\theta$ и более пологой форме нисходящего участка. Зависимости $S/S_0=f(K\theta)$ при $P_{\Sigma}=49$,9 Па имеют аналогичный вид.

Полученные данные свидетельствуют о том, что при низких температурах с увеличением парциального давления моносилана степень заполнения поверхности изменяется довольно быстро, при этом вероятность прилипания быстро уменьшается, т. е. с увеличением $P_{\rm SiH4}$ скорость осаждения быстро достигнет насыщения, что и наблюдается на практике. При более высоких температурах степень заполнения поверхности с увеличением парциального давления моносилана изменяется медленнее, соответственно медленнее уменьшается вероятность прилипания и более плавно достигается выход скорости осаждения на насышение.

Для оценки механизма адсорбции при различных потоках моносилана использовалась корреляционная зависимость двух вспомогательных функций, определяемых из экспериментальной зависимости $V_3(P_{\rm SiH_4})$ по методике, предложенной в [14]:

$$x=1/V_{9}; (7)$$

$$y = V_{\gamma}/(\beta P - V_{\gamma}). \tag{8}$$

Для всех исследованных значений температуры и давления эти зависимости носят нелинейный характер, следовательно адсорбция — диссоциативная, т. е. при ней происходит диссоциация молекулы моносилана на SiH_2 (ад) и H_2 , каждая из которых занимает свой адсорбционный центр.

Значения K и K_1 для соответствующих температур и давлений были определены методом наименьших квадратов с использованием уравнений (1), (4), (5) и экспериментальных зависимостей $V_9(P_{\rm SiH4})$. Значения τS_0 рассчитывались при помощи уравнений (3) и (4). Из табл. 1 видно, что при увеличении температуры осаждения величины K, β и τS_0 возрастают, в то же время для величины K_1 не было обнаружено систематических изменений. С увеличением общего давления в реакторе наблюдается возрастание величин K, β и τS_0 .

Теоретические зависимости $V_{\rm T}(P_{\rm SiH4})$ были построены следующим образом. Скорость осаждения рассчитывалась по заданному значению θ из уравнения (1), а давление определялось из уравнения изотермы адсорбции, полученного путем сопоставления правых частей уравнений (1) и (4) с учетом уравнения (5):

$$P = \frac{n_0 \theta}{\gamma \tau S_0} \left[1 + K \frac{\theta (2 - \theta)}{(1 - \theta)^2} \right]. \tag{9}$$

Как видно из рис. 2, полученные теоретические кривые хорошо согласуются с экспериментальными данными.

Наличие легирующих добавок существенно изменяет кинетику осаждения пленок поликристаллического кремния. Скорость осаждения при введении PH₃, AsH₃ уменьшается [15]. Фарроу [9] считает, что замедление вызвано адсорбцией лигатуры на активных центрах поверхности. Хиштман [10] с помощью модели Сето описал механизм реакции и зависимость скорости осаждения ПКЛФ, используя кинетику Ленгмюра—Хиншельвуда. Авторы [16] Ю и Мейерсон считают, что падение скорости осаждения пленок поликристаллического кремния при одновременном его легировании фосфором происходит вследствие блокирования активных центров. Фосфин хорошо адсорбируется кремнием, а отделение водорода от фосфи-

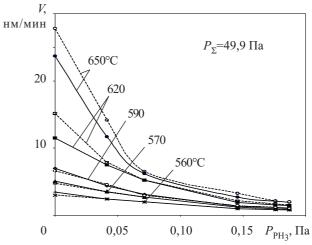


Рис. 4. Зависимости скорости осаждения пленок ПКЛФ от парциального давления фосфина при различных температурах осаждения

(сплошные — эксперимент; пунктир — расчет)

на еще больше увеличивает содержание фосфора, блокирующего адсорбцию моносилана.

Из представленных на **рис. 4** зависимостей видно, что при температурах 620 и 650°C наблюдается резкое уменьшение скорости осаждения с увеличением парциального давления фосфина. При температурах же 560-590°C с увеличением $P_{\rm PH_3}$ скорость осаждения уменьшается не так сильно, а при больших значениях $P_{\rm PH_3}$ она лишь незначительно отличается от скорости осаждения при температурах 620 и 650°C. Все это свидетельствует о конкурентном характере адсорбции моносилана и фосфина одними и теми же центрами [8].

При осаждении ПКЛФ в системе «концентрированный моносилан — фосфин» уравнения (1)—(4) остаются справедливыми [12]. Однако величина S/S_0 в этом случае будет зависеть от суммарной степени заполнения поверхности θ_{Σ} молекулами моносилана и фосфина (при этом предполагается, что и моносилан и фосфин адсорбируются одними и теми же центрами):

$$S / S_0 = \left[1 + K_1 \left(\frac{1}{\left(1 - \theta_{\Sigma} \right)^2} - 1 \right) \right]^{-1}. \tag{10}$$

Значения θ_{Σ} и θ можно определить по экспериментальной зависимости $V(P_{\text{PH}_3})$ (рис. 4), используя формулы (1)—(4), (19) и значения K, K_1 и β для соответствующей температуры (см. табл. 1). Степень заполнения поверхности фосфином θ_{PH_3} равна разности между θ_{Σ} и θ_{SiH_4} . Типичные зависимости θ_{Σ} , θ_{SiH_4} , θ_{PH_3} от P_{PH_3} представлены на **рис.** 5. Расчеты показывают, что при T_{oc} =590°C начиная уже с P_{PH_3} ≈0,1 Па значение суммарной степени заполнения адсорбционных центров определяется в основном адсорбцией фосфина. С увеличением температуры до 650°C это давление снижается до 0,05 Па.

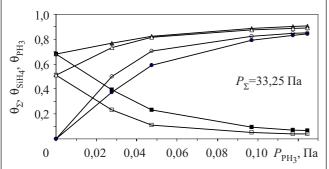


Рис. 5. Зависимости θ_{Σ} , θ_{SiH_4} , θ_{PH_3} от парциального давления фосфина при двух значениях температуры осаждения:

В то же время для θ_{PH_3} справедливы соотношения [11]

$$\theta_{\text{PH}_3} = \beta' P_{\text{PH}_3} S' / S'_{0}; \tag{11}$$

$$\beta' = \gamma' \tau' S'_0 / n_0; \tag{12}$$

$$\gamma = (2\pi m_{\text{PH}_3} kT)^{1/2},\tag{13}$$

где τ' — среднее время пребывания молекул фосфина на поверхности;

S'— вероятность прилипания молекулы фосфина к поверхности;

 S_0' — начальная вероятность прилипания;

 m_{PH_3} — масса молекулы фосфина.

Величину β' определяли по тангенсу угла наклона линейного участка зависимости $\theta_{PH_3}(P_{PH_3})$. Линейные зависимости наблюдаются при парциальных давлениях фосфина менее 0,03 Па, т. к. использовался сильно разбавленный фосфин. Полученные значения β' приведены в **табл. 2**.

Таблица 2 Значения констант, характеризующих процесс осаждения пленок ПКЛФ

T, °C	β′	K_1'	$\tau S_0'$, 10^{-3} c			
при P_{Σ} =33,25 Па, $P_{\mathrm{PH_3}}$ =0,02771—0,12469 Па						
650	18,07	0,00770,02	9,716			
620	15,358	0,0030,0083	8,1228			
590	13,467	0,0025—0,0089	7,002			
575	11,798	0,00220,0065	6,08			
560	8,075	0,0010,0033	4,1248			
при P_{Σ} =49,9 Па, P_{PH_3} =0,04158—0,18713 Па						
650	11,675	0,0066—0,0148	6,272			
620	10,388	0,007-0,009	5,494			
590	7,251	0,0010,0074	3,77			
575	6,079	0,0026—0,0056	3,133			
560	4,427	0,0021—0,0059	2,261			

Зависимость S' от $\theta_{\text{PH}3}$ можно описать уравнением (5), заменив K_1 на K_1' — константу, характеризующую процесс адсорбции молекул фосфина [12]. Для недиссоциативной адсорбции [11, с. 319] уравнение (11) преобразуется во вспомогательную функцию

$$z=K_1/(1-\theta_{\Sigma})-K_1$$

И

$$z = \beta' P_{\text{PH}_2} / \theta_{\text{PH}_3} - 1. \tag{14}$$

Зависимости z от $(1-\theta_{\Sigma})$ для каждой из исследованных температур при значениях суммарного давления 33,25 и 49,9 Па были построены с использованием соответствующих значений β' и расчетных зависимостей θ и θ_{PH_3} от P_{PH_3} . Все они имеют нелинейный характер, что свидетельствует о неприменимости модели недиссоциативной адсорбции для описания адсорбции молекул фосфина. Затем при помощи уравнений (10)—(13) были рассчитаны значения K_1' и $\tau'S'_0$ для исследованных температур и давлений осаждения пленок ПКЛФ (см. табл. 2).

Как видно из табл. 2, при увеличении температуры осаждения возрастают значения β' и τS_0 , а величина K_1' систематических изменений не имеет. В то же время наблюдается увеличение K_1' с ростом парциального давления фосфина. При увеличении суммарного давления значения β' и $\tau S_0'$ уменьшаются.

Так как K_1 '<<1, коэффициент адсорбции фосфина намного больше коэффициента его десорбции, а энергия хемособрбции молекул фосфина очень мала.

Теоретические зависимости $V(P_{\mathrm{PH_3}})$, представленные на рис. 4, были получены для P_{Σ} =49,9 Па с использованием уравнений (1), (4), (10)—(13). Видно, что они хорошо аппроксимируют экспериментальные значения скорости осаждения. Аналогичные результаты были получены и при P_{Σ} =33,25 Па.

При практической реализации процесса осаждения ПКЛФ к нему предъявляются следующие основные требования: приемлемая скорость осаждения; однородность толщины пленки по пластине и по процессу; достижение требуемого удельного сопротивления (уровня легирования) и его однородности; конформное заполнение топологического рельефа. В [4, 7] показано, что уровень легирования, приемлемый в большинстве случаев применения пленок ПК (<1000 мкОм·см), достигается при температуре осаждения 590°С и ниже. Для более высоких температур наблюдается возрастание удельного сопротивления, а также усиление его зависимости от соотношения объемных потоков PH₃/SiH₄.

Для высоколегированного ПКЛФ допустимо пренебречь шириной обедненной зоны на границах зерен, и тогда сопротивление ПКЛФ можно представить как сумму сопротивлений собственно зерен (кристаллитов) и сопротивлений их границ [4, с. 76]. Пленки ПКЛФ, осажденные при температурах 590°C и ниже, после отжига имеют больший размер зерен, чем осажденные при более высоких температурах, следовательно, возможно достижение более низких удельных сопротивлений. Кроме того, высота микронеровностей пленок ПКЛФ, осажденных при $T_{\rm oc}$ ≤590°С, не превышает 0,05 мкм, в то же время высота микронеровностей пленок, выращенных при T_{oc} ≥620°С, достигает 0,15 мкм и более [4, 7]. Снижение шероховатости поверхности пленок поликристаллического кремния очень важно для СБИС и УБИС.

В [4, 17] показано, что с увеличением соотношения потоков у коэффициент заполнения вертикальной ступеньки (K_3) пленками ПКЛФ уменьшается. Так, при $T_{\rm oc}$ =575°C и γ =0,001 K_3 =0,93, при увеличении у до 0,004 коэффициент заполнения составляет не менее 0,8, а при γ =0,012 K_2 =0,58.

В [16] показано, что при температурах более 550°С РН₃ адсорбируется с потерей водорода. В то же время, разложение моносилана может протекать двумя путями: адсорбция и последующее разложение SiH₄ на поверхности или разложение SiH₄ на кзiH₂ (силилен) и последующая его адсорбция и разложение на поверхности. Адсорбция фосфина по сравнению с SiH₄ более предпочтительна, т. к. константа его адсорбции существенно больше [16]. Вероятность блокирования фосфином второго пути осаждения значительно меньше, поскольку SiH₂— ненасыщенный бирадикал, который хорошо адсорбируется поверхностью.

Известно, что на плоской поверхности вклад моносилана в рост пленки уменьшается при возрастании процентного содержания фосфина в газовой фазе

[18]. В самом деле, присутствие фосфора внутри осаждаемой пленки блокирует хемосорбцию химически слабоактивной молекулы моносилана из-за более высокой электроотрицательности фосфора по сравнению с кремнием [18]. Это приводит к большему вкладу силилена в осаждение радикалов и к уменьшению общей скорости осаждения. Моносилан (коэффициент прилипания 10^{-3} [18]) будет равномерно адсорбироваться в любом месте топологического рельефа. С другой стороны, силилен (коэффициент прилипания близок к единице) будет быстро реагировать на плоской поверхности и сильно обедняться на вертикальной ступеньке (или стенке канавки). Поэтому основной вклад в рост пленки ПКЛФ на поверхности вносит силилен, а на стенках топологического рельефа — моносилан.

Таким образом, адсорбционно-кинетическая модель, уточненная для случая «концентрированный моносилан — фосфин», указывает на то, что для достижения приемлемых скоростей и однородности осаждения пленок ПКЛФ нужно обеспечить максимально возможную степень заполнения адсорбционных центров молекулами моносилана. Из приведенных выше данных видно, что на практике целесообразнее работать при температуре ниже 590°C, суммарном давлении порядка 50 Па и P_{PH_2} =0,04—0,07 Па (что соответствует диапазону значений ү=0,001...0,002 при P_{Σ} =50 Па). В таких условиях еще не происходит полного блокирования адсорбции моносилана молекулами фосфина, а кроме того, обеспечивается конформное заполнение топологического рельефа пленками ПКЛФ и достижение высокого уровня легирования пленок (удельное сопротивление ниже 1000 мкОм⋅см).

С использованием разработанных режимов осаждения ПКЛФ были получены структуры конденсаторов этажерочной конструкции. Установленные закономерности роста ПКЛФ могут использоваться также при разработке процессов осаждения на пластинах диаметром 150 и 200 мм как в горизонтальных, так и в вертикальных реакторах пониженного давления.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

- 1. Поликристаллические полупроводники / Под. ред. Г. Харбеке.— М.: Мир, 1989.
 - 2. Технология СБИС. Т. 1 / Под. ред. С. Зи. М.: Мир, 1986.
- 3. Kamins T. Polycrystalline silicon for integrated circuits and displays.—Norwell, MA, USA: Kluwer Academic Publishers, 1998.
- Турцевич А. С., Ануфриев Л. П. Пленки поликристаллического кремния в технологии производства интегральных схем и полупроводниковых приборов.— Минск: Белорусская наука, 2006.
- 5. Mulder J. G. M., Eppenda P., Hendrics M., Tong J. E. An industrial LPCVD process for in-situ Phosphorus-Doped polysilicon // J. Electrochem. Soc.— 1990.— Vol. 137, N 1.— P. 273—279.
- 6. Learn A. J., Foster D. W. Deposition and electrical properties of in situ phosphorus-doped silicon films by low-pressure chemical vapour deposition // J. of Applied Physics.— 1987.— Vol. 61, N 5.— P. 1898—1904.
- 7. Lesnikova V. P., Turtsevich A. S., Krasnitsky V. Y. et al. The structure, morphology and resistivity of in situ phosphorus polysilicon films // Thin Solid Films.— 1994.— Vol. 247.— P. 156—161.

- 8. Turtsevich A. S., Krasnitsky V. Y., Emelyanov V. A. et al. The effect of production conditions for in situ phosphorus doped LPCVD polysilicon in monosilane/phosphine system on the deposition process kinetics // Thin Solid Films.— 1994.— Vol. 248.— P. 28—31.
- 9. Farrow R. F. C. The kinetics of silicon deposition on silicon by pyrolysis of silane // J. Electrochem. Soc.— 1974.— Vol. 121, N 7.— P. 899—907.
- 10. Hitchman M. L., Ahmed W. Some recent trends in the preparation of thin layers by low pressure chemical vapour deposition // Vacuum.— 1984.— Vol. 34, N 10-11.— P. 979—986.
- 11. Робертс М., Макки Ч. Химия поверхности раздела металл газ. М.: Мир, 1981.
- 12. Кобка В. Г., Ушанкин Ю. В. Адсорбционно-кинетическая модель процесса осаждения пленок поликристаллического кремния в реакторе пониженного давления // Поверхность. 1986. № 8. С. 87—93.
- 13. Турцевич А. С., Румак Н. В., Наливайко О. Ю., Макаревич И. И. Кинетика роста пленок поликристаллического кремния, полученных пиролизом концентрированного моносилана при пониженном давлении // Электронная техника. Сер. 7.— 1993.— Вып. 4-5.— С. 35—39.

- 14. Сухов М. С. Механизм пиролиза моносилана при пониженном давлении // Известия АН СССР. Сер. Неорганические материалы.— 1982.— Т. 18, № 7.— С. 1077—1082.
- 15. Eversteyn G. C., Put B. H. Influence of AsH_3 , PH_3 and B_2H_6 on the growth rate and resitivity of polycrystalline silicon films deposited from a SiH4-H2 mixture // J. Electrochem. Soc.— 1973.— Vol. 120, N 1.— P. 106—110.
- 16. Yu M. L., Meyerson M. S., Adsorption of PH_3 on Si(100) and its effects on the coadsorption of SiH $_4$ // J. Vac.Sci. and Technology.— 1989.— A2.— N 2.— P. 447—449.
- 17. Турцевич А. С., Гранько В. И., Наливайко О. Ю. Конформность воспроизведения топологического рельефа поверхности интегральных схем при осаждении поликристаллического кремния, легированного в процессе роста фосфором и бором // Электронная техника. Сер. 7.— 1993.— № 4-5.— С. 55—57.
- 18. Gris H., Caussat B., Cot D. et al. LPCVD silicon-based film formation in submicrometer trenches in industrial equipment: experiments and simulation // Chem. Vap. Deposition.— 2002.— Vol. 8, N 5.— P. 213—219.

НОВЫЕ КНИГИ

Рембовский А. М., Ашихмин А. В., Козьмин В. А. Радиомониторинг: задачи, методы, средства.— М.: Горячая линия — Телеком, 2010.— 624 с.

Рассмотрены типовые задачи, решаемые с помощью средств радиомониторинга в самых различных областях — от управления использованием радиочастотного спектра до контроля радиообстановки при проведении контртеррористических

операций. Изложены теоретические и практические вопросы построения и функционирования радиотехнических систем радиомониторинга и технической защиты информации, в том числе автоматизированных стационарных и мобильных систем пеленгования, определения местоположения источников радиоизлучения, измерения параметров сигналов, выявления радиоизлучений и утечек информации, проведения специальных исследований. Рассмотрены математические методы и программное обеспечение для выявления и анализа радиоизлучений, измерения параметров сигналов и помех, напряженности электромагнитного поля или плотности потока мощности, определения положения источников радиосигналов и радиопомех, а также решения других задач радиомониторинга. Про-

анализированы особенности построения современных одноканальных и многоканальных широкополосных цифровых панорамных измерительных радиоприемников и радиопеленгаторов, анализаторов параметров сигналов, в том числе GSM и CDMA. Показано влияние конструктивного исполнения аппаратуры на скорость, чувствительность, помехоустойчивость и точность выполнения измерений. Во втором издании книги добавлены материалы по построению и техническим характеристикам унифицированных измерительных приемников семейства АР-ГАМАК и радиопеленгаторам семейства АРТИКУЛ, по разработкам анализаторов сигналов базовых станций сотовой радиосвязи и интегрированным радионавигационным системам мобильных станций радиомониторинга. Рассмотрены примеры применения средств радиомониторинга для радиочастотной и железнодорожной служб, экологического контроля. Переработан по итогам новых исследований и разработок раздел, посвященный специальным исследованиям ПЭМИН.

Для специалистов в области радиомониторинга, операторов и руководителей радиоконтрольных служб, сотрудников силовых ведомств и служб безопасности государственных и коммерческих структур. Будет полезна студентам и аспирантам.