Д. ф.-м. н. А. В. КАРИМОВ, к. ф.-м. н. Д. М. ЁДГОРОВА, О. А. АБДУЛХАЕВ

Узбекистан, г. Ташкент, ФТИ НПО «Физика–Солнце» E-mail: karimov@uzsci.net. Дата поступления в редакцию 13.02 2009 г. Оппонент к. т. н. Я. Я. КУДРИК (ИФП им. В. Е. Лашкарёва, г. Киев)

АРСЕНИД-ГАЛЛИЕВЫЕ *p*⁺–*n*–*p*⁺-СТРУКТУРЫ С ОБЕДНЯЕМОЙ БАЗОВОЙ ОБЛАСТЬЮ

Показано, что механизм токопереноса через p⁺GaAs-nGaAs-p⁺GaAs-структуру определяется инжекционно-туннельным и генерационно-рекомбинационным механизмами. Структуры представляют интерес для создания ограничителей напряжения и электронных переключателей.

Полупроводниковые *p*⁺-*n*-*p*⁺-структуры отличаются разнообразием функциональных характеристик и сфер применения. Управляемое изменение параметров определенных областей p^+ -n- p^+ -структуры приводит к существенным изменениям электронных процессов, протекающих в них. В случае смыкания обедненных областей *p*⁺-*n*-переходов они превращаются в инжекционно-пролетные диоды, а при неполном обеднении становятся основой биполярных транзисторов, предназначенных для усиления электрических сигналов. Исследования *р*-*n*-*p*-структур как элементов биполярного транзистора проводятся широко, в то время как сведения об исследовании $p^+ - n - p^+$ структур в режиме смыкания приведены в единичных работах [1, 2], хотя они в качестве ограничителей напряжения должны обладать определенным преимуществом в части термостабильности и быстродействия, по сравнению с диодами типа p^+ –n– n^+ , основанными на лавинном или зинеровском пробое [3].

В настоящей статье приведены некоторые характеристики арсенид-галлиевой p^+ -n- p^+ -структуры как основы для изготовления ограничителей напряжения.

Исследуемая p^+ GaAs-nGaAs- p^+ GaAs-структура получена выращиванием из жидкой фазы в едином процессе эпитаксиальных слоев *n*- и *p*⁺-типа проводимости на сильнолегированной арсенид-галлиевой подложке *p*⁺-типа толщиной 400 мкм. Толщина эпитаксиальных слоев n- и p^+ -типа составляет 1,5 и 2,5 мкм, соответственно. Концентрация носителей в базовой области *n*GaAs равна $N_n = 7 \cdot 10^{15}$ см⁻³. С целью предотвращения расширения слоя обеднения в полученный эпитаксиальный слой p^+ -типа, т. е. для сохранения высокой концентрации примесей в эпитаксиальном слое, в раствор-расплав $Ga+p^+GaAs$ дополнительно добавляли металлический цинк. С другой стороны, этот прием предусматривал уменьшение концентрации носителей у границы базовой области nGaAs и сосредоточение области объемного заряда в самой базовой области (рис. 1, а). Эквивалентная схема p^+ -n- p^+ -структуры состоит из навстречу включенных переходов *p*⁺(подложка)–*n*(пленка) и

ФУНКЦИОНАЛЬНАЯ МИКРО- И НАНОЭЛЕКТРОНИКА

Рис. 3. Дифференциальное сопротивление $p^{-}n-p^{-}$ структуры при различных режимах включения: $1 - (-)p^{+}-n-p^{+}(+); 2 - (+)p^{+}-n-p^{+}(-)$

 $n(пленка)-p^+(пленка)$ (рис. 1, δ), что также показано на энергетической зонной диаграмме (рис. 1, ϵ).

Исследования темновых вольт-амперных характеристик показали, что при смене полярности прилагаемого напряжения получаются две обратные ветви, обусловленные поочередным запиранием p^+-n и n p^+ -переходов (рис. 2, кривые 1, 2). Отличие этих переходов состоит в том, что p^+ -*n*-переход сформирован на объемной подложке из p^+ GaAs, выращенного методом Чохральского, марки АГЧЦ, а $n-p^+$ -переход является эпитаксиальным. Области как *n*-типа, так и p^+ -типа представляют собой эпитаксиальные слои. Сопоставление сопротивлений обоих переходов при напряжении 0,08 В показывает, что эпитаксиальный $n-p^{+}$ -переход имеет в 6,5 раз большее сопротивление, по сравнению с сопротивлением p^+ -*n*-перехода, и, надо полагать, большую толщину слоя объемного заряда (**рис. 3**). Величина сопротивления $n-p^+$ -перехода резко уменьшается с увеличением приложенного напряжения, как и у ограничителей напряжения [4]. Именно в режиме запирания $n-p^+$ -перехода наблюдается переход из низкопроводящего состояния в высокопроводящее, а в другом p^+ -*n*-переходе это состояние выражено неярко. Это указывает на то, что Температурные коэффициенты структуры p⁺GaAsnGaAs-p⁺GaAs при различных режимах включения.

Таблица 1

$\Delta T = T_2 - T_1$, °C	α, B/°C		
	$(+)p^+ - n - p^+(-)$	$(-)p^+ - n - p^+(+)$	
40—20	0,005	0,0055	
60—40	0,0056	0,0055	
80—60	0,006	0,005	

электронные процессы несколько отличаются друг от друга при смене полярности рабочего напряжения. Из последовательности расположения *p*- и *n*-областей вытекает, что область объемного заряда p^+ GaAs*n*GaAs-перехода в режиме (–)*p*–*n*–*p*(+) расширяется противоположно направлению тока, в частности в сторону *n*GaAs– p^+ GaAs-перехода. При этом у границы области объемного заряда противоположного перехода остается квазинейтральная область, что исключает возможность проявления ТОПЗ-механизма [5]. Аналогичная картина предполагается и в другом режиме (+)*p*–*n*–*p*(–).

Что касается температурных свойств, отметим, что температурные зависимости вольт-амперных характеристик структуры с p-n-переходами могут дать сведения о ее функциональных возможностях. В частности, опираясь на значения температурного коэффициента α (отношение изменения падающего напряжения к разности температур, вызывающей это изменение, $\alpha = \Delta U / \Delta T$ [6]) можно характеризовать полупроводниковый прибор с p-n-переходами как термодатчик или как ограничитель напряжения. В нашем случае температурные исследования вольт-амперной характеристики p^+ -n- p^+ -структуры на основе арсенида галлия при различных режимах включения (**рис. 4**) показали, что температурный коэффициент имеет низкие значения (см. **табл. 1**).

Следует отметить, что перестроив графики температурной зависимости вольт-амперной характеристики в двойном логарифмическом и полулогарифмическом масштабах (**рис. 5**, кривые 1—4), можно определить закономерности зависимости тока от напря-

Технология и конструирование в электронной аппаратуре, 2009, № 3

Рис. 6. ВАХ структуры в двойном логарифмическом (*a*) и полулогарифмическом (*б*) масштабах в режиме $(+)p^+-n-p^+(-)$ для различных *T* в °С: 1-20; 2-40; 3-60; 4-80

жения в заданном диапазоне напряжений, т. е. физические процессы, объясняющие механизмы токопереноса. Как видно из рис. 5, а, в режиме запирания $(-)p^+$ -*n*-перехода на начальном участке (до напряжения 0,68 В) при комнатной температуре имеем степенную зависимость с показателем $\gamma_1 = 1,76$, обусловленную рекомбинационными процессами в области объемного заряда и квазинейтральной области базы. Далее, с повышением напряжения от 0,6 до 1,4 В, имеет место экспоненциальная зависимость тока от напряжения с коэффициентом неидеальности *n*=14, связанная с инжекционными процессами в $n-p^+$ -переходе (рис. 5, δ). С повышением температуры от комнатной до 80°C показатель степени у последовательно уменьшается до 1,26, а коэффициент неидеальности *п* уменьшается вначале до 10,1, а затем до 9,7. Такое поведение токовой зависимости можно объяснить рекомбинационно-генерационными и инжекционно-туннельными процессами.

В режиме запирания $n-p^+(-)$ -перехода (**рис. 6**) до напряжения 0,8 В имеет место экспоненциальная зависимость с коэффициентом неидеальности 6,2, обусловленная инжекционными процессами в p^+-n -переходе, поддерживаемыми туннелированием носителей через $n-p^+(-)$ -переход. Далее, в интервале напряжения от 0,8 до 2 В, наблюдается степенная зависимость с показателем γ =5 (рис. 6, *a*), связанная с туннельнорекомбинационными процессами. С повышением температуры процесс инжекции носителей усиливается и коэффициент неидеальности увеличивается до 10,6, а показатель степени γ уменьшается до 3,52. Наблюдаемые зависимости можно объяснить инжекционно-рекомбинационными процессами.

Анализ результатов исследования вольт-амперных характеристик показывает, что на начальном участке в p^+ -*n*-переходе имеем степенную зависимость, а на $n-p^+$ -переходе — экспоненциальную, и наоборот, при напряжении, превышающем контактную разность

ФУНКЦИОНАЛЬНАЯ МИКРО- И НАНОЭЛЕКТРОНИКА

Таблица 2

Характеристические параметры p⁺GaAs-nGaAsp⁺GaAs-структуры при различных режимах включения в зависимости от температуры

<i>T</i> , °C	(-)p-n-p(+)		(+) <i>p</i> - <i>n</i> - <i>p</i> (-)		
	γ при <i>I~U</i> ^γ	<i>п</i> при <i>I</i> ~exp <i>qU</i> /(<i>nkT</i>)	γ при <i>I~U</i> ^γ	<i>n</i> при <i>I</i> ~exp <i>qU</i> /(<i>nkT</i>)	
20	1,76	14	5	6,2	
40	1,64	10,1	4,2	7,71	
60	1,59	10,1	4,0	9,57	
80	1,26	9,7	3,52	10,6	
<u> </u>					

Примечание: q — заряд электрона, k — постоянная Больцмана

потенциалов, в p^+ -*n*-переходе имеем экспоненциальную зависимость, а на *n*- p^+ -переходе — степенную (табл. 2).

Отсюда следует, что механизмы токопереноса в p^+ GaAs-*n*GaAs- p^+ GaAs-структуре определяются параметрами модулируемой части базовой области. Это объясняется тем, что базовая область как бы разбивается на две части. Независимо от направления хода модуляции базы, при модуляции со стороны, прилегающей к подложке этой части базы, вольт-амперная зависимость является степенной функцией, а при модуляции со стороны эпитаксиального $n-p^+$ -перехода зависимость становится экспоненциальной. Сопоставление значений тока показывает, что при запирании p^+ -*n*-перехода ток в 6 раз больше, чем при запирании эпитаксиального $n-p^+$ -перехода ($I=6, 10^{-7}$ А против 1·10⁻⁷ А при *U*=0,0865 В). С другой стороны, наблюдаемые токовые характеристики можно объяснить технологическим разделением базовой области на две части — более совершенную и дефектную. В частности, со стороны подложки (с концентрацией дефектов 10^4 см⁻²) в эпитаксиальном слое создаются дефекты, концентрация которых убывает по толщине. В результате создаются условия для инжекции, туннелирования дырок и захвата их на уровни, а также последующей их рекомбинации с электронами (рис. 7).

Таким образом, ток через p^+ GaAs–nGaAs– p^+ GaAsструктуру определяется инжекционно-туннельным и генерационно-рекомбинационным механизмами. При модуляции части базы, содержащей дефекты, превалирует инжекционно-туннельный ток, а при модуляции части базы с меньшей дефектностью определяющими являются генерационно-рекомбинационные токи. В режиме запирания $n-p^+$ -перехода, из-за низких значений обратных токов инжекционные токи через прямовключенный p^+-n -переход ограничиваются, т. е. определяются обратным током $n-p^+$ -перехода. Вместе с тем, поскольку база является тонкой, инжектированные дырки не могут изменить ее параметры.

Результаты проведенных исследований показывают, что хотя сама p^+ GaAs-nGaAs- p^+ GaAs-структура

Рис. 7. Качественные энергетические зонные диаграммы p^+ -n- p^+ -структуры

внешне является симметричной, ее характеристиками можно управлять за счет создания эпитаксиального $nGaAs-p^+GaAs$ -перехода с малыми обратными токами. Режим малых обратных токов является целесообразным для ограничителей напряжения.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Cohen E. D. Trapatts and impatts — state of the art and application // Microwave J.— 1977.— N 20.— P. 22.

2. Пат. 2006994 РФ. Структура полупроводникового инжекционно-пролетного прибора / А. В. Наумов, В. И. Санкин.— 30.01 1994.

3. Козлов В. А., Кардо-Сысоев А. Ф., Брылевский В. И. Волновой ударно-ионизационный пробой дрейфовых диодов с резким восстановлением // ФТП.— 2001.— № 5.— С. 629—632.

4. Рассел Билл. Защита систем передачи данных от переходных процессов. http://www.icquest.ru/html/articles/semtech_art.html

 Лебедев Э. А., Диттрих Т. Ток, ограниченный пространственным зарядом, в пористом кремнии и анатазе (TiO₂) // ФТП.— 2002.— № 10.— С. 1268—1271.

6. Тиходеев Ю. С., Трутко А. Ф. Обзор и анализ возможностей расчета полупроводниковых приборов и некоторые идеи создания новых СВЧ полупроводниковых приборов // Сб. статьей. Полупроводниковые приборы и их применение.— М.: Сов. радио.— 1971.— Вып. 25.— С. 315—328.