А. В. ДУДЯК, А. В. ЗАСЛОНКИН, д. ф.-м. н. З. Д. КОВАЛЮК, к. ф.-м. н. И. В. МИНТЯНСКИЙ, к. ф.-м. н. П. И. САВИЦКИЙ

Украина, г. Черновцы, ЧО Института проблем материаловедения им. И. Н. Францевича E-mail: chimsp@ukrpost.ua

ПЕРВИЧНЫЕ ИСТОЧНИКИ ТОКА $Li/Cu_4Bi_5S_{10}$

Исследованы эксплуатационные характеристики электрохимической системы $Li/Cu_4Bi_5S_{10}$, определен механизм токообразования. Измерены импедансные спектры гальванической пары при различной глубине разрядки. Предложена модель эквивалентной электрической схемы.

В сравнении с традиционными электрохимическими системами, литиевые источники тока обладают большей удельной энергоемкостью и успешно используются в различных портативных электронных приборах. Но, несмотря на очевидные преимущества, литиевые системы имеют и значительный недостаток низкие допустимые токи нагрузки. Поэтому возникает необходимость поиска новых высокопроводящих катодных материалов. Как отмечено в [1-4], перспективными активными веществами для таких элементов являются селенид висмута Bi₂Se₃, медно-висмутовые халькогениды CuBiSe₂ и CuBiŠeS, которые обладают относительно высокими энергетическими характеристиками. В [5] показано, что эффективным веществом для электродов полуторавольтовых источников тока, которое обеспечивает относительно высокую мощность литиевых систем, является медновисмутовый сульфид $Cu_4Bi_5S_{10}$.

Целью данной работы было исследование эксплуатационных характеристик гальванической пары $Li/Cu_4Bi_5S_{10}$, определение механизма токообразующей реакции, а также изучение электронных и ионных свойств системы с использованием методики электрохимической импедансной спектроскопии.

Объекты и методы исследований

Объектом исследований была гальваническая пара Li/Cu₄Bi₅S₁₀. Катодный материал получали путем двухэтапного синтеза, который проводили в запаянных кварцевых ампулах, вакуумированных до остаточного давления 10^{-5} мм рт. ст. Вначале сплавлялись стехиометрические количества металлических компонент (Bi и Cu) при температуре $1100\pm10^{\circ}$ C на протяжении 3— 4 ч. Затем ампула вскрывалась, в нее добавлялось стехиометрическое количество серы и процесс вакуумирования-запайки повторялся. На заключительном этапе ампула постепенно (10° C/ч) нагревалась до Дата поступления в редакцию 18.02 2009 г. Оппоненты: *д. т. н. А. А. АЩЕУЛОВ* (Ин-т термоэлектричества, г. Черновцы), *д. х. н. Г. Я. КОЛБАСОВ* (ИОНХ им. В. И. Вернадского, г. Киев)

температуры 800±10°С и выдерживалась при ней не менее трех часов.

Эксперименты проводились на элементах стандартного типоразмера «2325» (Ø23 мм, высота *h*=2,5 мм). Катоды были изготовлены по порошковой технологии. После механического дробления материал измельчался в шаровой мельнице «Санд» для получения мелкодисперсного порошка (d≤75 мкм). Дисковые электроды диаметром 19,5 мм и высотой ~1,15 мм формировались при комнатной температуре в специальной пресс-форме под давлением около 10³ кг/см², при этом для механической прочности электродов использовали вяжущее вещество. Для повышения эффективности использования $Cu_4Bi_5S_{10}$ и протекания токообразующей реакции во всем объеме к катодной массе добавлялся порообразователь. После термообработки в динамическом вакууме при температуре 220°С в течение двух часов формировалась пористая структура электрода с относительным объемом пор, близким к 20%.

Для анода из полоски металлического лития толщиной 0,80 мм вырезались диски диаметром 18 мм, что обеспечивало энергоемкость отрицательного электрода примерно 415 мА·ч.

В качестве электролита использовался одномолярный раствор тетрафторбората лития LiBF₄ в γ-бутиролактоне, а в качестве сепаратора — нетканый полипропилен.

Эксплуатационные характеристики системы определялись при комнатной температуре и разрядке постоянным током различной величины (0,1; 0,3; 1 и 2 мА) до конечного напряжения 1 В. Вольт-амперные характеристики снимались в гальванодинамическом режиме при скорости развертки 1 мкА/с. Дифрактограммы разряженного катодного материала получали в Си-К α -излучении с помощью рентгеновского двухкристаллического дифрактометра ДРОН-УМ1. Диапазон углов дифрагированного отражения составлял 10°<2 Θ <60° с шагом сканирования 0,05° и экспозицией по 5 с в каждой точке.

Спектры электрохимического импеданса источника тока Li/Cu₄Bi₅S₁₀ исследовались при комнатной температуре в диапазоне частот 10^{-2} — 10^6 Гц на установке, включающей в себя высокочастотный анализатор спектров SI 1255 «HF Frequency response analyzer», совмещенный с аналогово-цифровым преобразователем SI 1286 «Electrochemical interface».

Амплитуда приложенного синусоидального напряжения была равна 5 мВ. Перед исследованиями зависимости импеданса от глубины разрядки гальванический элемент разряжали до заданного уровня и уравновешивали систему в течение 24 часов. Импедансные спектры анализировались с помощью комплексной нелинейной программы ZSimpWin 3.21.

Результаты исследований

Разрядные параметры. Типичные разрядные кривые элементов Li/Cu₄Bi₅S₁₀ при различном разрядном токе приведены на **рис. 1**, а результаты для некоторых элементов обобщены в **табл. 1**. При токе 1 мА полученная энергоемкость составляет 315 мА·ч, а ее максимальное значение (при 0,1 мА) — 380 мА·ч, т. е. при номинальном напряжении 1,5 В экспериментально получена энергия 570 мВт·ч. Соответствующая объемная энергия элемента равна 549 Вт·ч/дм³, а весовая (в пересчете на активный материал) — 552 Вт·ч/кг. Из ватт-амперной характеристики (**рис. 2**) следует, что максимальная мощность элемента составляет 14 мВт.

Эксплуатационные параметры источников тока (удельная емкость, энергия и мощность) зависят от их типоразмера, конструкции, технологии изготовления, режима разрядки и т. п., что, в свою очередь, определяется областью конкретного практического применения. Сравнение параметров исследуемых элементов и элементов Li/CuBiSe₂, Li/CuBiSeS и Li/Bi₂Se₃ показывает, что источник тока Li/Cu₄Bi₅S₁₀ обладает

Разрядные параметры элементов Li/Cu Bi.S.

_r									
№ п/п	Вес активного материала, г	Разрядный ток, мА	Энергия, мВт·ч						
1	1,032	2	228	343					
2	1,032	1	307	446					
3	1,032	1	315	454					
4	1,032	0,3	330	534					
5	1,032	0,1	380	570					

Рис. 3. Дифрактограмма катодного материала источника тока $\text{Li/Cu}_4\text{Bi}_5\text{S}_{10}$ после его полной разрядки

увеличенным на 25—35% значением разрядной емкости при токе разрядки 1 мА, а также большей удельной энергией.

Токообразующие процессы. Для определения их механизма в гальваническом элементе $Li/Cu_4Bi_5S_{10}$ проводились рентгенодифрактометрические исследования кристаллической структуры разряженного катодного материала (**рис. 3**). При сравнении спектров дифракционного отражения со справочными данными таблиц JCPDS [6] были определены следующие фазы: Bi, Cu, Li₂S и Li₃Bi.

Рентгенофазовый анализ конечных продуктов реакции позволил предположить такой механизм токообразующей реакции:

$$20\text{Li} + \text{Cu}_4\text{Bi}_5\text{S}_{10} \to 10\text{Li}_2\text{S} + 5\text{Bi} + 4\text{Cu}.$$
 (1)

Теоретическая энергоемкость элемента, рассчитанная по реакции (1), составила 342 мА·ч, что меньше экспериментальной величины. Идентификация соединения Li_3Bi в продуктах реакции дала возможность предположить, что образованный при реакции (1) свободный висмут вступает во взаимодействие с литием анода, что и обеспечивает дополнительную емкость:

$$3Li + Bi \rightarrow Li_3Bi.$$
 (2)

Импеданс и его моделирование. Для определения электронных и ионных свойств системы Li/Cu₄Bi₅S₁₀

исследовались изменения импедансных спектров при изменении глубины разрядки. Известно, что разделить импеданс на анодную и катодную составляющие можно лишь при использовании дополнительного электрода сравнения. Однако ввести такой электрод было невозможно, т. к. типоразмер изучаемых элементов не отличался от промышленных аналогов, и поэтому измерения проводились по двухэлектродной схеме. При такой схеме экспериментальные зависимости отражают источник тока в целом, и определить катодную составляющую импеданса можно только в том случае, если полностью пренебречь вкладом анодной составляющей. Но в нашем случае, несмотря на сравнительно большую площадь анода, этого сделать нельзя, т. к. импеданс гладкого лития может превышать или быть на уровне импеданса пористого катода.

С другой стороны, для литиевых систем трехэлектродные измерения носят скорее фундаментальный общенаучный характер, поскольку неадекватно отражают процессы в реальном гальваническом элементе. В частности, для трехэлектродной ячейки несущественны такие важные явления в источнике тока, как загрязнение электролита из-за взаимодействия с изменяющимися компонентами катода, возрастающий с глубиной разрядки дефицит электролита и др.

Приведенные ниже экспериментальные спектры точно отображают импеданс дисковой литиевой батареи «2325». Для адекватной же оценки свойств отдельных электродов были дополнительно исследованы импедансные спектры в зависимости от времени выдержки после прекращения очередной стадии разрядки.

Кратко рассмотрим физико-химические процессы, которые протекают на катоде и аноде при разрядке системы $Li/Cu_4Bi_5S_{10}$. Литий в контакте с неводным электролитом создает пассивационную пленку. С учетом справочных данных о границе раздела «литий—электролит», может быть предложено несколько эквивалентных схем пленки [7—9], которые включают в себя один или два *RC*-элемента. При взаимодей-

Рис. 5. Эквивалентная схема для моделирования импедансного спектра

ствии катодного материала с электролитом также происходит образование пленки, которая может быть представлена как RC-участок эквивалентной схемы. Проникая через пленку, ионы лития вступают во взаимодействие с катодом, которое может быть смоделировано работой C(RW)-схемы.

На рис. 4 приведен импедансный спектр (кривые Найквиста) при различной глубине разрядки электрохимической системы. Все кривые представляют собой один или два деформированных полукруга. Диаметр высокочастотного полукруга и общий импеданс увеличиваются с ростом глубины разрядки. При этом не наблюдается прямолинейного диффузионного участка в области наименьших частот. Для моделирования импедансного спектра применялась эквивалентная схема, состоящая из последовательно соединенных звеньев, представленная на рис. 5. Здесь R_0 омическая составляющая, которая содержит в себе сопротивления электролита, катода, анода и контактов. Вместо емкости С использован элемент с постоянной фазой Q, что позволило описать природу деформации «полукругов». Общее выражение для адмитанса (обратного импеданса) этого элемента имеет вид [10]

$$Y_Q = Y_0 \omega^n [\cos(\frac{n\pi}{2}) + j\sin(\frac{n\pi}{2})], \qquad (3)$$

rge Y_0 и n — параметры подгонки;

 ω — угловая частота переменного смещения $\omega=2\pi f;$ $j=\sqrt{-1}.$

В зависимости от *n* элемент *Q* воспроизводит различный отклик: при *n*=1 уравнение (3) отображает емкость, при *n*=0 — сопротивление величиной $R=Y_0^{-1}$, при *n*=0,5 — импеданс Варбурга.

Для моделирования диффузионного переноса частиц в схему включили элемент Варбурга *W*. В комплексной плоскости выражение для импеданса Варбурга имеет вид

$$Z_W = \sigma(1-j)\omega^{-1/2},$$
 (4)

где **о** — коэффициент Варбурга.

В условиях наших экспериментов общее уравнение для определения коэффициентов диффузии *D* приводится к простой форме [10]

$$\sigma = RT/(k^2 F^2 A 2^{1/2} D^{1/2} C), \qquad (5)$$

где R — универсальная газовая постоянная;

T— абсолютная температура;

k — число перенесенных электронов;

F — постоянная Фарадея; *A* — плошаль электрола:

Технология и конструирование в электронной аппаратуре, 2009, № 2

 $C-\!\!-$ концентрация и
онов лития (рассчитывалась из молярного объема ${\rm Cu}_4{\rm Bi}_5{\rm S}_{10}$ и количества лития, вступившего в реакцию).

Несмотря на то, что при хранении источников тока оксидные пленки образуются на поверхности обоих электродов, пассивация лития намного существеннее из-за его очень высокой реакционной способности. Главным же обстоятельством, позволяющим рассматривать отдельно параметры положительного и отрицательного электродов, является то, что в процессе разрядки поверхность металлического анода все время стравливается-очищается. То есть каждая стадия релаксационного процесса фактически начинается с чистой литиевой поверхности, и поэтому при хранении наиболее существенно изменяется именно связанная с ним часть импедансных спектров.

При исследовании релаксационного процесса гальванического элемента Li/Cu₄Bi₅S₁₀ после выключения разряда наблюдалось увеличение диаметра большого «полукруга» на импедансном спектре (**рис. 6**). При этом кривые Найквиста хорошо моделируются схемой на рис. 5 (расчетные данные приведены в **табл. 2**). Анализируя результаты подгонки, видим, что со временем сопротивление R_1 увеличивается, а значение R_2 остается почти постоянным. Учитывая высокую активность металлического лития, можно утверждать, что цепь (R_1Q_1) моделирует пассивационную пленку на аноде.

Анализ изменения параметров эквивалентной схемы, которая моделирует импедансные спектры при раз-

Рис. 6. Семейство кривых Найквиста (импедансный спектр) элемента $\text{Li/Cu}_4\text{Bi}_5\text{S}_{10}$ после разрядки на глубину 210 мА·ч для различного времени хранения (в часах): l = 0,3; 2 = 0,7; 3 = 1,1; 4 = 1,6; 5 = 2,1; 6 = 2,5; 7 = 3,0; 8 = 3,4; 9 = 3,9

личной глубине разрядки (табл. 3), показывает возрастание омического сопротивления в процессе разрядки (**рис.** 7). Как и ожидалось, величина коэффициента диффузии ионов лития значительно понижается при разрядке (от $1,40\cdot10^{-13}$ до $1,98\cdot10^{-18}$ см²/с).

При близких к единице значениях *n* элемент с постоянной фазой (*Q*) моделирует импедансное поведение искаженного емкостного элемента [11, с. 32]. Компьютерное моделирование для первого участка

Таблица 2

№ Время,		R_0 ,	Q_1		R_1 ,	Q_2		R_2 ,	$W = \frac{1}{2} \circ -1 = -2$
п/п	Ч	Ом·см ²	Y_0^1 , $c^{n_I} \cdot Om^{-1} \cdot cm^{-2}$	n_1	Ом·см ²	Y_0^2 , $c^{n_2} \cdot Om^{-1} \cdot cm^{-2}$	<i>n</i> ₂	Ом·см ²	<i>W</i> , c ·OM ⁻ ·cM ⁻
1	0,7	352	$7,47 \cdot 10^{-6}$	0,974	917	$2,58 \cdot 10^{-4}$	0,227	269	0,0084
2	1,1	448	$1,39 \cdot 10^{-5}$	0,753	1998	$1,07 \cdot 10^{-6}$	0,685	266	0,0124
3	1,6	451	$1,31 \cdot 10^{-5}$	0,764	2326	$1,32 \cdot 10^{-6}$	0,667	278	0,0103
4	2,1	454	$1,30 \cdot 10^{-5}$	0,764	2562	$1,37 \cdot 10^{-6}$	0,664	281	0,0106
5	2,5	454	$1,28 \cdot 10^{-5}$	0,767	2858	$1,55 \cdot 10^{-6}$	0,654	290	0,0095
6	3,0	454	$1,27 \cdot 10^{-5}$	0,769	3013	$1,62 \cdot 10^{-6}$	0,650	290	0,0086
7	3,4	457	$1,21 \cdot 10^{-5}$	0,777	3288	$1,94 \cdot 10^{-6}$	0,634	302	0,0082
8	3,9	460	$1,17 \cdot 10^{-5}$	0,782	3679	$2,20 \cdot 10^{-6}$	0,624	314	0,0086

* *		~			
Изменение	папаметров	эквивалентной	CYPMH	ททบ	пелаксании
ismenente	napamempoo	Skouousienninou	CACM01	npu	реликсиции

Таблица 3

Изменение параметров эквивалентной схемы гальванического элемента с ростом глубины разрядки

Глубина		D	Q_1		D	Q_2		D	W	D
№ п/п	разряда, мА·ч	Λ_0 , $OM \cdot CM^2$	$\begin{array}{c} Y_0^{1}, \\ \mathbf{c}^{n_I} \cdot \mathbf{O} \mathbf{M}^{-1} \cdot \mathbf{C} \mathbf{M}^{-2} \end{array}$	<i>n</i> ₁	Λ_1 , Om·cm ²	$\begin{array}{c} Y_0^2, \\ \mathbf{c}^{n_2} \cdot \mathbf{O} \mathbf{M}^{-1} \cdot \mathbf{C} \mathbf{M}^{-2} \end{array}$	<i>n</i> ₂	Λ_2 , $OM \cdot CM^2$	$c^{1/2} \cdot Om^{-1} \cdot cm^{-2}$	$cm^2 \cdot c^{-1}$
1	0,645	155	$1,77 \cdot 10^{-5}$	0,795	23031	$4,13 \cdot 10^{-5}$	0,0009	1383	0,0009	$1,40 \cdot 10^{-13}$
2	114	200	$5,73 \cdot 10^{-6}$	0,926	6910	$1,21 \cdot 10^{-4}$	0,0098	4995	0,0098	$5,33 \cdot 10^{-15}$
3	156	388	$7,00 \cdot 10^{-6}$	0,816	13971	$7,07 \cdot 10^{-6}$	0,0010	356	0,0010	$2,96 \cdot 10^{-17}$
4	193	463	$1,76 \cdot 10^{-5}$	0,815	12219	$5,49 \cdot 10^{-6}$	0,0017	454	0,0017	$5,59 \cdot 10^{-17}$
5	234	502	$1,04 \cdot 10^{-5}$	0,727	7946	$7,27 \cdot 10^{-8}$	0,0056	490	0,0056	$4,13 \cdot 10^{-16}$
6	305	543	$1,27 \cdot 10^{-5}$	0,763	7793	$5,59 \cdot 10^{-7}$	0,0016	693	0,0016	$1,98 \cdot 10^{-18}$

цепи (R_1Q_1) показало, что при любой глубине разрядки показатель степени n_1 почти не изменяется и имеет значения, близкие к единице (*n*₁=0,727-0,993). При этом величина Y_0^1 также претерпевает незначительные изменения. Известно, что элемент с постоянной фазой отражает структурные свойства электродов [11]. Значительные объемные изменения в катоде из материала $Cu_4Bi_5S_{10}$, которые возникают вследствие электрохимических реакций, должны были сильно изменить величины n_1 и Y_0^1 , однако этого не наблюдалось. Учитывая это, а также результаты исследования релаксационного процесса, можно с достаточной уверенностью допустить, что первый участок (R_1Q_1) не относится к катоду, а связан с импедансом пассивационной пленки на литиевом электроде.

Структура катодного материала вследствие токообразующей реакции разрушается и возникает дополнительная граница раздела между внешней и внутренней (сердцевинной) областями катодных частиц. При дальнейшей разрядке зона реакции движется от поверхности вглубь материала, толщина внешнего слоя увеличивается, катод все больше превращается в разупорядоченною матрицу, и новая граница раздела становится менее выраженной. Такие преобразования должны приводить и к изменению характера импедансного отклика с емкостного на резистивный. Это наблюдалось для второго участка цепи (R_2Q_2) и, следовательно, этот участок моделирует процессы, которые происходят на катоде.

Выводы

Проведенные исследования показали, что применение медно-висмутового сульфида Cu₄Bi₅S₁₀ в качестве активного катодного вещества позволяет увеличить мощностные и емкостные характеристики полуторавольтовых литиевых источников тока. В частности, разрядная энергоемкость «2325» элементов при токе 1 мА превышает 300 мА·ч.

Впервые изучены спектры импеданса и определены токообразующие реакции для системы Li/ Cu₄Bi₅S₁₀. Методом компьютерного моделирования установлена эквивалентная схема, описывающая поведение импеданса, найдены параметры ее элементов при различной глубине разрядки.

ИСПОЛЬЗОВАНЫЕ ИСТОЧНИКИ

Пат. 45130А України. Літієвий елемент / А. В. Заслонкін,
Д. Ковалюк, І. В. Мінтянський та ін.— 2002.— Бюл. № 3.

Pat. 5368957 USA. Energy storage device / I. D. Kozmik,
K. D. Tovstjuk, Z. D. Kovalyuk, et. al.— 06.01 1995.

3. Заслонкін А. В., Ковалюк З. Д., Мінтянський І. В., Савицький П. І. Катодні матеріали для літієвих джерел струму на основі шаруватого селеніду вісмуту // Науковий вісник ЧНУ.— 2000.— Вип. 86: Фізика. Електроніка.— Чернівці: ЧНУ.— С. 92—94.

Пат. 77971 України. Літієве джерело струму / А. В. Заслонкін,
Д. Ковалюк, І. В. Мінтянський та ін.— 2005.— Бюл. № 11.

5. Пат. 79362 України. Півторавольтовий літієвий елемент / О. В. Дудяк, А. В. Заслонкін, З. Д. Ковалюк та ін.— 2006.— Бюл. № 2.

6. Inorganic Crystal Structure Database (ICSD).— Gmelin-Institut fur Anorganische Chemie and Fachinformations-zentrum FIZ Karlsruhe, 1995.

7. Narayanan S. R., Shen D. H., Surampudi S. et. al. Electrochemical impedance spectroscopy of lithium-titanium disulfide rechargeable cells // J. Electrochem. Soc.— 1993.— Vol. 140, N 7.— P. 1854—1861.

8. Desjardins C. D., MacLean G. K., Sharifian H. Electrochemical passivation of lithium in lithium hexafluoroarsenate/2-methyltetrahydrofuran electrolyte // J. Electrochem. Soc.— 1989. Vol. 136, N 2.— P. 345—349.

9. Takami N., Ohsaki T., Inada K. The impedance of lithium electrodes in LiPF₆// J. Electrochem. Soc.— 1992.— Vol. 139, N 7.— P. 1849—1854.

10. Piao T., Park S.-M., Doh C.-H., Moon S.-I. Intercalation of lithium ions into graphite electrodes studied by AC impedance measurements // J. Electrochem. Soc.— 1999.— Vol. 146, N 8.— P. 2794—2798.

11. Стойнов З. Б., Графов Б. М., Савова-Стойнова Б. С., Елкин В. В. Электрохимический импеданс.— М.: Наука, 1991.