Н. В. МАКСИМЧУК, д. т. н. <u>А. Н. ШМЫРЕВА</u>, к. т. н. А. В. БОРИСОВ

Украина, НТУУ «Киевский политехнический институт» E-mail: lejanel@ukr.net Дата поступления в редакцию 03.06 2010 г. Оппонент к. ф.-м. н. О. Б. ОХРИМЕНКО (ИФП им. Лашкарёва, г. Киев)

## СВОЙСТВА И ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ НАНОКРИСТАЛЛИЧЕСКИХ ПЛЕНОК ОКСИДА ЦЕРИЯ

Установлены основные закономерности формирования наноструктурных пленок CeO<sub>x</sub> с управляемыми физическими свойствами, что расширяет область их применения для создания сенсоров различного назначения.

Оксид церия с уверенностью можно назвать многофункциональным материалом исходя из его широкого практического применения в оптике, электронике и, особенно, для реализации сенсоров газа, влажности, температуры и радиационных дозиметров. Высокое значение диэлектрической проницаемости этого материала (15-52, в зависимости от условий получения) и высокое качество его эпитаксиального слоя на кремнии открывает перспективы для будущих микроэлектронных применений, например в качестве малоразмерных стабильных конденсаторов хранения в устройствах динамической памяти, альтернативных диэлектриков в КМОП-устройствах, в структурах SOI (кремний-на-диэлектрике) [1-5]. Сходство кристаллических решеток оксида церия и кремния позволяет использовать СеО, для гетероэпитаксиального выращивания монокристаллических пленок или буферных слоев [3, 6]. Такие пленки применяют для создания полевых транзисторов, МДПваракторов и фотоваракторов, поскольку материал имеет ряд важных преимуществ по сравнению с диоксидом и нитридом кремния. Его высокая диэлектрическая проницаемость и, соответственно, большая электрическая прочность дает возможность использовать более тонкие диэлектрические слои. Ширина запрещенной зоны Е\_=3,6 эВ обуславливает лучшую диэлектрическую изоляцию структуры и уменьшает ток утечки через диэлектрик. Материал обладает химической стойкостью в кислотно-шелочных средах и непроницаемостью для подвижных ионов натрия. Большая плотность поверхностных чувствительных центров у пленок СеО, (до 10<sup>20</sup> см<sup>-2</sup>) обуславливает более высокую рН-чувствительность сенсоров на основе ионоселективных полевых транзисторов (ИСПТ). Параметр расхождения постоянных решетки CeO<sub>2</sub> и кремния достаточно мал —  $\Delta a/a=0.35\%$ , что обеспечивает лучшую адгезию с кремнием и, как следствие, уменьшение плотности поверхностных состояний, увеличение крутизны вольт-амперных характеристик сенсоров на основе ИСПТ. Кроме того, следует отметить высокую термическую и химическую стабильность, качественную иммобилизацию биохимических элементов при создании биосенсоров [7].

Практическое применение нанокристаллических пленок оксида церия не ограничивается вышесказанным. Так, на их основе авторами были разработаны новые типы фоточувствительных элементов (фоторезисторы и фотодиоды) для биолюминесцентных сенсорных систем [8 — 10]. Такие пленки заслуживают особого внимания, поскольку в связи с квантоворазмерными эффектами они приобретают новые функциональные свойства, не характерные для монокристаллических, микрокристаллических и аморфных структур. Наноструктурные пленки могут иметь гораздо большую электропроводность, радиационную стойкость и стабильность, чем химически идентичные им порошковые и объемные материалы. Их применение перспективно в материаловедении и в физике твердого тела.

Целью настоящей работы было исследование закономерностей формирования пленок оксида церия и влияния их структурных свойств на физические характеристики созданных высокоэффективных сенсорных преобразователей.

### Технология получения тонких пленок СеО,

Тонкие пленки оксида церия, в зависимости от их назначения, получали двумя технологическими способами: методом вакуумного «взрывного испарения» — для создания биолюминесцентных сенсоров, и методом «окисления металлического зеркала» — для изготовления внешнего затворного диэлектрика ионоселективных полевых транзисторов. Для создания МДП-фотодиодов применяли оба метода.

По технологии «взрывного испарения» (метод «вспышки») пленки  $\text{CeO}_x$  толщиной 200—500 нм получали из соответствующих порошкообразных смесей и соединений [12—14]. Испарение проводилось в вакууме порядка  $10^{-3}$ — $10^{-2}$  Па. Пленки оксида церия осаждали при температуре от 175 до 300°С на подложках разных типов — монокристаллическом кремнии с пленками оксида кремния, монокристаллическом *p*- и *n*-кремнии.

Омические контакты к слоям оксида церия изготовляли путем осаждения пленок титана и никеля методом электронно-лучевого испарения. К контактным

площадкам припаивались электрические выводы, поверхность защищалась тонким слоем прозрачного компаунда.

Тонкие нанокристаллические пленки оксида церия для применения в качестве внешнего затворного диэлектрика ИСПТ, получали методом «окисления металлического зеркала», при котором сначала электронно-лучевым испарением осаждаются тонкие пленки церия. Такая технология довольно проста, процесс не занимает много времени и позволяет использовать стандартное оборудование при относительно низкой температуре. Полученные пленки отличаются равномерностью по толщине, однородностью параметров и близким к стехиометрическому составом. Для обеспечения равномерности толщины пленки напыление церия проводилось в два этапа в разных направлениях. После первого этапа пластины поворачивались на 180° в горизонтальной плоскости. Давление в камере составляло 10<sup>-5</sup> Па, ток эмиссии — 140 мА, ускоряющее напряжение — 12 кВ, температура подложки поддерживалась на уровне 160°С. После напыления пленки подложки выдерживались при этой температуре в течение 10 мин. Окисление церия происходило в диффузионной печи при температуре 300°С в кислородной среде.

Для стабилизации отклика ИСПТ пленку оксида церия наносили на тонкий слой оксида кремния, который предварительно выращивали на подложке методом термического окисления.

### Исследование структурных свойств пленок СеО,

Микроструктура пленок CeO<sub>x</sub>, полученных указанными методами при разной температуре подложки, изучалась с помощью сканирующего электронного микроскопа (**СЭМ**) JEOL JSM 6490LV (ускоряющее напряжение составляло 20 кВ) и трансмиссионного электронного микроскопа (**ТЭМ**) ПЭМ-В-М с разрешающей способностью 0,21 нм и ускоряющим напряжением 125 кВ. СЭМ-анализ показал, что оба метода позволяют получать качественные, плотноупакованные пленки оксида церия, которые характеризуются гомогенностью по толщине и составу. Однако наиболее однородными были пленки, осажденные на подложки монокристаллического кремния с-Si, и пленки, изготовленные по технологии «окисление металлического зеркала».

На светопольных и темнопольных ТЭМ-изображениях структуры пленок, полученных методом «взрывного испарения» при температуре подложки 175°С (**рис. 1**, a - e), наблюдается аморфная матрица с гранецентрированными нанокристаллами CeO<sub>2</sub> кубической формы, расположенными попарно (рис. 1,  $\delta$ ). Это подтверждается наличием гало от аморфной фазы и дифракционных пятен от плоскостей {111} пары кристаллов на дифрактограмме пленок (рис. 1,  $\epsilon$ ). Средний размер нанокристаллов CeO<sub>2</sub> составляет 36 нм.

Анализ ТЭМ-изображений микроструктуры пленок, полученных методом «взрывного испарения» при температуре 200°С (**рис. 2**) показал, что пленки представляют собой поликристалл с хаотически расположенными нанозернами размером от 10 до 40 нм. Соответствующая электронограмма приведена на рис. 2, *б*. Наблюдаемые прерывистые кольца свидетельствуют о микрокристаллической (наноразмерной) структуре пленок.

По данным ТЭМ-исследования установлено, что пленки, полученные методом «взрывного испарения» при температуре подложки 175°С, состоят из аморфной и кристаллической фаз, т. е. аморфной матрицы, в которой расположены нанокристаллы, тогда как пленки, изготовленные по той же технологии при 200°С, имелют нанокристаллическую структуру.

Рентгеноструктурный анализ выполнялся на Хдифрактометре модели DMAX-В (Япония). Исследования пленок оксида церия, полученных при температуре подложки 200°С, показали наличие дифрак-



Технология и конструирование в электронной аппаратуре, 2010, № 5-6







Рис. 2. Микроструктура пленки СеО,, полученной на Si/SiO<sub>2</sub>-подложке при температуре 200°С методом «взрывного испарения» (a), экспериментальная (б) и модельная (в) электронограммы

ционных рефлексов, характерных для поликристаллической фазы СеО<sub>2</sub> [15]. Наибольшей интенсивностью характеризовались пики испускания при  $2\theta = 28,7^{\circ}$  от плоскостей {111}, что свидетельствует о доминирующей ориентации нанозерен пленки вдоль этой плоскости.

Известно, что разные фазы оксида церия — Се<sub>2</sub>О<sub>2</sub> и СеО<sub>2</sub> — имеют разные электронные структуры запрещенной зоны, а точечные дефекты приводят к образованию локализованных состояний в запрещенной зоне [16]. Поэтому были проведены исследования электронной структуры и состава полученных пленок с использованием метода рентгеновской фотоэлектронной спектроскопии (РФЭС) на электронном спектрометре «SERIES 800 XPS» Kratos Analytical [17]. Абсолютная разрешающая способность спектрометра, которая определялась как ширина кривой на половине высоты линии Ag3d<sub>5/2</sub>, равняется 1,1 эВ, точность определения энергии связи не превышала 0,1 эВ. Энергия связи электронов Е<sub>h</sub> калибровалась по стандартной линии C1s электронов графита на поверхности исследованных образцов и составляла 284,5 эВ. Источником излучения служила рентгеновская трубка с магниевым анодом (U=12 кВ, I=30 мА), использующая немонохроматическое Мд-излучение с энергией 1253,6 эВ.

Анализ состава нанокристаллических пленок оксида церия показал, что в зависимости от метода получения пленки и технологических режимов (прежде всего, от температуры подложки) изменяется соотношение концентраций ионов Се<sup>3+</sup> и Се<sup>4+</sup> в пленках СеО,, причем это отражается на их электронной структуре. РФЭС-анализ пленок, выращенных при температуре подложки 175°С, выявил Се<sub>2</sub>О<sub>3</sub>-фазу и слабые пики, которые характеризуют конечные состояния Се<sup>4+</sup> [18], что согласуется с данными ТЭМанализа о наличии аморфной матрицы с вкраплениями нанокристаллов CeO2. Таким образом, фаза Се<sub>2</sub>О<sub>2</sub>, выявленная с помощью РФЭС-метода, аморфная. Однако у пленок оксида церия, полученных при температуре 200°С, как ТЭМ-, так и РФЭС-анализы показали наличие нанокристаллической фазы CeO<sub>2</sub> со структурным типом Fm3m.

## Фотоэлектрические свойства пленок оксида церия

Фотоэлектрические свойства любых пленок существенно зависят от их химического состава, а также от микроструктуры и морфологии, которые определяются, прежде всего, технологическими режимами получения пленки. Именно поэтому было исследовано влияние микроструктуры тонких пленок оксида церия на их фотоэлектрические характеристики.

Как показали ТЭМ-, РФЭС- и рентгеноструктурный анализы, в пленках оксида церия в зависимости от температуры подложки может существовать как одна поликристаллическая фаза, так и два структурных компонента — кристаллический (представленный кристаллитами СеО<sub>2</sub>) и межкристаллитный (Се<sub>2</sub>О<sub>2</sub>). Поскольку свойства этих фаз значительно отличаются, их соотношение определяет электрические и фотоэлектрические свойства пленок. При уменьшении линейных размеров кристаллитов доля межкристаллитной фазы существенно возрастает. Как показывают многочисленные исследования, межкристаллитная фаза представляет собой стекловидную среду с изотропными свойствами, а нанокристаллический материал представляет собой изотропную матрицу со случайно расположенными вкраплениями кристаллической фазы [19].

Для исследования влияния на фотоэлектрические свойства пленок оксида церия их микроструктуры и типа подложки снимались передаточные и люкс-амперные характеристики (ЛАХ) при облучении пленок белым и синим светом [8—10]. По ЛАХ были вычислены коэффициенты фоточувствительности  $K_{\rm dv}$ пленок СеО<sub>x</sub>, осажденных на подложках разных типов (рис. 3). Максимальная фоточувствительность к белому и синему свету обнаружена у нанокристаллических пленок, полученных при температуре подложки 200°С независимо от ее типа.

На базе тонких нанокристаллических пленок СеО, были реализованы относительно дешевые миниатюрные фоторезисторы для регистрации биолюминесценции, которые в отличие от традиционных фотоэлектронных умножителей не нуждаются в высоковольтных источниках питания. Разработанные фоторезисторы способны регистрировать слабые биолюминес-



Рис. 3. Зависимость коэффициента фоточувствительности пленок оксида церия от температуры подложки для

$$2 - \operatorname{SiO}_2$$
;  $2 - n$ -Si;  $3 - p$ -Si

центные сигналы на уровне освещенности 600 квантов/(с·см)<sup>2</sup> [8—10].

# Характеристики МДП-структур на основе пленок оксида церия

Главным фактором, который влияет на чувствительность и стабильность сенсоров на основе МДПструктур, являются процессы, происходящие на границе раздела «полупроводник — диэлектрик». Поэтому и к этой границе, и к материалу диэлектрика предъявляются повышенные требования.

Свойства границы раздела «полупроводник Si — диэлектрик CeO<sub>x</sub>» изучались методом вольт-фарадных характеристик. Измерения проводились на частоте 1,2 МГц.

a)  $K_{\Pi}$ 8 7,5 7 150 200 250  $T_{\pi}, ^{\circ}\mathrm{C}$ б) 21  $N_{ss}, 10^{10} {
m ~cm^{-2.3}B^{-1}}$ 16 11 6  $T_{_{\rm II}}, ^{\circ}{\rm C}$ 200 150 250 Рис. 4. Зависимости коэффициента перекрытия (а) и плотности поверхностных состояний (б) от температуры подложки для МДП-структур, полученных с помощью

метода «взрывного испарения»

Исследования влияния температуры Si-подложки на коэффициент перекрытия по емкости  $K_{\rm m} = C_{\rm max}/C_{\rm min}$ и плотность поверхностных состояний на границе раздела «диэлектрик — полупроводник» N<sub>ss</sub> для МДПструктур (рис. 4), изготовленных методов взрывного испарения, показывают, что в рассматриваемом диапазоне температуры коэффициент перекрытия МДП-структур зависит от температуры подложки и лежит в пределах 7,6—8,4, что приблизительно в 2 раза больше, чем у структур на основе SiO<sub>2</sub>. Характер зависимости от T<sub>п</sub> плотности поверхностных состояний N<sub>ss</sub> исследуемых МДП-структур аналогичен зависимости  $K_{\Pi}(T_{\Pi})$ : минимальное значение  $N_{ss}$  наблюдалось для плёнок СеО<sub>x</sub>, выращенных при температуре подложки 200°С, а ўвеличение температуры подложки приводит к увеличению плотности поверхностных состояний, что обусловлено морфологическими изменениями структуры пленки, в частности увеличением степени поликристалличности (т. е. отношения объема кристаллической фазы к объему аморфной фазы в пленке).

Однако для МДП-структур, полученных с помощью метода «окисления металлического зеркала», характерно снижение плотности поверхностных состояний на порядок ( $N_{ss}$ =6,8·10<sup>10</sup> см<sup>-2</sup> · эВ<sup>-1</sup>) и рост  $K_{\Pi}$  более чем в 3 раза по сравнению со структурами, пленки CeO<sub>x</sub> которых были изготовлены по технологии «взрывного испарения». Это свидетельствует о значительном улучшении качества границы раздела «полупроводник — диэлектрик» и технологичности метода «окисления металлического зеркала» для получения тонких пленок оксида церия.

Были проведены также исследования зависимости коэффициента выпрямления от температуры подложки диодных МДП-структур, диэлектрическая пленка CeO<sub>x</sub> которых изготовлялась по технологии «взрывного испарения» (**рис. 5**). Максимальное значение коэффициента выпрямления (1875) наблюдалось при температуре подложки 200°С, что объясняется повышенной электропроводностью таких структур при прямом смещении за счет нанокристаллической микроструктуры пленки CeO<sub>x</sub>.





Технология и конструирование в электронной аппаратуре, 2010, № 5-6

| Параметры МДП-структур н | на основе | пленок | оксида  | церия  | на  | монокристаллическом | кремнии, |
|--------------------------|-----------|--------|---------|--------|-----|---------------------|----------|
|                          | получен   | ных ра | зными л | летода | ами |                     |          |

| Тип структуры                          | Метод нанесения                        | <i>Т</i> п, °С | ε    | $K_{_{ m Bbitt}}$ | $K_{ m n}$ | $N_{ss}$ , см <sup>-2</sup> · эВ <sup>-1</sup> |
|----------------------------------------|----------------------------------------|----------------|------|-------------------|------------|------------------------------------------------|
| с-Si–CeO <sub>x</sub> ,<br>КЭФ 4,5/0,1 | Взрывное<br>испарение                  | 175            | 10,6 | 533               | 7,61       | 1,12.10 <sup>11</sup>                          |
| с-Si–CeO <sub>x</sub> ,<br>КЭФ 4,5/0,1 | Взрывное<br>испарение                  | 200            | 9,5  | 1875              | 7,15       | 7,32·10 <sup>10</sup>                          |
| с-Si–CeO <sub>x</sub> ,<br>КЭФ 4,5/0,1 | Взрывное<br>испарение                  | 250            | 9,6  | 1154              | 8,33       | 1,59.1011                                      |
| с-Si–CeO <sub>x</sub> ,<br>КЭФ 4,5/0,1 | Взрывное<br>испарение                  | 300            | 8,5  | 100               | 8,35       | 1,85.1011                                      |
| с-Si–CeO <sub>x</sub> ,<br>КДБ 10/0,1  | Окисление<br>металлического<br>зеркала | 160            | 15   | 4800              | 13         | 6,8·10 <sup>10</sup>                           |
| c-Si–SiO <sub>2</sub>                  | Термическое<br>окисление               | 1100—1300      | 3,9  | 2500              | ≈4         | 10 <sup>11</sup> —10 <sup>12</sup>             |

Однако максимальные значения коэффициента выпрямления (4800), диэлектрической проницаемости (15), коэффициента перекрытия по емкости (13) и минимальная плотность поверхностных состояний на границе «полупроводник — диэлектрик» (6,8·10<sup>10</sup> см<sup>-2</sup> · эВ<sup>-1</sup>) достигались в пленках CeO<sub>x</sub>, полученных по технологии «окисления металлического зеркала» [7].

### Практическое применение нанокристаллических пленок CeO<sub>r</sub>

На базе разработанных полупроводниковых фотоприемников был реализован и исследован портативный электронный биолюменометрический комплекс, использующий живые организмы (дафнии и биолюминесцентные бактерии) для определения концентрации токсических веществ [20]. Принцип работы сенсоров такого вида основан на регистрации интенсивности биолюминесценции, которая возникает в результате взаимодействия метаболитов дафний и люминола при активации процесса с помощью перекиси водорода. Минимальный порог чувствительности такого метода к патулину составляет 0,1 мг/л за 2 ч и 0,01 мг/л за 6 и 24 ч эксперимента. Метод с использованием биолюминесцентных бактерий дает возможность определить патулин с концентрацией 0,63 мг/л за 1 ч анализа. Для бифентрина минимальный порог чувствительности сенсора с использованием дафний составлял 0,01 мг/л за 3 ч и 0,0001 мг/л за 24 ч эксперимента.

Разработанный метод определения токсичности объектов окружающей среды на основе регистрации уровня хемилюминесценции среды под действием продуктов жизнедеятельности D. magna и биолюминесценции Ph. phosphoreum B 7071 характеризуется стабильной воспроизводимостью и повышенной чувствительностью. Полученные результаты свидетельствуют об эффективности метода и целесообразности его использования.

На основе гетероперехода «СеО<sub>x</sub> — монокристаллический кремний» были реализованы диодные структуры с высоким коэффициентом выпрямления  $K_{\rm вып} = 4800$  и повышенной фоточувствительностью. Максимальная фоточувствительность наблюдалась для фотодиодных структур, пленка CeO<sub>x</sub> которых формировалась при температуре 200°С. Это дает основание считать, что при такой температуре формируется упорядоченная структура с минимальным количеством рекомбинационных центров, что и обеспечивает повышенную фоточувствительность как фоторезисторов, так и фотодиодов.

Нанокристаллические пленки оксида церия были успешно применены в качестве подзатворного диэлектрика ИСПТ для создания чувствительных, стабильных и надежных биосенсоров [7]. ИСПТ является мощным инструментом для изучения токсичного воздействия разных веществ, в том числе лекарственных препаратов и продуктов питания, на биохимические процессы, которые происходят в живом организме. ИСПТ способны регистрировать сложные химические и биологические процессы — перенос зарядов или окислительно-восстановительные реакции (например, механизмы ионного обмена и транспорта через мембрану). ИСПТ с нанокристаллической пленкой СеО, были разработаны для создания высокоспецифических иммунных биосенсоров токсичности, принцип действия которых базируется на изменении рН среды в результате образования иммунного комплекса между антителом и микотоксином.

Чувствительность по току стока ИСПТ-структур с диэлектриком  $\text{CeO}_x$  составляет 1,4 мкА/рН, что вдвое больше по сравнению со структурами на основе  $\text{SiO}_2-\text{Si}_3\text{N}_4$ , а рН-чувствительность для диэлектрика  $\text{CeO}_x$  больше на 9,4 % и равна 58 мВ/рН, что близко к максимально возможной чувствительности для структуры «полупроводник — диэлектрик — раствор», так называемой Нернстовой чувствительности, которая составляет 59 мВ/рН. К тому же, если учитывать высокую химическую стойкость и простоту получения тонких пленок  $\text{CeO}_x$ , их можно считать весьма перспективными для использования в качестве ион-чувствительного материала ионоселективных по-

левых транзисторов — основного элемента мультисенсорних систем биомедицинского назначения, в частности, для определения концентрации токсичных веществ.

МДП-варакторы также используют как один из элементов сенсоров для определения пестицидов, ионов тяжелых металлов, глюкозы, мочевины, ионов  $H^+$ ,  $K^+$ ,  $Na^+$  и др. В основе работы сенсоров данного типа лежит метод измерения высокочастотных вольтфарадных характеристик. Адсорбция заряженных частиц, которые возникают в результате биохимической реакции, чувствительной поверхностью диэлектрика фиксируется с появлением сдвига вольт-фарадной характеристики вдоль оси напряжений. МДП-варакторы на основе нанокристаллических пленок оксида церия были выбраны для создания сенсоров, в которых осуществляется управление зарядом, образующимся в результате биохимической реакции [18]. К тому же, исследуемые МДП-структуры на основе нанокристаллических пленок оксида церия, полученных обоими методами, отличаются высокой стабильностью в исследуемом диапазоне частот (430 кГц -1,26 МГЦ) благодаря отсутствию обмена электронными состояниями, локализованными на границе раздела «диэлектрик — полупроводник» [18].

### Выводы

Таким образом, установлено, что нанокристаллические пленки оксида церия, полученные методом «взрывного испарения» при температуре подложки 200°С независимо от ее типа обеспечивают максимальную фоточувствительность фоторезисторов и МДПфотодиодов, изготовленных на основе таких пленок. Это позволяет создавать новые типы чувствительных элементов биолюминесцентных сенсорных систем.

Из сравнения характеристик МДП-структур, изготовленных на основе пленок CeO<sub>x</sub>, полученных разными методами, следует, что метод «окисления металлического зеркала» дает пленки с лучшими характеристиками, чем метод «взрывного испарения». Диэлектрическая проницаемость, коэффициент перекрытия по емкости, коэффициент выпрямления таких структур намного превосходят характеристики МПДструктур на основе SiO<sub>2</sub>.

Учитывая высокую химическую стойкость оксида церия, стабильность характеристик, а также простоту получения тонких пленок этого диэлектрика, можно считать разработанные сенсоры с рекордным среди аналогов значением pH-чувствительности перспективными для создания недорогих, портативных, высокочувствительных и надежных мультипараметрических приборов для экологического мониторинга, исследования воздействия токсичных агентов на разные химические и биологические процессы, для биомедицинских и других целей вместо распространенных сегодня типов дорогой, громоздкой, сложной аналитической аппаратуры.

### ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Patsalas P., Logothetidis S. Structure-dependent properties of nanocrytalline cerium oxide films // Physical Review.— 2003.— N B 68.— P. 035104-1—035104-13.

2. Bertaux S., Reynders P., Heintz J-M. Sintering and color properties of nanocrystalline  $\text{CeO}_2$  films // Thin Solid Films.— 2005.— N 473.— P. 80—88.

3. Skorodumova N. V., Ahuja R., Simak S. I. et al. Electronic, bonding, and optical properties of  $CeO_2$  and  $Ce_2O_3$  from first principles // Physical Review B.— 2001.— Vol. 64.— P. 115108—1—115108—9.

4. Shmyryeva A. N., Semikina T. V., Scurtul K. D. Composite cerium oxide thin films for oxygen and CO sensors // Book of Abstracts. Physical, Chemical and Biological Sensors, Fourth International Workshop "Russian thechnologies for industrial applications".— Russia, St.-Petersburg.— 2000.— P. 32.

5. Шмырева А. Н. Микроэлектронные сенсоры для определения концентрации NO. // Электроника и связь. — 2003. — № 18. — С. 104—107.

6. Shmyryeva A. N., Fursenko A. N., Semikina T. V. Fiberoptical sensor of acidity ambient (pH) metrology // J. Solid State Phenomena.— 1998.— № 63—64.— P. 341—346.

7. Максимчук Н. В. Процеси взаємодії біохімічних комплексів з поверхнею плівки нанокристалічного оксиду церію // Сб. науч. трудов «Наносистемы, наноматериалы, нанотехнологии».— Киев.— 2009.— Т. 7, №3.— С. 813—824.

8. Шмырева А. Н., Максимчук Н. В. Фоторезистивные преобразователи для биолюминесцентных сенсорных систем // Электроника и связь.— 2007.— № 1.— С. 5—11.

9. Борисов А. В., Шмырева А. Н., Максимчук Н. В. Нанокристаллические пленки оксида церия для биолюминесцентных сенсорных систем // Сб. науч. трудов «Наносистемы, наноматериалы, нанотехнологии».— Киев.— 2009.— Т. 7, № 1.— С. 245—254.

10. Максимчук Н. В., Борисов А. В., Шмырева А. Н. Фотоэлектрические процессы в наноструктурных пленках оксида церия // Тр. междунар. симпозиума «Нанофотоника».— Украина, Ужгород.— 2008.— С. 54—55.

11. Bin Zhu, Changrong Xia, Xiaouguan Luo et al. Transparent two-phaze composite thin film with high conductivity // Thin Solid Films.— 2001.— N 385.— P. 209—214.

12. Shmyryeva A. N., Dushejko M. G., Scurtul K. D. Thermoelectrical properties of the cerium oxide semiconductor films // Extend Abstracts of 7<sup>th</sup> Joint Vacuum Conference of Hungary.— Austria, Croatia and Slovenia.— 1997.— P. 253.

13. Shmyryeva A. N., Semikina T. V., Dushejko M. G., Scurtul K. D. New thin films oxide materials  $CeO_2$ —ZnO for sensoring // Book of Abstracts. Workshop «Sensors springtime in Odessa».—Odessa. – 1998.— P. 70—71.

14. Yushchenko A. V., Ilchenko V. V., Shmyryeva A. N., Telega V. M. The response of the heterostructure nanoscale layer  $CeO_2-p-$ Si to the gas ammonia environment // Proceed. of the I<sup>st</sup> International Conf. "Electronics and Applied Physics".— Ukraine, Kiev.— 2005.— P. 100—101.

15. Шмырева А. Н. Микроэлектронные сенсорные системы // Электроника и связь.— 2005.— № 29.— С. 5—15.

16. Patsalas P., Logothetidis S., Metaxa S. Optical performance of nanocrystalline transparent ceria films // Applied Physics Letters.— 2002.— N 81.— P 466—468.

17. Ющенко А. В., Ильченко В. В., Шмырева А. Н. и др. Формирование наноструктурных пленок  $CeO_{x^3}$  напыленных методом «взрывного» испарения на поверхности p-Si (100) // Proceed. of the I<sup>st</sup> International Conf. "Electronics and Applied Physics".— Ukraine, Kiev.— 2005.— Р. 102—106.

 Максимчук Н. В., Міняйло О. В., Прокопенко А. С. МДНфотоварактори з плівкою оксиду церію // Збірник статей ІІ конференції молодих вчених «Електроніка 2009». — Київ.— 2009.— Ч. І.— С. 51—58.

19. Нанотехнологии в электронике / Под ред. Ю. А. Чаплыгина. М.: Техносфера, 2003.

20. Мельник В. Г., Назаренко В. І., Стародуб М. Ф. та ін. Електронний біолюмінесцентний прилад для визначення токсичних речовин // Электроника и связь. Тематич. вып. «Проблемы электроники».— 2008.— Ч. 2.— С. 110—114.