К. т. н. А. З. РАХМАТОВ, к. т. н. С. Л. СКОРНЯКОВ, д. ф.-м. н. А. В. КАРИМОВ, к. ф.-м. н. Д. М. ЁДГОРОВА, О. А. АБДУЛХАЕВ, У. М. БУЗРУКОВ

Узбекистан, г. Ташкент, ОАО "Foton", ФТИ НПО "Физика–Солнце" АН РУз E-mail: foton@globalnet.uz, karimov@uzsci.net Дата поступления в редакцию 02.11.2009 г. Оппонент д. ф.-м. н. А. А. ЕВТУХ (ИФП им. В. Е. Лашкарёва, г. Киев)

ФИЗИКО-ТЕХНОЛОГИЧЕСКИЕ АСПЕКТЫ СОЗДАНИЯ НИЗКОВОЛЬТНЫХ ОГРАНИЧИТЕЛЕЙ НАПРЯЖЕНИЯ НА ОСНОВЕ КРЕМНИЯ

Исследованы процессы высококонцентрационной диффузии мышьяка в вакуумированных ампулах, влияния на параметры диффузионных p-n-переходов сверхтонких слоев оксида на кремнии. Обоснован выбор режимов и источника диффузии для создания низковольтных ограничителей напряжения.

На основании результатов исследования электрофизических и технологических процессов получения низковольтных *p*-*n*-переходов путем диффузионного легирования мышьяком сильнолегированных кремниевых подложек были разработаны и внедрены в серийное производство в ОАО "Foton" два типа бескорпусных ограничителей напряжения, рассчитанных на мощность 0,5 и 1,5 кВт, с напряжением пробоя менее 7 В. Принципиальное отличие разработанных ограничителей напряжения от известных заключается в механизме пробоя. В легированных диффузией бора и фосфора ограничителях получены значения рабочего напряжения выше 7 В с лавинным пробоем, а в легированных мышьяком ограничителях значения пробойного напряжения меньше 7 В. Как отмечено в [1], для получения стабилитронов с лавинным пробоем при напряжении 6,5 В оптимальным материалом подложки является кремний типа КДБ 0,003, который требует специально подобранного температурного режима диффузии.

Качественную диффузию примесей в кремний можно осуществить в сравнительно ограниченном диапазоне температуры. В частности, для мышьяка это диапазон 1373—1523 К. Если температура ниже 1273 К, значения коэффициентов диффузии очень малы и глубина диффузии незначительна, если выше 1573 К — качество диффузионных слоев получается неудовлетворительным. Кроме того, режим определяется выбором источника (диффузанта) и способа диффузии примеси.

В стабилитронной технике работа с мелкими *p*–*n*переходами требует решения непростых проблем создания к ним надежных омических контактов и обеспечения заданного рабочего напряжения. Эти проблемы можно решить выбором оптимальных по температуре и длительности режимов диффузионного легирования кремниевых подложек. В вакууме температура плавления кремния несколько снижается. Поэтому при проведении технологических процессов в вакуумированной кварцевой ампуле температура не должна превышать 1473 К. В то же время увеличение температуры диффузии свыше 1373 К, как известно, слабо влияет на предельную растворимость мышьяка. В результате, для проведения экспериментов была выбрана температура 1423 К.

К настоящему времени наибольшее распространение получил процесс диффузии из твердой фазы [2], когда примесь из твердого раствора в одной области полупроводника диффундирует в примыкающую к ней другую область этого же полупроводника, свободную от примеси данного типа.

Следует отметить, что в отличие от бора и фосфора, широко применяемых в производстве в качестве легирующих примесей, мышьяк практически используется только для получения скрытых слоев в производстве кремниевых структур интегральных схем (причем в последнее время мышьяк заменяют близкой по электрофизическим характеристикам, но нетоксичной сурьмой) и, в основном, для получения стабилитронов с напряжением стабилизации (пробоя) менее 7 В. Диффузией мышьяка удается формировать *p*–*n*-структуры, существенно превосходящие по качеству (относительно низкие значения дифференциального сопротивления) структуры, сформированные с использованием фосфора и бора.

В связи с этим, актуальным является рассмотрение некоторых аспектов проведения процессов диффузии мышьяка, влияющих на воспроизводимость параметров получаемых таким способом кремниевых *p*-*n*-структур, зависящих от выбранного источника диффузии мышьяка, и их дефектность.

В настоящей работе проводились исследования процесса высококонцентрационной диффузии мышьяка в вакуумированных ампулах, влияния на параметры диффузионных *p*-*n*-переходов сверхтонких (остаточных) слоев «естественного» оксида на кремнии.

Полный цикл изготовления диффузионных *p*–*n*-переходов включает в себя типовые планарные процессы: изготовление полированных пластин кремния, их защитное окисление, формирование при помощи фотолитографии окон в слое оксида для последующего формирования контактов к базе методом диффузии.

Для проведения диффузионного отжига использовали кварцевые ампулы диаметром 75 мм с необходимым внутренним объемом. Процесс загрузки и герметизации ампул происходит следующим образом.

Ампулу и все предназначенные для загрузки в нее детали обрабатывали кислотой HF и деионизованной водой. С буферных и экранирующих пластин, используемых многократно (10-15 процессов, в зависимости от их состояния), а также с ограничительных шайб перед проведением каждого процесса удаляли буферным раствором на основе HF «старый» слой SiO₂ и наращивали новый. Для этого все детали и саму ампулу перед сборкой отжигали в специальной печи в потоке сухого кислорода при температуре 1423 К в течение 40 мин. При этом выжигались адсорбированные поверхностью кварца различные элементы и одновременно наращивался слой SiO₂ на вспомогательные кремниевые детали. Экспериментальные кремниевые пластины непосредственно перед загрузкой в ампулу специально обрабатывали в растворе HF:H₂O (1:10) в течение 20 с для удаления остаточного слоя SiO₂, затем подвергали финишной очистке на установке кистевой мойки и сушке в центрифуге, которая вращалась со скоростью до 3200 об/мин. После этого немедленно, с целью предотвращения естественного роста SiO₂ на поверхности Si за счет атмосферного кислорода, экспериментальные кремниевые пластины передавали в эксикаторах для загрузки в ампулу, подготовленную точно к этому времени вместе со вспомогательными деталями и источником диффузии.

Выполнение всех технологических операций без промедления и в согласованные сроки играет важную роль в обеспечении воспроизводимости процессов диффузии мышьяка за счет ограничения толщины «естественного» оксида, представляющего собой барьер для проникновения атомов мышьяка в кремний, особенно если учесть, что мышьяк отличается наименьшим коэффициентом диффузии по сравнению с другими легирующими примесями, применяемыми в производстве полупроводниковых приборов (фосфор, бор и т. п.).

Рабочие и контрольные пластины кремния помещали в ампулу в виде плотного пакета, в котором

полный остаточный зазор между пластинами не превышал 10 мм, для чего использовали ограничительные кремниевые шайбы толщиной порядка 5 мм. Ампулу, загруженную кремниевыми пластинами в специальной кварцевой кассете и кварцевым стаканчиком с источником диффузии, заваривали со стороны шлифованной кварцевой пробки, отжигали 20 мин при температуре 623 К при непрерывном вакуумировании до остаточного давления около 5.10-3 Па. после чего отсоединяли от системы откачки. Затем ампулу быстро помещали в диффузионную печь. После диффузионного отжига ампулу охлаждали, поливая холодной водой со стороны шлиф-пробки. Этим обеспечивалось контролируемое осаждение паров мышьяка не на кремниевые пластины, а на основание охлаждаемой пробки (т. е. предотвращалось образование кристаллических дефектов в виде дендритов мышьяка на поверхности кремниевых $n^+ - p^+$ -структур), а также обеспечивалась воспроизводимость скорости охлаждения пакета кремниевых пластин. Последнее способствует достижению воспроизводимости градиента концентрации мышьяка в области *p*-*n*-перехода и, соответственно, воспроизводимости напряжения пробоя кремниевых $n^+ - p^+$ -структур. Причина этого в том, что мышьяк в диффузионном слое находится в активной и неактивной формах (кластерах), способных переходить одна в другую в зависимости от скоростей нагрева и охлаждения *p*-*n*структуры [2]. Соответственно, можно изменять градиент концентрации активной составляющей мышьяка, а значит, и напряжение пробоя *p*-*n*-структуры. Большинство экспериментов были проведены на образцах $p^+ - n^+$ -структур простейшей конструкции (рис. 1).

Исследование диффузии мышьяка из различных источников

Для обеспечения воспроизводимости электрических параметров и предотвращения образования структурных дефектов при изготовлении низковольтных диффузионных *p*–*n*-переходов ампульным методом, помимо названных приемов, предложен также способ подготовки источника диффузии мышьяка, который отличается от известных [3].

Были исследованы процессы диффузии в неокисляющей среде (вакууме) с источником легирующей примеси, находящимся как в элементарном виде (кристаллический мышьяк), так и в виде лигатуры — порошка кремния марки КДБ, легированного до определенной концентрации мышьяком. Лигатуру готовили отжигом порошка кремния в присутствии кристаллического мышьяка в специальных вакуумированных кварцевых ампулах при температуре 1273 К в течение 48 ч. Порошок легированного таким образом кремния измельчали в агатовой ступке и использовали в качестве источника диффузии. Использовали также составной источник диффузии в виде навески кристаллического мышьяка вместе с навеской порошка кремния марки КДБ 0,001.

Площадь полученных низковольтных p-n-переходов в образцах составляла 4,5·10⁻⁴ см².

Для образцов, полученных в процессе диффузии примеси из разных источников, измеряли напряжение пробоя p-n-перехода U_{Br} , глубину залегания диффузионного слоя x_j и удельное поверхностное сопротивление ρ_s . Как видно из **рис. 2**, результаты измерения U_{Br} , для образцов, полученных с навесками As массой 150, 200 и 350 мг (кривые 1, 2 и 5) и с навеской лигатуры КДБ 0,001 (кривая 4), близки между собой.

Рис. 2. Зависимость *U*_{Br} *p*-*n*-переходов, изготовленных диффузией легирующих примесей из разных источников, от удельного сопротивления *ρ*_ν исходного кремния: *I* — As, 150 мг; *2* — As, 200 мг; *3* — As, 450 мг + Si, 5 г; *4* — лигатура; *5* — As, 350 мг; *6* — As, 250 мг + Si, 5 г

В области значений удельного сопротивления кремния $\rho_v = 0,001 - 0,002$ Ом см дисперсия значений U_{Br} *p*-*n*-переходов как на пластинах из различных партий, так и на отдельных пластинах одной партии для навесок As 150, 200 и даже 350 мг была недопустимо высока (см. **таблицу**).

Диффузионные слои залегали в исследуемых пластинах на относительно малой глубине (**рис. 3**).

В результате неглубокого проникновения мышьяка отмечено уменьшение средних значений $U_{Br} p$ -*n*переходов структур с заданным значением ρ_v (рис. 2, кривые 1, 2). При измерениях наблюдалась неустойчивость во времени напряжения пробоя и даже снижение U_{Br} вплоть до 0 (т. е. до короткого замыкания переходов).

Рис. 3. Зависимость средних значений x_j от ρ_v , исходного кремния для разных источников и режимов диффузии: I—As, 120 мг; 2—As, 180 мг; 3—лигатура; 4—As, 200 мг + Si, 5 г; 5—As, 300 мг; 6—As, 400 мг + Si, 5 г, 2 ч; 7—As, 400 мг + Si, 5 г, 4 ч

Полученные результаты измерения удельного поверхностного сопротивления ρ_s (**рис. 4**) для процессов с навесками кристаллического As массой m = 50 - 350 мг, достаточно хорошо описываются зависимостью вида

$$\rho_s^{-1} \approx m^{1/4},\tag{1}$$

что согласуется с известными представлениями о том, что As при температуре выше 1273 К находится преимущественно в виде четырехатомных молекул [4]. Это также представляет интерес при оценке давления паров мышьяка в ампуле по известной формуле Клайперона–Менделеева [5, с. 153].

Вместе с тем, дефектность рабочих кремниевых пластин (разнообразные дефекты эрозионного характера и дислокационные треугольники на диффузионном поле, разветвленные осаждения тонких

Средние квадратичные отклонения величины U_{Br} (в В) для образцов, полученных при разных источниках диффузии

ρ _ν кремния,	Источник диффузии					
Ом.см	150 мг	200 мг	350 мг	Лигатура	250 мг As,	450 мг As,
	As	As	As		5 г Si	5 г Si
0,001	1,23	0,67	0,54	0,25	0,10	0,08
0,002	1,17	0,50	0,83	0,37	0.15	0,18
0,003	0,81	0,28	0,35	0,30	0,18	0,16
0,005	0,30	0,23	0,37	0,32	0,23	0,18
0,008	0,54	0,40	0,41	0,47	0,33	0,24

кристаллов As на оксиде и т.п.) изготовленных в процессах с навесками 300 мг As, была значительно выше, чем пластин, для которых источником диффузии служила лигатура. Полученные результаты диффузии примесей, находящихся в элементарном виде, в сильнолегированный кремний можно объяснить тем, что в условиях вакуумированной ампулы существенно возрастает роль процессов встречной диффузии (испарения) элементов полупроводниковой подложки — кремния, давление паров которого при температуре 1423 К достигает 5·10⁻² Па [6], и, что особенно важно, бора — основной легирующей примеси для используемых в данном случае кремниевых пластин марки КДБ (кремний дырочного типа проводимости, легированный бором) (рис. 5). В частности, образование структурных дефектов на поверхности легируемых мышьяком кремниевых пластин связано с процессами испарения и осаждения собственно атомов кремния и атомов бора из пластин подложки. Определенное участие в этом принимает также газообразный мышьяк.

Рис. 5. Профили распределения концентрации бора в кремниевых подложках типа КДБ 0,001 (1) и КДБ 0,01 (2), отожженных при 1423 К в вакууме

Следует отметить, что дефектность рабочих пластин в случае применения источника как в виде кристаллического As, так и в виде лигатуры при проведении диффузии в сильнолегированный кремний типа КДБ 0,001 и КДБ 0,002 была недопустимо высокой, несмотря на предпринятые меры по заключительному охлаждению ампул с пластинами.

Для решения этой проблемы были проведены эксперименты, в которых вместе с навеской кристаллического As в ампулу дополнительно помещали порошок КДБ 0,001 с дисперсностью порядка 200 мкм. Такой порошок служил источником паров бора и был предназначен для создания необходимого уровня противодавления, препятствующего испарению бора из подложки.

Чтобы исключить испарение бора из подложки, его дополнительный источник должен обеспечивать в свободном объеме ампулы (V_F) концентрацию паров бора (N_g), близкую к его концентрации в подложке (N_B), т. е. должно выполняться условие $N_c \approx N_B$, ааа

$$N_g = \frac{S_p \int_0^t I(0,t) dt}{V_F}.$$

Здесь S_p — площадь поверхности частиц кремния типа КДБ (дополнительного источника в виде порошка); I(0,t) — поток атомов бора из частиц источника. Отсюда видно, что процесс встречного испарения базовой примеси (бора) можно контролировать, управляя технологическими факторами (S_p , V_F). Процессы в вакуумированной кварцевой ампуле, в которых использовали составной источник диффузии в виде навески кристаллического мышьяка и навески порошка легированного кремния с концентрацией бора не менее его концентрации в рабочих кремниевых пластинах, дали положительные результаты как по электрическим параметрам p-n-структур, так и по их дефектности.

Для объяснения зависимости напряжения пробоя низковольтных *p*-*n*-структур от скорости охлаждения кремниевых пластин (ампулы с пластинами) по окончании процесса диффузии мышьяка следует использовать данные [6, 7], в соответствии с которыми мышьяк при температуре ниже 1473 К может находиться в двух формах — электрически активной (ионы) и электрически пассивной в виде кластеров с компенсированным зарядом. При охлаждении ампулы с кремниевыми пластинами количественное соотношение этих форм мышьяка может меняться, что отражается на величине напряжения пробоя *р*-*n*-переходов. Для определения этого соотношения используют измерение распределения As в кремнии двумя методами дифференциальной проводимости (определение концентрации электрически активной составляющей атомов As) и активационным (определение полной концентрации атомов As). Профиль распределения As в сильнолегированном кремнии марки КДБ 0,001, полученный первым методом (измерение четырехзондовым методом поверхностного сопротивления кремниевых пластин после диффузии As с последовательным «химическим» удалением слоев) представлен на рис. 6. Экспериментальные результаты сравниваются

Технология и конструирование в электронной аппаратуре, 2010, № 5-6

(2)

с теоретическими, полученными на основании значений коэффициентов диффузии As при температуре 1423 К в кремний КДБ 0,001, приведенных в [8, 9].

В соответствии с [9], полную характеристику экспериментальных диффузионных слоев можно получить с помощью модели диффузии примесей *n*-типа (As) в кремний:

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left[D \frac{\partial C}{\partial x} \right]; \tag{3}$$

$$D = D_i \left[\alpha C + (\alpha^2 C^2 + 1)^{1/2} \right] \left[1 + \alpha C (\alpha^2 C^2 + 1)^{-1/2} \right]; \quad (4)$$

$$\alpha = N_s / (2n_i); \tag{5}$$

$$n_i = 6,77 \cdot 10^{21} \exp\left[-1,55/(2kT)\right],\tag{6}$$

где D_i — собственный коэффициент диффузии;

C — концентрация примеси, нормированная к поверхностной концентрации примеси N_s .

Для уровня высоких концентраций, где выполняется условие $N_s >> n_i$, соотношение (4) можно упростить: $D = D_i \cdot 4\alpha C$.

В этом случае основное уравнение (3) с точностью до 25% относительно *D* принимает вид

$$\frac{\partial C}{\partial t} = D_s \frac{\partial}{\partial x} \left(C \frac{\partial C}{\partial x} \right); \tag{7}$$

$$D_s = 4\partial D_i = 2N_s D_i / n_i, \tag{8}$$

где D_s — коэффициент диффузии, соответствующий концентрации N_s .

Аналитическое уравнение можно дополнить соотношениями, связывающими основные измеряемые параметры диффузии — ρ_s и x_j — с параметрами распределения мышьяка N(x).

Используя полученные в [9] приближенные выражения

$$C=1-0,87Y-0,45Y^2,$$
(9)

где
$$Y = \frac{X}{2\sqrt{D_s t}} = \frac{X}{4\sqrt{\alpha D_i t}},$$
 (10)

в области залегания *p*–*n*-перехода, т. е. при $N(x_j)=0$, эффективный коэффициент диффузии D_s можно найти из формулы $X|_{N=0} = X_j = 1,616 (D_s t)^{\frac{1}{2}}$ или

$$X_{j} = 1,616 \left(\frac{2N_{s}D_{s}}{n_{i}}t\right)^{\frac{1}{2}}.$$
(11)

Удельное поверхностное сопротивление легированного слоя определяется классическим выражением

$$\rho_s = \left[q \overline{\mu} \int_{0}^{X_j} N(x) dx \right]^{-1}, \qquad (12)$$

где $\overline{\mu}$ — объемная эффективная подвижность носителей для $N \ge 6 \cdot 10^{19}$ см⁻³ $\overline{\mu} \approx 75$ см²/(B·c); q — заряд электрона. Используя приближенное выражение (3) и учитывая условие $N_s >> n_i$, интеграл в (12) рассчитывается достаточно просто:

$$\int_{0}^{X_{j}} N(x) dx \approx 0.55 N_{s} X_{j}.$$
⁽¹³⁾

Таким образом, получаем

$$N_s = \frac{1,56 \cdot 10^{17}}{\rho_s X_j}.$$
 (14)

Оценка x_j и N_s по формулам (11) и (14) хорошо согласуется с экспериментальными значениями, полученными для диффузионных слоев в кремниевых подложках КДБ 0,001 (см. рис. 6).

Наилучшее соответствие экспериментального распределения теоретическим, рассчитанным в [7, 8], получено для экспериментального значения $N_s \approx 4 \cdot 10^{20}$ см⁻³ и $D_i = 6 \cdot 10^{-14}$ см² ($D_s = 4.8 \cdot 10^{-12}$ см²). Профили распределения As в подложке, рассчитанные с использованием коэффициента диффузии As при температуре 1423 К в КДБ 0,001 по данным [8], существенно расходятся с экспериментальными результатами (рис. 6).

Различие значений N_s в наших экспериментах и в экспериментах авторов [9] можно объяснить разной величиной давления As в ампуле: максимальное давление P_{As} в [9] не превышало 5,3·10⁴ Па, а в наших экспериментах давление было в пять раз больше. Это достаточно хорошо согласуется (если учитывать также погрешности при измерениях N_s методом дифференциальной проводимости) с результатами исследования зависимости поверхностного сопротивления легированного слоя ρ_s от удельного сопротивления источника кремния ρ_v (рис. 7). В качестве дополнительного источника кремния использовали материал типа КДБ с разными значениями ρ_v (от 0,001 до 0,08 Ом·см).

Таким образом, при переходе к другим условиям диффузии As (другим значениям T, m_{As}, V_F) необходимо при оценке N(x) учитывать зависимости $N_s(P_{As}), D_i(T), n_i(T)$ [8, 9].

Отметим также, что на профиле распределения As, полученном активационным методом, вблизи плоскости X=0 (поверхность подложки) наблюдается некоторое накопление мышьяка. Этот результат подтверждается измерениями профиля на трех образцах, полученных в разных диффузионных процессах при идентичных условиях диффузии. В случае замены мышьяка фосфором такого накопления не наблюдали. Накопление As, возможно, связано с известным явлением накопления донорных примесей, обладающих высоким коэффициентом сегрегации, в поверхностном слое Si при наличии на нем слоя SiO₂. Кремниевые образцы, подготовленные к ампульной диффузии, сохраняют на поверхности слой естественного оксида толщиной 10-20 Å. При диффузии в окисляющей атмосфере фосфора кремний контактирует не с естественным SiO₂, а с вязким слоем фосфоросиликатного стекла, которое, конечно, играет уже иную роль с точки зрения переноса диффундирующей примеси. Накопление As свидетельствует о том, что перенос As через поверхностный барьер естественного SiO₂ не лимитирует процесс его диффузии в кремний. Ограничение диффузии As связано с механизмами, определяющими скорость диффузии As в Si-подложку. Значительную крутизну профиля распределения As в области концентраций около10²⁰ см⁻³, соответствующей области образования низковольтного p-n-перехода (рис. 6), можно объяснить известным эффектом ускорения диффузии легирующих примесей, в данном случае As, в зоне высокой концентрации. На этом основании следует ожидать торможения продвижения диффузионного фронта As по сравнению с диффузией атомов As, находящихся в зоне с более высокой концентрацией, что способствует увеличению градиента концентрации As в области *p*-*n*перехода и, соответственно, получению, в отличие от диффузии фосфора, качественных низковольтных *p*-*n*-структур (с относительно низкими значениями дифференциального сопротивления).

Выводы

Таким образом, установлено, что при проведении процессов диффузионного легирования мышьяком кремниевых пластин в вакуумированной кварцевой ампуле наиболее эффективным является использование составного источника диффузии в виде кристаллического мышьяка и порошка кремния марки КДБ с концентрацией базовой примеси (бора) не менее концентрации базовой примеси (бора) в легируемых кремниевых пластинах.

Полученные в работе результаты представляют интерес при разработке и производстве низковольтных (менее 7 В) ограничителей напряжения на основе кремния.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Дудар Н. Л., Сякерский В. С., Корытко Н. Н. Моделирование электрических характеристик и расчет конструктивных параметров кремниевого стабилитрона с напряжением стабилизации 6,5 В // Технологии и конструирование в электронной аппаратуре.— 2009.— № 3.— С. 10—12.

2. Пат. 5328. Способ изготовления кремниевых ограничителей напряжения / А. Ф. Муратов, А. З. Рахматов, А. А. Меркулов, И. Р. Исмоилов.— 1994.— Бюл. № 3.

3. Болтакс Б. И. Диффузия в полупроводниках.— М.: Физматгиз, 1961.

4. Рцхиладзе В. Г. Мышьяк. М.: Металлургия, 1969.

5. Яворский Б. М., Детлаф А. А. Справочник по физике. М.: Наука, 1968.

6. Пашков В. М. Глубокая очистка мышьяка методом направленной кристаллизации // Высокочистые вещества.— 1988.— № 1.— С. 123—126.

7. Кондраченко Л. А., Рассадин А. Э., Чистяков А. С. Моделирование процесса нелинейной высокоградиентной диффузии в полупроводниках // ПЖТФ.— 2005.— Т. 31, Вып. 3.— С. 27—30.

8. Атомная диффузия в полупроводниках / Под ред. Д. Шоу.— М.: Мир, 1971.

9. Nakajima J, Ohkawa Sh, Fukukava J. Simplified expression for the distribution of diffused impurity // Jap. J. Appl. Phys.— 1971.— N 10.— P. 162—163.

10. Ghoshtagore R.N. Low concentration diffusion in silicon under sealed tube conditions // Solid State Electron.— 1972.— Vol. 15, N 10.— P. 1113—1120.

НОВЫЕ КНИГИ

новые книги

Лутц фон Вангенхайм. Активные фильтры и генераторы. Проектирование и схемотехника с использованием интегрированных микросхем.— М.: Техносфера, 2010.— 416 с.

Книга знакомит читателя с современными методами обработки аналогового сигнала. В издании рассматриваются активные цепи с использованием обычных и новых усилителей ICs (усилители, интеграторы и преобразователи полного сопротивления), проектирование, расчет и сравнение различных схем фильтров; использование компьютерных программ при проектировании фильтров, синус-генераторы с интегрированными усилителями. Пожалуй, впервые в специализированной литературе эта тема раскрывется настолько подробно и в таком объеме.

Книга является удобным справочником для инженеров и исследователей, стремящихся расширить свои знания в области аналоговой обработки сигнала.