Д. т. н. Ю. А. ЗАГОРУЙКО, к. ф.-м. н. Н. О. КОВАЛЕНКО, В. А. ХРИСТЬЯН, к. ф.-м. н. О. А. ФЕДОРЕНКО, А. С. ГЕРАСИМЕНКО, к. ф.-м. н. М. В. ДОБРОТВОРСКАЯ, П. В. МАТЕЙЧЕНКО

Украина, г. Харьков, Институт монокристаллов НАНУ E-mail: zagoruiko@isc.kharkov.ua

Дата поступления в редакцию 18.10 2010 г. Оппонент д. х. н. В. Н. ТОМАШИК (ИФП им. В. Е. Лашкарёва, г. Киев)

ЛАЗЕРНАЯ АБЛЯЦИЯ И ФОТОСТИМУЛИРОВАННАЯ ПАССИВАЦИЯ ПОВЕРХНОСТИ КРИСТАЛЛОВ Cd_{1-x}Zn_xTe

Предложен модифицированный технологичный способ пассивации кристаллических образцов полупроводниковых твердых растворов Cd_{1-x}Zn_xTe, применяемых для изготовления детекторных сенсоров рентгеновского и гамма-излучения.

Механическая обработка полупроводниковых кристаллов приводит к появлению в образцах поверхностных токов утечки, что отрицательно влияет на эксплуатационные характеристики приборов, изготовленных на их основе. Для устранения токов утечки разработаны различные методы пассивации полупроводниковых кристаллов: мокрые химические методы, сухие физические методы, а также их комбинации [1—4].

Для пассивации кристаллов $Cd_{1,x}Zn_x$ Те наибольшее распространение получили химические методы, приводящие к образованию на поверхности кристалла защитных сульфидных или оксидных пленок [3]. Однако химические методы, в которых применяются различные, в том числе и токсичные, растворы (например, растворы брома в метаноле), не обеспечивают такого эффективного уменьшения поверхностной электрической проводимости образцов, как сухие физические методы пассивации [2].

Существенное снижение поверхностной электропроводности образцов $Cd_{1-x}Zn_x$ Те наблюдается при использовании таких сухих методов пассивации, как ионно-лучевое и ионно-плазменное распыление пассивирующей защитной пленки в вакуумной установке с использованием электродугового разряда, получение оксидной пленки на поверхности образца при его бомбардировке как низко-, так и высокоэнергетичными атомами кислорода и др. [1, 2, 5]. Следует отметить, что физические методы пассивации трудоемки и требуют сложной, а в ряде случаев и уникальной аппаратуры [6].

Ранее предложенные авторами способы фотостимулированной (**ФСП**) и фотоэлектростимулированной пассивации (**ФЭСП**) $Cd_{1-x}Zn_x$ Te [7, 8] обеспечивают довольно эффективное уменьшение поверхностных токов утечки за счет получения высокоомного защитного оксидного слоя на поверхности образцов. В развитие исследований [7, 8] в настоящей работе предложен новый метод пассивации, исключающий применение токсичных компонентов. В этом методе снятие нарушенного слоя с боковой поверхности образцов проводят методом лазерной абляции (ЛА) при одновременной и последующей обработке образцов методом ФСП или ФЭСП.

Удаление нарушенного слоя проводили путем облучения образцов последовательностью импульсов лазерного излучения. На **рис.** 1 приведена блок-схема установки для лазерной абляции нарушенного слоя с боковой поверхности кристаллических образцов Cd_{1-x}Zn_xTe и последующего получения на этой поверхности высокоомного защитного слоя методом фотостимулированной пассивации. Излучение YAG:Nd-лазера на основной частоте (с длиной волны λ =1064 нм) преобразовывали в излучение на частоте второй гармоники с длиной волны λ_2 =532 нм. Использовали импульсы длительностью 10...100 нс со средней плотностью мощности *p*=10—70 MBT/см². Доза облучения составляла 0,25—3,0 Дж/см².

Длительность проведения процесса лазерной абляции (0,5—5,0 мин) была установлена экспериментально. Она обусловлена размерами образца, скоростью его вращения и периодом следования лазерных импульсов. Плотность мощности, при которой происходит эффективное удаление нарушенного слоя, и доза лазерного облучения также установлены экспериментально. При дозе облучения менее 0,25 Дж/см² нарушенный слой удаляется не полностью, а увеличение дозы лазерного облучения более 3,0 Дж/см² нецелесообразно, т. к. не приводит к заметному улучшению спектрометрических и электрических характеристик получаемых детекторов.

Рис. 1. Схема установки для лазерной абляции и фотостимулированной пассивации боковой поверхности образцов Cd_{1-x}Zn_xTe:

I — преобразователь излучения лазера; 2 — светофильтр; 3 — фокусирующая линза; 4 — образец; 5 — вращающийся кристаллодержатель; 6 — тепловые экраны-светофильтры; 7 — источники УФ-излучения

ТЕХНЛОГИЧЕСКИЕ ПРОЦЕССЫ И ОБОРУДОВАНИЕ

Рис. 2. Микрофотографии поверхности кристаллов Сd_{1-x}Zn_xTe до (*a*) и после (*б*) лазерной абляции

Как видно из **рис. 2**, лазерная абляция приводит к заметной очистке обработанной поверхности кристаллического образца.

В таблице приведены значения электрического сопротивления кристаллических образцов Cd1_, Zn, Te и токов утечки детекторов до и после пассивации разработанным способом (лазерная абляция при одновременной и последующей обработке образцов методом $\Phi C \Pi$), а также способом $\Phi C \Pi$ и способом ФЭСП, проведенными после химического травления (ХТ) нарушенного слоя. Из таблицы видно, что разработанный способ позволяет существенно увеличить поверхностное электрическое сопротивление Cd₁₋ ¹_xZn_xTe-детекторов и снизить токи утечки по их боковой поверхности. Такие изменения обусловлены образованием оксидного слоя TeO₂ и, вследствие этого, резким снижением (практически до нуля) концентрации свободного Те в приповерхностном слое образцов. Об этом свидетельствуют данные исследований состава поверхности образцов, проведенные методом рентгеновской фотоэлектронной спектроскопии (рис. 3).

Исследования были проведены на спектрометре XSAM-800 Kratos. Давление в камере прибора составляло примерно 10^{-6} Па. Фотоэлектроны возбуждались MgK α -излучением (hv=1253,6 эВ). Мощность рентгеновской трубки составляла 15 кВ, а электронный ток — 20 мА. Кинетическая энергия электронов анализировалась полусферическим электростатическим анализатором. Разрешение спектрометра составляло 1эВ, точность определения энергии связи — 0,3 эВ. Послойное травление проводилось с помощью источника ионов Ar⁺ с энергией 1,5 кэВ. Скорость травления составляла около 5 нм/мин.

Состав поверхности образца определялся по соотношению площадей линий C1s, O1s, Te3d, Cd3d, Zn2p — остовных оболочек и Zn LMM-Оже-линии с уче-

Значения поверхностного электрического сопротивления Cd_{1-x}Zn_xTe-детекторов до (R₁) и после (R₂) проведения пассивации различными способами и отношение соответствующих токов утечки (I₁/I₂)

Способ обработки	<i>R</i> ₁ , 10 ⁸ Ом	<i>R</i> ₂ , 10 ¹⁰ Ом	R_2/R_1	I_{1}/I_{2}	<i>Р</i> , МВт/см ²
ХТ+ФСП	110	16	14,5	16,8	
ХТ+ФЭСП	55	13	23,6	24,4	
ЛА+ФСП	30	8,1	27,0	28,6	48,3
	150	32	21,3	20,4	44,1
	4,7	3,4	72,34	71,1	57,7
	3,15	2,63	83,49	83,3	68,5
	1,45	1,3	89,65	79,2	62,3

Рис. 3. Профили распределения Те между образовавшимися соединениями TeO₂ (3), CdTe (1) и свободным Te (2) после обработки образца методом ЛА (*a*) и методом ЛА+ФСП (*б*)

том коэффициентов элементной чувствительности [9]. Толщина анализируемого слоя составляла около 5 нм. ***

Таким образом, разработанный метод пассивации (ЛА+ФСП) обеспечивает получение толстых однородных и высокоомных оксидных пленок, что существенно снижает токи утечки по боковой поверхности Cd₁ "Zn "Te-детекторов.

Сd_{1-х}Zn_xTe-детекторов. Предложенный способ является воспроизводимым и позволяет исключить применение высокотоксичных химических компонентов при изготовлении спектрометрических детекторов на основе Cd_{1-х}Zn_xTe.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Pat. 6043106 USA. Method for surface passivation and protection of cadmium zinc telluride crystals / M. J. Mescher, R. B. James., T. E. Schlesinger, H. Hermon.— 28.03.2000.

2. Pat. 7001849 USA. Surface treatment and protection method for cadmium zinc telluride crystals / G. W. Wright., R. B. James, A. Burger, D. A. Chinn.— 21.02.2006.

3. Galkina O. S., Grebenyuk N. N., Dobrotvorskaya M. V. et al. Studies of methods for chemical treatment of semiconductor detectors based on $Cd_{1-x}Zn_xTe$ crystals // Functionals Materials.— 2001.— Vol. 8, N 2.— P. 392—394.

4. Кутний В. Е., Кутний Д. В., Рыбка А. В. и др. Газостатическая обработка структур Au-CdZnTe-Au для детекторов рентгеновского и гамма-излучения // Вопросы атомной науки и техники. Вакуум, чистые материалы, сверхпроводники.— 2008.— Вып. 1 (17).— С. 123—128.

5. Леонов С. А., Кутний Д. В., Наконечный Д. В. и др. Ионноплазменная пассивация поверхности кристалла CdZnTe // Вопросы атомной науки и техники. Вакуум, чистые материалы, сверхпроводники.— 2004.— Вып. 3 (85).— С. 96—100.

6. Rybka A. V., Leonov S. A., Prokhoretz I. M. et al. Influence of detector surface processing on detector performance // Nucl. Instr. & Meth. A.— 2001.— Vol. 458.— P. 248—253.

 Пат. ПМ 40036 Украины. Способ получения спектрометрического детектора на основе соединения CdZnTe / Ю. А. Загоруйко, О. А. Федоренко, Н.О. Коваленко.— 25.03 2009.

 Пат. ПМ 48252 Украины. Способ получения спектрометрического детектора на основе соединения CdZnTe / Ю. А. Загоруйко, В. А. Христьян, О. А. Федоренко.— 10.03 2010.

9. Анализ поверхности методами Оже- и рентгеновской фотоэлектронной спектроскопии / Под ред. Д. Бриггса и М. П. Сиха.— М.: Мир, 1987.

Технология и конструирование в электронной аппаратуре, 2011, № 3