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Adaptive uniform polar quantization  
 

A simple and complete analysis for an optimal uniform polar quantizer with 
respect to mean-square error (MSE) as efficient quantization technique for 
any number of points N (Fixed-Rate) is given. Conditions for the optimality 
of the polar quantizer and all main equations for phase partitions and op-
timal number of levels are presented. Improved performance over product 
polar quantization and scalar uniform quantization proposed in the litera-
ture is afforded by allowing a variable number of phases at each magnitude 
level.  

Key words: uniform polar quantization, method of Lagrange multipliers, op-
timization. 

 
Introduction  

Polar quantization techniques as well as their applications in areas such as comput-
er holography, discrete Fourier transform encoding, image processing and communica-
tions have been studied extensively in the literature. Synthetic Aperture Radars (SARs) 
images can be represented in polar format (i.e., magnitude and phase components). In 
the case of MSE quantization of a symmetric two-dimensional source, polar quantiza-
tion gives the best result in the field of the implementation [1]. The motivation behind 
this  work  is  to  maintain  high  accuracy  of  phase  information  that  is  required  for  some 
applications such as interferometry and polarimetry, without loosing massive amounts 
of magnitude information [1, 2]. 

Problem of the optimal uniform quantization, even for the simplest case, which is 
uniform scalar quantization, is rather actual nowadays [4]. If we apply the Gaussian 
quantizer on an arbitrary source we can take advantage of the central limit theorem and 
the known structure of an optimal scalar quantizer for a Gaussian random variable to 
code a general process by first filtering it in order to produce an approximately Gaussian 
density, then scalar-quantizing the result, and finally, inverse-filtering it to recover the 
original. Various processing techniques, when applied to non-Gaussian sources with 
memory, produce sequences that are «approximately» independent and Gaussian [7]. In 
previous works about polar quantization [1, 3] only product uniform quantization was  
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always considered (N = P ´ L). That optimization approximated granular distortion as:  
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SAR images can be represented in polar format (i.e., magnitude and phase compo-

nents). In the case of MSE quantization of a symmetric two-dimensional source, polar 
quantization gives the best result in the field of the implementation. Polar quantization 
consists of separate but uniform magnitude and phase N level quantization, so that rec-
tangular coordinates of the source (x, y) are transformed into the polar coordinates in 
form: r = (x2 + y2)1/2, f = tan–1(y/x) where r represents magnitude and f is a phase. The 
optimal uniform polar quantization (OUPQ) is very similar to the original uniform polar 
quantization (UPQ) except the fact that the number of the regions for the phase angle 
varies depending on the result of magnitude quantization. In other words each concen-
tring ring in quantization pattern allows to have a different number of partitions in the 
phase quantizer (Pi) when r is in the i-th magnitude ring. Their implementation remains 
simple requiring only two scalar quantizers and lookup table of the Pi. One UPQ must 

satisfy the constraint å
=

=
L

i
i NP

1
 in order to use all of N regions for the quantization. 

In this paper polar quantizers are designed and analysed under additional constraint 
that each scalar quantizer is a uniform one. This restriction has the following advantages 
over optimal polar quantization: the implementation is simple, and no compressor-
expander pair is needed. Adaptive uniform polar quantization can be used in ADPCM 
systems. 

 
Optimal uniform polar quantization  

Uniform scalar quantization was considered in previous papers as a uniform quan-
tization  in  magnitude  and  phase  where  the  number  of  points  was  constant.  The  trans-
formed probability density function for the Gaussian source takes the following form: 
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We consider uniform polar quantizer of L magnitude levels and Pi phase recon-

struction levels on a magnitude reconstruction level mi, 1 £ i £ L. In order to find a truly 
optimal quantizer we have to minimize the distortion, so we proceed as follows. 

Magnitude decision levels and reconstruction levels are given as:  
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where ri is defined in range 1 £ i £ L (0 < r1 < r2 <…< rL < rL+1 = rmax ) and mi in (0 <  
< m1 < m2 < ... < mL). Next, we make a partition of each magnitude ring into Pi phase 
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subpartitions. Let fi,j and fi,j+1 be two phase decision levels, and let yi,j be the j-th phase 
reconstruction level for the i-th magnitude ring, 1 £ j £ Pi.  

Then: iji Pj /)1(, pf -= , and iji Pj /)12(, py -= .  
Total distortion D is a combination of granular and overload distortions, D = Dg + 

+ Do. Granular distortion Dg [2] takes the following form: 
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After the integration over f and the reordering, (2) becomes as follows: 
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and overload distortion Do is described as:  
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We use [5]: )(
6
11)(16605,01)sin( 22 xxxx

x
x ee +-»+-=  and after this approxi-

mation Dg becomes as follows: 
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Thus, we practically define separate amplitude and phase distortions as follows:  
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and for very large N, asymptotically, last equation can be given as: 
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The minimization of the function Dg(P) for fixed number of magnitude levels L 

constrained by total number of reconstruction points N is  formulated  in  this  way:  mi-
nimize Dg(P) under the constraints: 
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Before describing the minimization procedure, we prove that the problem of mini-

mization of the Dg(P) is a convex programming problem. This follows directly from 
Lemma 1. 

Lemma 1: Function Dg(P) is convex and constraints g0(P) and gi(Pi) form the con-
vex set . 

Proof  of  Lemma  1:  To prove that the function Dg(P) is convex and constraints 
g0(P) and gi(Pi) form the convex set it is sufficient to prove that Hessian matrices of the 
following functions: Dg(P), –g0(P), –gi(Pi), 1 £ i £ L are  positive  semi-definite  [6,  p.  
27]. 

Conditions that satisfy the optimal solution for mentioned problem will be seeked 
using the method of Lagrange multipliers, as: J = Dg + låPi where l represents La-
grangian multiplier. 
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The optimization problem for polar quantizer can be formulated in this way: it is 
necessary to find partial derivations of Dg(P). It follows from (10) that   
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while the second partial derivation is  
ï
î

ï
í

ì

¹

=
= ò

+

. ,0

,,)(
)(

2
1

4

2
2

ji

jidrrrfm
P

PP
D

i

i

r

r
i

i
ji

g
p

¶¶
¶

 

It can be easily concluded that: .0
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For Hessian matrix it obviously holds: 
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while for the constraints we have: 
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This completes the proof and it is completely proved that Dg(P) is a convex func-

tion of P.  
After applying method of Lagrange multipliers, we have:  
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Then:  
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This is the exact result without asymptotical analysis. Our goal is to find rmax, Lopt, 

and (Piopt)1£i£L for which Dg is minimal.  
For Gaussian source (after transformed into the polar coordinates) where 
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These analyses yield to the resulting granular distortion asymptotically 
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The optimal number of levels problem can be solved analytically only for the 

asymptotical analysis as it is suggested: from the condition 0=
¶

¶

L
Dg  we come to the 

optimal solution Lopt  
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Now, we finally have the equation for the optimal distortion of the uniform polar 

quantizer: 
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Especially interesting is to compare optimal uniform polar quantization with op-

timal product polar quantization using proposed method of the optimization. Optimal 
product granular distortion is then: 
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where Lr ln2max s=  [4]. 

Now we have: 
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Gains over scalar and optimal product quantization are as follows: 
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and  
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Figure shows the gains for different number of bits per sample. 

 

Gain [dB] as a function of number of bits per sample 
 
Application of Adaptive Uniform Polar Quantization: 

Short-time pdf of speech segments are described by Gaussian pdf [8]. This paper 
addresses potential improvements achievable by means of joint quantization of two con-
secutive samples (x, y) referred to as two-dimensional quantization (2-D quantization) 
over the scalar quantization. Also a transform coding scheme known as spectral  phase 
coding (SPC) is a reliable technique for coding a nonstationary or large dynamic range 
discrete-time series into a digital form. SPC is essentially a polar format representation 
of the discrete Fourier Transform (DFT) of a random phase time series. SPC utilises the 
discrete Fourier Transform and a two-dimensional quantizer to obtain its reliable char-
acteristics.  

Also it may apply optimal uniform polar quantization at Adaptive Differential 
Pulse Code Modulation (ADPCM). In ADPCM systems it utilises uniform scalar quan-
tization [9]. We give a gain which can be achieved if we use optimal uniform polar 
quantizer in ADPCM systems.  

 
Conclusion  

We introduced optimal uniform polar quantization through simple and complete 
analysis by constructing an optimal uniform polar MSE quantizer for sources with cir-
cularly symmetrical probability density. 
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We also gave an equation for optimal number of points for different levels and for 
optimal number of levels. The equations for optimal uniform polar distortion opt

gD are 
provided.  

Numerical results confirm the potentialities of such an approach. They show that 
gain based on OUPQ method application is (2,9–4,5) dB over scalar quantization and 
(0,7–1,9) dB over optimal product quantization. When polar quantization is in use, dis-
tortion can be reduced by applying OUPQ method of the optimization. Quantizers de-
scribed here are simple for the application and realization. 
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