УДК 537.632.4+535.565 © 2012

И.В. Линчевский

Влияние магнитомеханического резонанса на амплитудно- и фазочастотные зависимости переменных составляющих эффекта Фарадея

(Представлено академиком НАН Украины В. М. Локтевым)

В рамках модели продольных колебаний тонкого стержня из магнитооптического кристалла в условиях магнитомеханического резонанса показано, что вынужденные колебания могут создавать не только амплитудные, но и фазочастотные зависимости переменных составляющих эффекта Фарадея.

В работе [1] теоретически обосновано и экспериментально подтверждено, что в магнитооптическом кристалле (MOK), в котором созданы условия магнитомеханического резонанса (MMP), возникают механические напряжения, приводящие к дополнительным изменениям намагниченности и дополнительному частотно-зависимому повороту плоскости поляризации света вследствие эффекта Фарадея.

Опираясь на модель [1] для продольных колебаний тонкого стержня из МОК в условиях магнитомеханического резонанса, покажем, что вынужденные магнитомеханические колебания в МОК могут создавать не только амплитудно-частотные, но и фазочастотные зависимости эффекта Фарадея в области частот ММР.

Рассмотрим МОК в виде тонкого стержня длиной 2l, вдоль которого по оси OZ распространяется линейно поляризованный свет. Магнитное поле содержит постоянную H_0 и переменную h(t) составляющие, которые совпадают с осью OZ. Поле H_0 является подмагничивающим, его значение выбирают из соображений обеспечения максимальной чувствительности намагниченности ферримагнетика к деформациям. Согласно [2], значение H_0 должно обеспечить внутри ферримагнетика величину магнитной индукции на уровне $0.6B_s$ (B_s — индукция насыщения). Составляющая h(t) изменяется по гармоническому закону с заданной частотой ω . Амплитуды полей H_0 и h(t) удовлетворяют требованию $h(t) \ll H_0$. Для обеспечения высокодобротных механических колебаний МОК находится в свободном состоянии, т.е. не зажат элементами конструкции.

При указанных условиях за счет магнитострикции в МОК возникают периодические, с частотой ω механические напряжения вдоль оси ОZ:

$$\sigma_z(t) = m \left(\frac{\cos \gamma_0 z}{\cos \gamma_0 l} - 1 \right) h(t),$$

где $\gamma_0 = \omega \sqrt{\rho/Y_0}$; *m* — пьезомагнитная константа поляризованного магнитострикционного материала; ρ — плотность; Y_0 — модуль Юнга.

Механические потери в колебательной системе учтем, введя комплексную составляющую в модуль Юнга [3]: $Y = Y_0(1+i/Q) (Q - добротность)$. Разбив МОК на слои, в пределах которых намагниченность можно считать неизменной, найдем переменную составляющую суммарного эффекта Фарадея на выходе всего образца в виде

$$\varphi(t,\omega) = (A+B)h(t),\tag{1}$$

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2012, № 5

84

Рис. 1. Векторная диаграмма для угла поворота плоскости поляризации $\varphi(t,\omega)$ эффекта Фарадея

где $A \approx 2\alpha l\chi$; $B = 2\alpha \Lambda m((tg(\gamma l))/\gamma)$; $h(t) = h_0 e^{i\omega t}$; $\gamma = \gamma_0(1 - i/2Q)$; $\Lambda = 0,77\lambda_s M_s/K_1$; α – коэффициент пропорциональности между углом поворота плоскости поляризации, нормированным на единицу длины МОК, и его намагниченностью; χ – магнитная восприимчивость намагниченного МОК, M_s ; λ_s – намагниченность и магнитострикция насыщения; K_1 – константа анизотропии. Рассматривая $\varphi(t,\omega) = \varphi_0(\omega) \exp\{i[\omega t + \theta(\omega)]\}$ как вектор на комплексной плоскости, вращающейся с частотой ω , получим векторную диаграмму (рис. 1).

При изменении ω составляющая Ah(t) неподвижна и не изменяется по длине. Магнитомеханические деформации кристалла определяют составляющую Bh(t), и ее направление изменяется по закону tg $\vartheta = -\gamma l/Q \sin 2\gamma l$. В частном случае (в области первого MMP $(\gamma l = \pi/2)$) имеем $\vartheta = -\pi/2$. При этом |Bh(t)| отличен от нуля в области частот вблизи MMP. На рис. 1 схематично (штриховая кривая) показано геометрическое место точек конца вектора Bh(t) при изменении частоты ω . За нулевое принято направление вектора Ah(t). Вкладом проекции вектора Bh(t) на направление Ah(t) в области частот MMP можно пренебречь.

Таким образом, угол поворота плоскости поляризации $\varphi(t,\omega)$, являясь вектором, отстает от вектора h(t) по времени на угол $\theta(\omega)$. Значение θ при условии $\gamma_0 l = \pi/2$, т. е. когда выполняется условие первого MMP, достигает своего максимального значения θ_m , для которого справедливо соотношение

$$\operatorname{tg} \theta_m = \frac{8\Lambda mQ}{\chi \pi^2}.$$
(2)

С помощью рис. 1 удобно проинтерпретировать и частотную зависимость амплитуды переменной составляющей эффекта Фарадея $\varphi_0(\omega)$. При этом за счет поворота вектора Bh(t)легко пояснить появление частот резонанса и антирезонанса в изменениях $\varphi_0(\omega)$. Поскольку эффект Фарадея пропорционален намагниченности, то сказанное выше относительно $\varphi(t,\omega)$ остается справедливым и для переменной составляющей вектора намагниченности $M_z(t,\omega)$.

На рис. 2 приведены результаты расчета по формуле (1) зависимости от линейной частоты $\nu = \omega/2\pi$ фазового сдвига $\theta(\nu)$ и амплитудно-частотной зависимости модуля переменной составляющей эффекта Фарадея $\varphi_0(\nu)$.

ISSN 1025-6415 Доповіді Національної академії наук України, 2012, № 5

Рис. 2. Амплитудно-частотная ($\varphi_0(\nu)$) и фазочастотная ($\theta(\nu)$) характеристики эффекта Фарадея

При расчетах были использованы следующие параметры МОК (Y₃Fe₅O₁₂): 2l = 15 мм, Y₀ = 138 ГПа, m = 1060 Т, $K_1 = 6.2 \cdot 10^2 \, \text{Дж/м}^3$, $M_s = 11.4 \, \text{кA/м}$, $\lambda_s = -1.4 \cdot 10^{-6}$, Q = 120, $\alpha = 1.3$ град/А, $\chi = 15$, $\rho = 5.7 \cdot 10^3 \, \text{кг/м}^3$ и магнитного поля: $H_0 = 0.5 \, \text{кA/м}$, $h = 50 \, \text{A/м}$.

Результаты расчета частотной зависимости амплитуды переменной составляющей ЭФ на рис. 2 находятся в хорошем соответствии с экспериментальными результатами, приведенными в работе [1]. С помощью установки, описанной там же, был измерен максимальный фазовый сдвиг θ_m . Его значение на линейной частоте первого MMP ($f_0 = 171,2 \text{ к}\Gamma \text{q}$) составило 8°.

Учитывая, что график фазы $\theta(\nu)$ имеет явно выраженный резонансный характер, а измерение φ обычно осуществляют, используя закон Малюса, определение частоты ММР целесообразно осуществлять по максимуму фазового сдвига θ_m между интенсивностью света (током фотоприемника) и МП h(t) (током катушки). Соотношение (2) позволяет решить и обратную задачу. Например, измерив экспериментально фазовый сдвиг θ_m между током фотоприемника и током катушки, а также зная остальные параметры МОК, входящие в (2), можно найти значение пьезомагнитной константы m.

Таким образом, при прохождении поляризованного света через МОК, находящийся в условиях ММР, переменная составляющая эффекта Фарадея в области частот ММР наряду с амплитудно-частотными изменениями угла поворота плоскости поляризации еще испытывает частотно-зависимую задержку по фазе относительно управляющего переменного МП.

- Linchevskyi I. V., Petrishchev O. N. Determination of material constants of magneto-optical crystals using the Faraday effect under magneto-mechanical resonance conditions // Укр. физ. журн. – 2011. – 56, No 5. – P. 496–502.
- 2. Бозорт Р. М. Ферромагнетизм. Москва: Изд-во иностр. лит., 1956. 784 с.
- Бондаренко А. А., Куценко Г. В., Улитко А. Ф. Амплитуды и фазы продольных колебаний пьезокерамических стержней с учетом переменной механической добротности // Прикл. механика. – 1980. – 16, № 1. – С. 84–88.

НТУ Украины "Киевский политехнический институт" Поступило в редакцию 17.10.2011

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2012, No 5

86

I. В. Лінчевський

Вплив магнітомеханічного резонансу на амплітудо- та фазочастотні залежності змінних складових ефекту Фарадея

У рамках моделі поздовжніх коливань тонкого стрижня із магнітооптичного кристала в умовах магнітомеханічного резонансу показано, що вимушені коливання можуть створювати не тільки амплітудні, але й фазочастотні залежності змінних складових ефекту Фарадея.

I.V. Linchevskyi

Effect of the magnetomechanical resonance an amplitude- and phase-frequency dependences of the variable components of the Faraday effect

In the framework of a model of longitudinal vibrations of a thin rod fabricated of the magnetooptical crystal under a magnetomechanical resonance, it is shown that the forced oscillations can create not only the amplitude but also phase-frequency dependences of the variable components of the Faraday effect.