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Results o f  theoretical and experimental study o f  failure wave phenomena are presented. A 
description o f  the failure wave phenomenon was proposed in terms o f  a self-similar solution fo r  the 
microshear density. The mechanisms o f  failure wave generation and propagation were classified as 
a delayed failure with the delay time corresponding to the time o f  excitation o f  self-similar blow-up 
collective modes in a microshear ensemble. Experimental study o f  the mechanism o f  the failure 
wave generation and propagation was carried out using a fused quartz rod and included the Taylor 
test with high-speed framing. The results obtained confirmed the "delayed” mechanism o f  the 

failure wave generation and propagation.

K e y w o rd s : m esodefect evolution, failure w aves.

In trod u ction . The phenom enon o f  a failure w ave in brittle materials has been  the 
subject o f  intensive study during the last tw o decades [1 -3 ]. The term “failure w ave” was 
introduced by  G alin and Cherepanov [4] as the lim it case o f  damage evolution, w here the 
number o f  m icroshears is large enough for the determ ination o f  the front w ith  a 
characteristic group velocity. This front separates the structured material from the failed  
area. Rasorenov et al. [1] were the first to observe the phenom enon o f  delayed failure 
behind an elastic w ave in glass. Such a w ave w as introduced b y  Brar and B less in [5], 
where the concept o f  a fracture w ave w as d iscussed  to explain the nature o f  the elastic 
limit. A  failure w ave appeared in shocked brittle materials (glasses, ceram ics) as a 
particular failure m ode in w hich they lose strength behind the propagating front. Generally, 
the interest to the failure w ave phenom enon is initiated by  the still open problem  o f  
physical interpretation o f  traditionally used material characteristics such as the Hugoniot 
elastic lim its, dynam ic strength, and relaxation m echanism  o f  elastic precursor.

Qualitative changes in  silicate g lasses behind the failure w ave, e.g., an increase in 
the refractive index, allow ed G ibbons and Ahrens (1971) to qualify this effect as the 
structural phase transformation. T hese results stim ulated C lifton [6 ] to propose a 
phenom enologica l m odel in  w hich  the failure front w as assum ed to be a propagating 
phase boundary. A ccording to this m odel, the m echanism  o f  failure w ave nucleation and 
propagation results from the local densification fo llow ed  by shear failure around the 
inhom ogeneities triggered by  the shock.

U sing  h igh-speed photography, Paliw al et al. [7] obtained real-tim e data on the 
damage kinetics during dynam ic com pressive failure o f  a transparent A lO N . The results 
suggest that final failure o f  the A lO N  under dynam ic loading w as due to the formation o f  
a damage zone w ith unstable propagation o f  the critical crack.

S ta tistica l M od el. The description o f  the failure w ave phenom enon w as proposed  
by Naim ark et al. [8 , 9] after analyzing the damage localization dynam ics in  terms o f  a 
self-similar solution for the microshear density. This solution describes qualitative changes 
in  the m icroshear density kinetics that allow s defining failure w aves as a specific (“slow  
dynam ics”) collective m ode in the m icroshear ensem ble that could be excited due to the 
pass o f  a shock w ave. Structural parameters associated w ith typical m esodefects were 
introduced as a m acroscopic tensor o f  the defect density , w hich  coincides w ith  the

© O. N A IM A R K , O. PLEK H O V , W. PR O U D , S. U V A R O V , 2008
ISSN 0556-171X. Проблемы прочности, 2008, №  1 105

mailto:usv@icmm.ru


O. Naimark, O. Plekhov, W. Proud, and S. Uvarov

deform ation induced by  defects. Taking into account the large number o f  m esoscopic  
defects and the influence o f  thermal and structural fluctuations involved  in  the damage 
accum ulation process, the form ulation o f  a statistical problem  concerning the defect 
distribution function w as proposed by Naim ark [9] in  terms o f  the solution to the 
Fokker-Plank equation in  the phase space o f  characteristic m esodefect variables.

The statistical description allow ed us to propose a m odel o f  a solid  w ith defects 
based on the appropriate free energy form. A  sim ple phenom enological form o f  the part o f  
free energy caused by  defects (for the uniaxial case ) is g iven  by  a sixth order expansion, 
w hich  is similar to the G inzburg-Landau expansion in  the phase transition theory [9]:

F  =  1 A ( 1 - 5 /5 *  ) p 2 - 1  B p 4 - 1 C (l-<5/<5c ) p 6 - D o p + X ( V l p )2 . ( 1)
2 4 6

Here the gradient term describes non-local interaction in  the defect ensem ble; A , B , C, 
and D  are positive phenom enological material parameters, and % is the nonlocality  
coefficient. The damage kinetics is determ ined by  the evolution inequality

d F / dt =  (d F / d p ) p  +  (d F /  d5 )5 <  0, (2)

that leads to kinetic equations for the d efect density p  and scaling parameter (5:

p  =  - r p (dF/ dp -  d/ dxi (% dp l dxi (3) 

5 =  - ^  dF/ d5, (4)

where r p and are kinetic coefficients. A nalysis o f  Eqs. (3) and (4) show s that the 
scaling parameter 5 determ ines the reaction o f  a solid  to the defect growth. I f  5 <  5 c , the 
evolution o f  the defect ensem ble is governed by  spatial-temporal structures (S  3) o f  a 
qualitatively new  type characterized by an exp losive (“b low -up”) accum ulation o f  defects 
as t ^  r c in the spectrum o f  spatial scales. The “blow -up” self-sim ilar solution is the 
precursor o f  the crack nucleation due to a specific kinetics o f  damage localization,

p  =  g ( t ) f ( £ X £ =  Xl Lc , g ( t ) =  G( 1 -  tj r c ) m , (5)

where r  c is the so-called  “peak tim e” (p  at t c ), Lc is the scale o f  localization, 
and G  >  0 and m >  0 are the parameters o f  non-linearity, w hich  characterise the free 
energy release rate for 5 <  5 c . The function determ ines the defect density distribution in 
the damage localization  area. Equation (3) describes the characteristic stages o f  damage 
evolution. A s the stress at the shock w ave front approaches the critical value o  c , the 
properties o f  the kinetic equation (3) change qualitatively (for p  ^  p c ) and the damage 
kinetics is subject to the self-sim ilar solution [Eq. (5)]. The m ethod for the solution o f  this 
problem  w as developed by  Kurdjumov [10]. It allow ed the estim ation o f  £  f  and the

definition o f  the failure front propagation kinetics:

X f  =  £ ^ 0/2S  - “/[2(/3- 1)]t (^ -“ + 1)/[2(/3-1)]. (6)

Equation (6 ) determ ines self-sim ilar regim es o f  the failure w ave propagation, w hich  
depends on the values o f  the parameters /3 and o>. For instance, for the values o f  the 
parameters /3 ~  «  + 1, a failure w ave w ill be generated as the subsequent excitation o f  a 

“blow -up” dam age localization  area arising after the shock w ave pass w ith the delay tim e

t c .
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N um erical sim ulation o f  the damage kinetics [11] based on Eq. (6 ) for the conditions 
o f  the plate im pact test confirm ed the m echanism  o f  the failure w ave generation predicted 
b y the aforem entioned self-sim ilar solution (Fig. 1).

Fig. 1. Simulation of the shock (S) and failure (F) wave propagation for the condition o f the plate 
impact test. The photos correspond to different times o f the shock and failure wave propagation.

E xp erim en t. A n  experim ental study o f  the failure w ave generation and propagation 
w as realized for the sym metric Taylor test perform ed on 25 m m -diam eter fused-quartz 
rods [11]. Figure 2 show s processing o f  photos obtained by  a h igh-speed photography for 
an experim ent w ith  a flyer rod traveling at 534 m /s at impact. The flyer rod w as traveling 
from the left to the right. In the first frame (0.3 i s  after im pact), tw o vertical dark lines are 
observed. The line on the left is the im pact surface. The line to the right is a shock w ave 
that can be clearly seen  propagating at a higher velocity  in  front o f  other w aves in the 
subsequent frames.
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Fig. 2. Processing of high-speed photos o f the shock and failure wave propagation. Three dark 
zones correspond to the images o f the impact surface (A ), failure wave (■ ), and shock wave (♦ ) .

B ased  on the measurem ents from the photographs, the first front was calculated to 
slow  dow n from the velocity  approxim ately equal to the longitudinal w ave speed in  fused  
quartz (5 .96 km /s) during the initial 2.1 i s  after im pact to 5 .2 ± 0 .3 m m /is  after 3.9 [is. 
Another front is observed in  the frames labeled 1.5 and 1.8 i s  after impact. B y  the 2.1 i s  
after impact, it becam e the failure front (marked by  a square). The 1D strain state w ill 
exist until the release w aves from the outer edges converge along the center o f  the 
specim en. Therefore, the developm ent o f  failure is under the sam e conditions as those 
experienced during the plate impact, including the transition to the 1D stress state.

The second front appears at the 1.2 i s  (0.6 i s  after the first (elastic) front passes this 
point). It is interesting to note that the second front appearing at the 1.2 i s  does not 
advance significantly until the material behind it becom es fully com m inuted (opaque). 
During this tim e the front velocity  is Vfw ~  1 5 7  km /s, w hich  is c lose to that traditionally 
m easured in  the plate im pact test. H ow ever, the fo llow ing scenario reveals an increase in

ISSN 0556-171X. npoôëeMbi npounocmu, 2008, N  1 107



O. Naimark, O. Plekhov, W. Proud, and S. Uvarov

the failure front velocity  up to Vfw ~  4 km /s. The fact that the failure w ave front velocity  
approaches the shock front ve locity  supports the theoretical result concerning the failure 
w ave nature as “delayed failure” w ith the lim it o f  the “delay tim e” corresponding to the 

“peak tim e” in  the self-sim ilar solution (5). The loss o f  transparency is caused by  the 
defect nucleation and occurs during the “blow -up” tim e after the induction tim e r i (the 
tim e o f  the formation o f  the self-sim ilar profile o f  defect distribution). Failure occurs after 
the delay r d , w hich  is the sum o f  the induction tim e r  i , and the “peak tim e” r c (the 
tim e o f  the “blow -up” damage kinetics). The steady-state regim e o f  the failure w ave front 
propagation can be associated w ith  the successive activation o f  the “b low -up” dissipative  
structures under the condition w here r d ~ r  c .
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