Прогнозирование температурной зависимости вязкости разрушения жаропрочной стали 12Cr–2Ni–Мо

В. В. Покровский^а, С. Б. Кулишов⁶, В. Г. Сидяченко^а, В. Н. Ежов^а, В. С. Замотаев^а

^а Институт проблем прочности им. Г. С. Писаренко НАН Украины, Киев, Украина

⁶ ГП НПКГ "Заря-Машпроект", Николаев, Украина

Исследовано влияние температуры и размера образцов на характеристики статической трещиностойкости жаропрочной стали 12Cr-2Ni-Mo. Показано, что в диапазоне температур 20...450°C увеличение толщины образцов приводит к незначительному повышению вязкости разрушения, полученной по 5%-ной секущей в соответствии со стандартами по определению характеристик трещиностойкости. Расчет характеристик трещиностойкости с учетом эффекта масштаба по разработанной ранее расчетно-экспериментальной модели для стали 12Cr-2Ni-Mo свидетельствует об удовлетворительном соответствии эксперименту во всем исследованном диапазоне температур.

Ключевые слова: вязкость разрушения, жаропрочная сталь, коэффициент интенсивности напряжений, эффект масштаба.

Постановка задачи исследования. Одними из наиболее нагруженных конструкционных элементов газотурбинных установок (ГТУ) являются диски. Их разрушение не локализуется в корпусе изделия и может привести к катастрофическому разрушению. При переходе от ступицы к ободу размеры поперечного сечения диска изменяются. Кроме того, его ободная часть содержит большое число концентраторов напряжений в виде "елочных" пазов, отверстий для охлаждающего воздуха и креплений балансировочных грузиков, различные фрезеровки и др., которые при эксплуатации служат инициаторами зарождения трещин. Для исключения внезапных разрушений дисков предлагается применять концепцию эксплуатации ГТУ "по техническому состоянию". Для обоснованного назначения объемов и сроков проведения регламентных работ необходимо экспериментально исследовать характеристики трещиностойкости материала диска при различных режимах нагружения с учетом условий эксплуатации (температуры) и конструкционных особенностей изделия (размеры и форма).

Анализ литературных источников показывает, что форма и размеры тела могут значительно влиять на характеристики трещиностойкости. Поэтому важной и актуальной задачей механики разрушения является прогнозирование влияния эффекта масштаба на величину статической и циклической вязкости разрушения, а также обоснование возможности использования критических значений характеристик трещиностойкости, полученных на лабораторных образцах, для оценки вязкости разрушения реального конструкционного элемента – диска.

Цель данной работы заключается в экспериментальном исследовании температурной зависимости статической вязкости разрушения жаропрочной © В. В. ПОКРОВСКИЙ, С. Б. КУЛИШОВ, В. Г. СИДЯЧЕНКО, В. Н. ЕЖОВ, В. С. ЗАМОТАЕВ, 2009 дисковой стали 12Cr–2Ni–Mo в эксплуатационном диапазоне температур 20...450°C на компактных образцах толщиной 25 (CT-1) и 10 мм (CT-0,5). Кроме того, на основе этого проводилось опробование разработанной ранее [1] методики прогнозирования вязкости разрушения крупногабаритных образцов по результатам испытания образцов с трещинами малых размеров.

Результаты экспериментов и их анализ. Вязкость разрушения при статическом растяжении компактных образцов толщиной 25 и 10 мм исследовалась в соответствии с рекомендациями отечественных и зарубежных стандартов [2, 3] в диапазоне температур 20...450°С.

Значения критических коэффициентов интенсивности напряжений рассчитывались по диаграммам нагрузка-перемещение по линии действия силы: по 5%-ной секущей ($P_Q^{5\%}$) и по максимальной нагрузке ($P_{\rm max}$), соответствующей разрушению образца. Анализ полученных данных показывает, что для образцов толщиной 10 и 25 мм различие между $K_Q^{5\%}$ и $K_{\rm max}$ составляет 10...20% (рис. 1), причем с повышением температуры испытаний наблюдается тенденция к увеличению отношения $K_{\rm max}/K_Q^{5\%}$.

Рис. 1. Температурные зависимости статической трещиностойкости, полученные по 5%-ной секущей ($K_Q^{5\%}$) – темные точки и по нагрузке при разрушении (K_{max}) – светлые точки для образцов толщиной 25 (*a*) и 10 мм (δ).

Характеристики вязкости разрушения при статическом нагружении приведены в табл. 1. Анализ выполнения условий плоской деформации в соответствии с рекомендациями [2] свидетельствует о том, что частично они соблюдаются лишь для образцов толщиной 25 мм при температуре 20°С (линейная диаграмма нагрузка–смещение). Таким образом, оценивать разрушение конкретных изделий с трещиноподобными дефектами (в частности, дисков ГТУ) из стали 12Cr–2Ni–Мо необходимо с помощью характеристик трещиностойкости, полученных на образцах соответствующей изделию толщины, которые испытывались при эксплуатационных температурах. При этом следует использовать значения коэффициентов интенсивности напряжений, полученные по 5%-ной секущей, что будет идти в запас по трещиностойкости изделия. Таблица 1

nph push nink remicpurypus									
T, °C	l _{ср} , мм	$P_Q^{5\%},$ кН	Р _{тах} , кН	К _Q ^{5%} , МПа√м	К _{тах} , МПа√м	$\frac{P_{\max}}{P_Q^{5\%}}$	$2,5\left(\frac{K_Q^{5\%}}{\sigma_{0,2}}\right)^2$		
20	$\frac{21,00}{16,12}$	$\frac{70,40}{16,24}$	$\frac{70,40}{18,17}$	$\frac{96,70}{87,54}$	$\frac{96,7}{97,5}$	1,00 1,12	$\frac{37,9}{38,9}$		
300	$\frac{34,70}{14,98}$	$\frac{29,46}{19,53}$	$\frac{37,23}{23,70}$	$\frac{107,00}{96,00}$	$\frac{135,8}{116,0}$	$\frac{1,26}{1,20}$	$\frac{60,5}{72,3}$		
350	$\frac{35,10}{15,83}$	$\frac{27,10}{17,02}$	$\frac{31,26}{23,80}$	$\frac{105,50}{89,00}$	$\frac{121,7}{125,0}$	1,15 1,40	61,3		
400	$\frac{32,20}{16,72}$	$\frac{34,48}{15,00}$	$\frac{43,46}{22,35}$	<u>99,00</u> 87,00	$\frac{125,2}{130,0}$	$\frac{1,26}{1,49}$	$\frac{55,6}{59,8}$		
450	$\frac{33,20}{16,86}$	$\frac{30,60}{16,12}$	$\frac{40,80}{22,00}$	$\frac{97,50}{92,36}$	$\frac{130,1}{129,0}$	$\frac{1,33}{1,40}$	<u>66,0</u> 59,2		

Данные испытаний на вязкость разрушения компактных образцов при различных температурах

Примечания. Над чертой приведены данные для образцов СТ-1, под чертой – для образцов СТ-0,5; l_{cp} – средняя длина трещины.

При переходе от компактных образцов толщиной 25 мм к образцам толщиной 10 мм пластические свойства стали проявляются больше, что выражается в губах среза на поверхностях изломов, которые имеют место даже при температуре 20°С. Наблюдается общая тенденция влияния толщины образца на характеристики трещиностойкости, полученные по 5%-ной секущей при различных температурах. Вязкость разрушения для образцов толщиной 25 мм в среднем на 10% выше таковой для образцов толщиной 10 мм (рис. 2).

Рис. 2. Температурная зависимость характеристик статической трещиностойкости, полученная на компактных образцах СТ-1 толщиной 25 мм (■) и СТ-0,5 толщиной 10 мм (●).

Полученные результаты согласуются с многочисленными данными, приведенными в литературных источниках [4], где отмечается, что при изменении размера образца критические характеристики трещиностойкости могут либо увеличиваться, либо уменьшаться, либо оставаться неизменными. Как будет показано ниже, это зависит от специфических механических свойств материала: критической деформации ε_f как функции трехосности напряженного состояния σ_m/σ_i и интенсивности локальной пластической деформации ε_i^p как параметра, который является функцией трех главных напряжений и определяет степень приближения к условиям плоской деформации.

Расчетно-экспериментальная модель прогнозирования эффекта масштаба. На основании представленных ранее [4] экспериментальных данных о трещиностойкости конструкционных материалов разных категорий прочности была разработана методика, позволяющая прогнозировать вязкость разрушения на верхнем шельфе температурной зависимости с учетом влияния напряженного состояния, которая опробована в настоящей работе для стали 12Cr–2Ni–Mo.

Методика основана на физико-механической модели вязкого разрушения, контролируемого достижением пластической деформацией в вершине трещины критического значения ε_f . Разработанная модель имеет две модификации: одна позволяет прогнозировать вязкость разрушения крупногабаритных тел по результатам испытаний только малых цилиндрических образцов без трещин (гладкие и с кольцевой выточкой), другая – по результатам испытаний малых цилиндрических образцов и малых образцов с трещиной.

Для принятой модели условие разрушения описывается следующим выражением:

$$\varepsilon_i^p(x)\Big|_{x=X_\varepsilon} = \varepsilon_f, \qquad (1)$$

где ε_f и ε_i^p – соответственно критическая деформация и интенсивность локальной пластической деформации в вершине трещины; X_c – характеристическое расстояние.

Между критической деформацией ε_f и трехосностью напряженного состояния σ_m/σ_i существует функциональная зависимость, которая удовлетворительно описывается уравнением, предложенным Бриджменом [5]:

$$\varepsilon_f = C_f \exp\left(-k_f \frac{\sigma_m}{\sigma_i}\right) + \varepsilon_{\mathrm{I}f}, \qquad (2)$$

где σ_m – гидростатическое напряжение; σ_i – интенсивность напряжений. Влияние размеров и формы тела на критическую деформацию может учитываться через их влияние на трехосность напряженного состояния.

Ниже без выводов промежуточных зависимостей, которые подробно описаны ранее [1], представлены только конечные формулы для определения принципиально важных параметров, на которых базируется предложенная модель.

Параметр χ определяется путем решения трехмерной упругой задачи:

$$\chi = \frac{\sigma_3}{\nu(\sigma_1 + \sigma_2)},\tag{3}$$

ISSN 0556-171Х. Проблемы прочности, 2009, № 4

где σ_1 , σ_2 , σ_3 – главные напряжения у вершины трещины; ν – коэффициент Пуассона.

При плоском напряженном состоянии (ПНС) имеем $\chi = 0$, при плоском деформированном состоянии (ПДС) – $\chi = 1$, в общем трехмерном случае – $0 \le \chi \le 1$. Уравнение для прогнозирования вязкости разрушения запишем в виде

$$J_{c} = \left[C_{f} \exp\left(-k_{f} \frac{\sigma_{m}}{\sigma_{i}}\right) + \varepsilon_{If} \right]^{n+1} X_{c} M_{f} (1 - 2\chi\nu)^{-2}, \qquad (4)$$

где

$$M_f = \frac{3\pi A}{1+\nu};$$

n, A – коэффициенты уравнения $\sigma_i = A \varepsilon_i^n$, описывающего кривую деформирования материала.

В отличие от ранее известных зависимостей вязкости разрушения от критической деформации в уравнении (4) присутствуют параметры σ_m/σ_i и χ , учитывающие влияние напряженного состояния на критическую деформацию и на предысторию процесса деформирования. Для конкретных размеров и формы тела определяют значения σ_m/σ_i и χ , с помощью которых можно прогнозировать вязкость разрушения по известным константам материала A, n, v, C_f , k_f , ε_{if} , полученным при испытании цилиндрических образцов на одноосное растяжение (гладких и с концентраторами).

Кроме зависимости (4), основанной на результатах испытаний образцов без трещин, получена зависимость для прогнозирования вязкости разрушения крупногабаритных тел по данным испытаний малых лабораторных образцов с трещиной при условии, что в них соблюдаются условия ПНС ($\chi_1 \rightarrow 0$):

$$(J_c)_2 = (J_c)_1 \left[\frac{C_f \exp\left[-k_f \left(\frac{\sigma_m}{\sigma_i}\right)_2 + \varepsilon_{If}\right]}{C_f \exp\left[-k_f \left(\frac{\sigma_m}{\sigma_i}\right)_1 + \varepsilon_{If}\right]} \right]^{n+1} (1 - 2\chi_2 \nu)^{-2}.$$
(5)

Из этой зависимости следует, что для прогнозирования вязкости разрушения крупногабаритного тела кроме вязкости разрушения $(J_c)_1$ малого образца и констант C_f , k_f , ε_{If} , n, A необходимо располагать параметрами σ_m/σ_i и χ . Согласно зависимости (5) предполагаются дополнительные испытания малых образцов с трещиной, но при этом нет необходимости определять характеристическое расстояние X_c .

Сопоставление экспериментальных данных с расчетными. Для исследования влияния напряженного состояния на критическую деформацию ε_f использовались цилиндрические образцы с различными радиусами кольцевых выточек (R = 1, 2 и 4 мм), для которых трехосность напряженного состояния σ_m / σ_i и значение ε_f рассчитывались по формулам Бриджмена [5]:

$$\frac{\sigma_m}{\sigma_i} = \frac{1}{3} + \ln\left(\frac{d_k}{4R_k} + 1\right);\tag{6}$$

$$\varepsilon_f = 2\ln\left(\frac{d_0}{d_k}\right),\tag{7}$$

где d_0 – диаметр рабочей части образца до нагружения; d_k – диаметр рабочей части образца после разрушения; R_k – радиус в вершине концентратора после разрушения.

Зависимость критической деформации ε_f от трехосности напряженного состояния при различных температурах приведена на рис. 3. Видно, что критическая деформация является убывающей функцией трехосности напряженного состояния, которая может быть принята в виде экспоненциального уравнения типа (2) с параметрами C_f , k_f , ε_{If} .

Рис. 3. Зависимость критической деформации от трехосности напряженного состояния при температуре 20 (*a*), 300 (б) и 400°С (*в*).

В соответствии с методикой прогнозирования вязкости разрушения для использования формул (4) и (5) необходимо знать распределение параметров χ и σ_m/σ_i по фронту трещины.

ISSN 0556-171Х. Проблемы прочности, 2009, № 4

При нахождении значений параметра χ решалась трехмерная линейноупругая задача, где главные напряжения у фронта трещины в компактных образцах толщиной 10 и 25 мм определялись с помощью конечноэлементного (КЭ) программного комплекса ANSYS. Ввиду симметрии образца при расчете строилась модель 1/4 образца (рис. 4). Трещина моделировалась с ограничением перемещения в направлении оси *OY* (рис. 4). Нагрузка прикладывалась по линии действия силы, задавая перемещения узлов в направлении оси *OY*. При решении данной задачи использовался восьмиузловой призматический элемент размером 0,055 × 0,36 мм.

Рис. 4. Конечноэлементная модель образца СТ-0,5.

На рис. 5 представлено распределение параметра χ по толщине образца CT-0,5, рассчитанного по формуле (3). Как видно, по мере перехода от условий, близких к ПДС (в начале координат), к ПНС χ изменяется от 0,794 до 0,266.

Среднее по толщине образца значение χ определялось по формуле

$$\chi = \frac{1}{t_0} \int_{0}^{t_0} \chi(z) dz$$
 (8)

и равно 0,68, где t_0 – толщина образца. После проведения аналогичных расчетов и усреднения χ для образца СТ-1 имеем $\chi = 0,8$.

Для определения жесткости напряженного состояния (σ_m / σ_i) с помощью той же КЭ-модели решалась трехмерная упругопластическая задача в геометрически нелинейной постановке, при этом начало пластического течения материала задавалось по Мизесу.

Рис. 5. Распределение параметра χ по толщине образца СТ-0,5.

Рис. 6 иллюстрирует распределение параметра σ_m/σ_i по толщине образца СТ-0,5 при температуре 400°С и смещении по линии действия силы, составляющем 0,14 мм. Расстояние от фронта трещины по оси *OX* (рис. 4) равно расстоянию, на котором реализуется максимальное напряжение по Мизесу у фронта трещины (рис. 7).

Рис. 6. Распределение σ_m/σ_i у фронта трещины по толщине образца СТ-0,5.

Параметр σ_m / σ_i , полученный в результате решения трехмерной упругопластической задачи усредняется по толщине образца аналогично параметру χ :

$$\frac{\sigma_m}{\sigma_i} = \frac{1}{t_0} \int_0^{t_0} \frac{\sigma_m}{\sigma_i}(z) dz.$$
(9)

ISSN 0556-171Х. Проблемы прочности, 2009, № 4

В. В. Покровский, С. Б. Кулишов, В. Г. Сидяченко и др.

Результаты обработки экспериментальных данных по разрушению цилиндрических образцов с различными концентраторами напряжений и диаграмм деформирования, а также численных расчетов по определению параметра χ приведены в табл. 2. Характеристическое расстояние X_c принято приближенно равным двум раскрытиям вершины трещины [1].

Τ	а	б	Л	И	ц	а	2
---	---	---	---	---	---	---	---

Данные для расчета по формулам (4), (5)

T, °C	C_{f}	k_{f}	$\varepsilon_{ m lf}$	п	A	$M_f,$ к $H/мm^2$	χ
20	8159	18,3	0,193	0,061	1,29	9,35	$\frac{0,80}{0,67}$
300	383	13,7	0,238	0,123	1,562	11,32	0,80 0,67
400	79,25	10,4	0,197	0,21	2,18	15,8	$\frac{0,80}{0,67}$

Примечание. Над чертой приведены данные для образцов СТ-1, под чертой – для образцов СТ-0,5; значение ν составляло 0,3, X_c – 0,0072.

Рис. 7. Распределение напряжений у фронта трещины внутри образца: 1 – эквивалентное напряжение σ_i по Мизесу; $2 - \sigma_x$; $3 - \sigma_z$; 4 – гидростатическое напряжение σ_m ; $5 - \sigma_y$.

На рис. 8 представлены данные сравнения характеристик трещиностойкости, полученных путем расчета по формулам (4) и (5) и экспериментально, для образцов СТ-1 и СТ-0,5 при различных температурах. Пересчет J_c на K_c осуществляется по формуле

$$K_c = \sqrt{J_c E'},\tag{10}$$

где E' = E - для плоского напряженного состояния; $E' = \frac{E}{1 - \nu^2} - для$ плоской деформации; E - модуль Юнга.

Рис. 8. Нижняя огибающая экспериментальных данных (■, ●) и расчетные (×, * – по (4), ★ – по (5)) результаты характеристик статической трещиностойкости: *1*, *3*, *5* – образец CT-1; *2*, *4* – образец CT-0,5.

Как видно, характер температурной зависимости вязкости разрушения, рассчитанной по формуле (4), в целом соответствует характеру изменения экспериментально полученных критических характеристик трещиностойкости.

Данные прогноза по формуле (4) попадают в полосу разброса (рис. 8) экспериментальных данных по вязкости разрушения при температурах 300 и 400°С, при температуре 20°С прогнозируется консервативное значение вязкости разрушения, которое идет в запас трещиностойкости материала. В целом прогнозируется снижение критических характеристик трещиностойкости при уменьшении размера образца.

Заключение. На основании экспериментальных исследований стали 12Сг–2Ni–Мо показана возможность применения методики пересчета значений вязкости разрушения малых образцов СТ-0,5 на большие СТ-1 с учетом напряженно-деформированного состояния и толщины конструкционного элемента. Результаты прогноза попадают в полосу разброса экспериментальных данных.

Резюме

Досліджено вплив температури та розміру зразків на характеристики статичної тріщиностійкості жароміцної сталі 12Cr–2Ni–Mo. Показано, що в діапазоні температур 20...450°С збільшення товщини зразків призводить до незначного підвищення в'язкості руйнування, отриманої за 5%-ною січною у відповідності до стандартів щодо визначення характеристик тріщиностійкості. Розрахунок характеристик тріщиностійкості з урахуванням ефекту масштабу за розробленою раніше авторами розрахунково-експериментальною моделлю для сталі 12Cr–2Ni–Mo свідчить про задовільну відповідність експерименту у всьому дослідженому діапазоні температур.

- 1. Трощенко В. Т., Покровский В. В., Каплуненко В. Г. Прогнозирование трещиностойкости теплоустойчивых сталей с учетом размеров образцов. Сообщ. 2. Вязкое разрушение // Пробл. прочности. 1997. № 2. С. 5 18.
- ГОСТ 25.506-85. Методы механических испытаний металлов. Определение характеристик трещиностойкости (вязкости разрушения) при статическом нагружении. М.: Изд-во стандартов, 1985. 61 с.
- 3. *ASTM E 1820*. Standard Test Method for Measurement of Fracture Toughness // Annual Book of ASTM Standards. 1999. Vol. 03. 01. 48 p.
- 4. Трощенко В. Т., Покровский В. В., Каплуненко В. Г. Прогнозирование трещиностойкости теплоустойчивых сталей с учетом размеров образцов. Сообщ. 1. Результаты экспериментальных исследований // Пробл. прочности. 1997. № 1. С. 5 25.
- 5. *Бриджмен П.* Исследование больших пластических деформаций и разрыва. – М.: Изд-во иностр. лит., 1955. – 444 с.

Поступила 11. 07. 2008